from typing import TYPE_CHECKING, Dict import gradio as gr from transformers.trainer_utils import SchedulerType from ...extras.constants import TRAINING_STAGES from ..common import DEFAULT_DATA_DIR, list_adapters, list_dataset from ..components.data import create_preview_box from ..utils import gen_plot if TYPE_CHECKING: from gradio.components import Component from ..engine import Engine def create_train_tab(engine: "Engine") -> Dict[str, "Component"]: input_elems = engine.manager.get_base_elems() elem_dict = dict() with gr.Row(): training_stage = gr.Dropdown( choices=list(TRAINING_STAGES.keys()), value=list(TRAINING_STAGES.keys())[0], scale=2 ) dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2) dataset = gr.Dropdown(multiselect=True, scale=4) preview_elems = create_preview_box(dataset_dir, dataset) training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False) dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset], queue=False) input_elems.update({training_stage, dataset_dir, dataset}) elem_dict.update(dict(training_stage=training_stage, dataset_dir=dataset_dir, dataset=dataset, **preview_elems)) with gr.Row(): cutoff_len = gr.Slider(value=1024, minimum=4, maximum=8192, step=1) learning_rate = gr.Textbox(value="5e-5") num_train_epochs = gr.Textbox(value="3.0") max_samples = gr.Textbox(value="100000") compute_type = gr.Radio(choices=["fp16", "bf16", "fp32"], value="fp16") input_elems.update({cutoff_len, learning_rate, num_train_epochs, max_samples, compute_type}) elem_dict.update( dict( cutoff_len=cutoff_len, learning_rate=learning_rate, num_train_epochs=num_train_epochs, max_samples=max_samples, compute_type=compute_type, ) ) with gr.Row(): batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1) gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1) lr_scheduler_type = gr.Dropdown(choices=[scheduler.value for scheduler in SchedulerType], value="cosine") max_grad_norm = gr.Textbox(value="1.0") val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001) input_elems.update({batch_size, gradient_accumulation_steps, lr_scheduler_type, max_grad_norm, val_size}) elem_dict.update( dict( batch_size=batch_size, gradient_accumulation_steps=gradient_accumulation_steps, lr_scheduler_type=lr_scheduler_type, max_grad_norm=max_grad_norm, val_size=val_size, ) ) with gr.Accordion(label="Extra config", open=False) as extra_tab: with gr.Row(): logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5) save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10) warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1) neftune_alpha = gr.Slider(value=0, minimum=0, maximum=10, step=0.1) with gr.Column(): sft_packing = gr.Checkbox(value=False) upcast_layernorm = gr.Checkbox(value=False) input_elems.update({logging_steps, save_steps, warmup_steps, neftune_alpha, sft_packing, upcast_layernorm}) elem_dict.update( dict( extra_tab=extra_tab, logging_steps=logging_steps, save_steps=save_steps, warmup_steps=warmup_steps, neftune_alpha=neftune_alpha, sft_packing=sft_packing, upcast_layernorm=upcast_layernorm, ) ) with gr.Accordion(label="LoRA config", open=False) as lora_tab: with gr.Row(): lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1) lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) lora_target = gr.Textbox(scale=1) additional_target = gr.Textbox(scale=1) create_new_adapter = gr.Checkbox(scale=1) input_elems.update({lora_rank, lora_dropout, lora_target, additional_target, create_new_adapter}) elem_dict.update( dict( lora_tab=lora_tab, lora_rank=lora_rank, lora_dropout=lora_dropout, lora_target=lora_target, additional_target=additional_target, create_new_adapter=create_new_adapter, ) ) with gr.Accordion(label="RLHF config", open=False) as rlhf_tab: with gr.Row(): dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1) dpo_ftx = gr.Slider(value=0, minimum=0, maximum=10, step=0.01, scale=1) reward_model = gr.Dropdown(scale=2, allow_custom_value=True) refresh_btn = gr.Button(scale=1) refresh_btn.click( list_adapters, [engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type")], [reward_model], queue=False, ) input_elems.update({dpo_beta, dpo_ftx, reward_model}) elem_dict.update( dict(rlhf_tab=rlhf_tab, dpo_beta=dpo_beta, dpo_ftx=dpo_ftx, reward_model=reward_model, refresh_btn=refresh_btn) ) with gr.Row(): cmd_preview_btn = gr.Button() start_btn = gr.Button() stop_btn = gr.Button() with gr.Row(): with gr.Column(scale=3): with gr.Row(): output_dir = gr.Textbox() with gr.Row(): resume_btn = gr.Checkbox(visible=False, interactive=False, value=False) process_bar = gr.Slider(visible=False, interactive=False) with gr.Box(): output_box = gr.Markdown() with gr.Column(scale=1): loss_viewer = gr.Plot() input_elems.add(output_dir) output_elems = [output_box, process_bar] cmd_preview_btn.click(engine.runner.preview_train, input_elems, output_elems) start_btn.click(engine.runner.run_train, input_elems, output_elems) stop_btn.click(engine.runner.set_abort, queue=False) resume_btn.change(engine.runner.monitor, outputs=output_elems) elem_dict.update( dict( cmd_preview_btn=cmd_preview_btn, start_btn=start_btn, stop_btn=stop_btn, output_dir=output_dir, resume_btn=resume_btn, process_bar=process_bar, output_box=output_box, loss_viewer=loss_viewer, ) ) output_box.change( gen_plot, [ engine.manager.get_elem_by_name("top.model_name"), engine.manager.get_elem_by_name("top.finetuning_type"), output_dir, ], loss_viewer, queue=False, ) return elem_dict