File size: 6,918 Bytes
20076b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
from typing import TYPE_CHECKING, Dict

import gradio as gr
from transformers.trainer_utils import SchedulerType

from ...extras.constants import TRAINING_STAGES
from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset
from ..components.data import create_preview_box
from ..utils import gen_plot


if TYPE_CHECKING:
    from gradio.components import Component

    from ..engine import Engine


def create_train_tab(engine: "Engine") -> Dict[str, "Component"]:
    input_elems = engine.manager.get_base_elems()
    elem_dict = dict()

    with gr.Row():
        training_stage = gr.Dropdown(
            choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2
        )
        dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
        dataset = gr.Dropdown(multiselect=True, scale=4)
        preview_elems = create_preview_box(dataset_dir, dataset)

    training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)
    dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False)

    input_elems.update({training_stage, dataset_dir, dataset})
    elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems))

    with gr.Row():
        cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1)
        learning_rate = gr.Textbox(value="5e-5")
        num_train_epochs = gr.Textbox(value="3.0")
        max_samples = gr.Textbox(value="100000")
        compute_type = gr.Radio(choices=["fp16", "bf16", "fp32"], value="fp16")

    input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type})
    elem_dict.update(
        dict(
            cutoff_len=cutoff_len,
            learning_rate=learning_rate,
            num_train_epochs=num_train_epochs,
            max_samples=max_samples,
            compute_type=compute_type,
        )
    )

    with gr.Row():
        batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
        gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
        lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine")
        max_grad_norm = gr.Textbox(value="1.0")
        val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)

    input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size})
    elem_dict.update(
        dict(
            batch_size=batch_size,
            gradient_accumulation_steps=gradient_accumulation_steps,
            lr_scheduler_type=lr_scheduler_type,
            max_grad_norm=max_grad_norm,
            val_size=val_size,
        )
    )

    with gr.Accordion(label="Extra config", open=False) as extra_tab:
        with gr.Row():
            logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
            save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
            warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
            neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1)

            with gr.Column():
                sft_packing = gr.Checkbox(value=False)
                upcast_layernorm = gr.Checkbox(value=False)

    input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, sft_packing, upcast_layernorm})
    elem_dict.update(
        dict(
            extra_tab=extra_tab,
            logging_steps=logging_steps,
            save_steps=save_steps,
            warmup_steps=warmup_steps,
            neftune_alpha=neftune_alpha,
            sft_packing=sft_packing,
            upcast_layernorm=upcast_layernorm,
        )
    )

    with gr.Accordion(label="LoRA config", open=False) as lora_tab:
        with gr.Row():
            lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
            lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
            lora_target = gr.Textbox(scale=1)
            additional_target = gr.Textbox(scale=1)
            create_new_adapter = gr.Checkbox(scale=1)

    input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter})
    elem_dict.update(
        dict(
            lora_tab=lora_tab,
            lora_rank=lora_rank,
            lora_dropout=lora_dropout,
            lora_target=lora_target,
            additional_target=additional_target,
            create_new_adapter=create_new_adapter,
        )
    )

    with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
        with gr.Row():
            dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
            dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1)
            reward_model = gr.Dropdown(scale=2, allow_custom_value=True)
            refresh_btn = gr.Button(scale=1)

    refresh_btn.click(
        list_adapters,
        [engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")],
        [reward_model],
        queue=False,
    )

    input_elems.update({dpo_beta, dpo_ftx, reward_model})
    elem_dict.update(
        dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn)
    )

    with gr.Row():
        cmd_preview_btn = gr.Button()
        start_btn = gr.Button()
        stop_btn = gr.Button()

    with gr.Row():
        with gr.Column(scale=3):
            with gr.Row():
                output_dir = gr.Textbox()

            with gr.Row():
                resume_btn = gr.Checkbox(visible=False, interactive=False, value=False)
                process_bar = gr.Slider(visible=False, interactive=False)

            with gr.Box():
                output_box = gr.Markdown()

        with gr.Column(scale=1):
            loss_viewer = gr.Plot()

    input_elems.add(output_dir)
    output_elems = [output_box, process_bar]

    cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems)
    start_btn.click(engine.runner.run_train, input_elems, output_elems)
    stop_btn.click(engine.runner.set_abort, queue=False)
    resume_btn.change(engine.runner.monitor, outputs=output_elems)

    elem_dict.update(
        dict(
            cmd_preview_btn=cmd_preview_btn,
            start_btn=start_btn,
            stop_btn=stop_btn,
            output_dir=output_dir,
            resume_btn=resume_btn,
            process_bar=process_bar,
            output_box=output_box,
            loss_viewer=loss_viewer,
        )
    )

    output_box.change(
        gen_plot,
        [
            engine.manager.get_elem_by_name("top.model_name"),
            engine.manager.get_elem_by_name("top.finetuning_type"),
            output_dir,
        ],
        loss_viewer,
        queue=False,
    )

    return elem_dict