Spaces:
Runtime error
Runtime error
File size: 7,748 Bytes
d72e6ae 632f592 ab391c2 d72e6ae 632f592 ab391c2 d72e6ae 2be1eee 5123979 632f592 5123979 632f592 c5cf0dd fea8645 8cbd82e dfdce33 fbdd32d 5123979 fb56e7c 632f592 1f2defa 632f592 d72e6ae 0f3cc51 2d0aeb0 ab391c2 b06da2c 93fda42 0f3cc51 d72e6ae 062ca1d 632f592 d72e6ae 062ca1d d72e6ae f81694f dcc51de 4aafa13 93fda42 ab391c2 93fda42 fc4a559 d72e6ae fc4a559 509eefc fc4a559 aede1bb d72e6ae 861cd57 d72e6ae 304de92 632f592 d72e6ae 632f592 d72e6ae 632f592 d72e6ae 3304e16 632f592 3304e16 d72e6ae 5c9b987 d72e6ae 5c9b987 d72e6ae d4793df d72e6ae d4793df d72e6ae c7feb81 871e408 fc4a559 d72e6ae a3dd2de 632f592 837ed4a 67fdfd0 5d4d177 632f592 a2692eb 632f592 d72e6ae a3dd2de 5000c29 ab391c2 632f592 d0eec81 fc4a559 a3dd2de ab391c2 d72e6ae ab391c2 721bf9a ab391c2 721bf9a ab391c2 93fda42 ab391c2 1f2defa 632f592 ab391c2 1f2defa ab391c2 93fda42 871e408 dcc51de c7feb81 93fda42 c7feb81 871e408 93fda42 298affb 93fda42 d72e6ae 3304e16 632f592 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import torch
import trl
from transformers import (
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
from itertools import islice
BATCH_SIZE = 8
EPOCHS = 3
LEARNING_RATE = 1e-4
FACTOR = 12 ** 3 // 3
MAX_SEQ_LENGTH = 512
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
INIT = 1#/3
SHARD_SIZE = int(5e+5)
FP16 = True
WARMUP_STEPS = 1000
WEIGHT_DECAY = 0.01
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
PUSH_TO_HUB = True
NUM_WORKERS = 4
def load_data():
if not INSTRUCT_FINETUNE_BOOL:
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
start = INIT * SHARD_SIZE
dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
else:
dataset = load_dataset(INSTRUCT_DATASET, split="train")
return dataset
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
if INSTRUCT_FINETUNE_BOOL:
special_tokens.extend(["<|user|>", "<|bot|>", "<|end|>"])
tokenizer.train_from_iterator(
training_corpus,
vocab_size=VOCAB_SIZE,
min_frequency=2,
special_tokens=special_tokens
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
return fast_tokenizer
def load_tokenizer():
return AutoTokenizer.from_pretrained(OUTPUT_REPO)
def get_training_corpus(dataset):
for i in range(0, len(dataset['text']), 1000):
yield dataset['text'][i : i + 1000]
def format_prompts(examples, tokenizer, isinst):
texts = []
for text in examples['text']:
if isinst:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "").strip()
response = parts[i + 1].replace("<|bot|>", "").strip()
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
texts.append(formatted_conversation)
else:
texts.append(tokenizer.bos_token + text + tokenizer.eos_token)
return {"text": texts}
def create_model(tokenizer):
config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=FACTOR,
intermediate_size=FACTOR * 4,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=MAX_SEQ_LENGTH,
rms_norm_eps=1e-5,
initializer_range=0.02,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
return LlamaForCausalLM(config)
def load_model():
return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO)
def configure_tokenizer(tokenizer):
special_tokens = {
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>"
}
if INSTRUCT_FINETUNE_BOOL:
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
tokenizer.add_special_tokens(special_tokens)
if INSTRUCT_FINETUNE_BOOL:
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
tokenizer.chat_template = chat_template
def update_tokenizer(tokenizer, dataset, batch_size=1000):
existing_vocab = tokenizer.get_vocab()
oov_tokens = set()
for i in range(0, len(dataset['text']), batch_size):
batch = dataset['text'][i : i + batch_size]
batch_tokens = tokenizer.encode_batch(batch)
for encoded in batch_tokens:
for token in encoded.tokens:
if token not in existing_vocab:
oov_tokens.add(token)
tokenizer.add_tokens(list(oov_tokens))
def train_model(model, tokenizer, dataset, push, isinst):
args = TrainingArguments(
output_dir="model",
num_train_epochs=EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
optim="adamw_torch",
warmup_steps=WARMUP_STEPS,
weight_decay=WEIGHT_DECAY,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
fp16=FP16,
save_steps=int(1e+10),
logging_steps=10,
evaluation_strategy="no",
eval_steps=500,
save_total_limit=2,
)
# dataset = dataset.shard(num_shards=len(dataset) // SHARD_SIZE, index=INIT)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
)
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
trainer = trl.SFTTrainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=dataset,
dataset_text_field='text',
max_seq_length=MAX_SEQ_LENGTH,
optimizers=(optimizer, scheduler)
)
train = trainer.train()
trained_model = trainer.model
trained_tokenizer = trainer.tokenizer
if push:
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
msg = f"Training loss: {train.training_loss:.4f}"
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
else:
trained_model.save_pretrained("model")
trained_tokenizer.save_pretrained("tokenizer")
def main(push_to_hub=True, is_inst_finetune=False):
dataset = load_data()
if not is_inst_finetune and INIT == 0:
training_corpus = get_training_corpus(dataset)
tokenizer = create_tokenizer(training_corpus)
else:
tokenizer = load_tokenizer()
update_tokenizer(tokenizer, dataset)
configure_tokenizer(tokenizer)
if is_inst_finetune:
model = load_model()
else:
model = create_model(tokenizer) if INIT == 0 else load_model()
model.resize_token_embeddings(len(tokenizer))
train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
if __name__ == "__main__":
main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
raise Exception("Done baking!") |