File size: 7,748 Bytes
d72e6ae
 
 
632f592
 
 
 
ab391c2
d72e6ae
632f592
ab391c2
 
d72e6ae
2be1eee
5123979
632f592
5123979
 
632f592
c5cf0dd
fea8645
8cbd82e
dfdce33
fbdd32d
5123979
fb56e7c
632f592
 
 
1f2defa
632f592
d72e6ae
 
0f3cc51
2d0aeb0
ab391c2
 
b06da2c
93fda42
0f3cc51
d72e6ae
 
 
062ca1d
 
632f592
d72e6ae
 
 
 
062ca1d
d72e6ae
 
 
 
f81694f
dcc51de
4aafa13
93fda42
ab391c2
 
93fda42
fc4a559
d72e6ae
 
fc4a559
 
 
 
509eefc
 
fc4a559
 
 
 
 
aede1bb
d72e6ae
 
 
 
861cd57
d72e6ae
304de92
632f592
 
d72e6ae
632f592
d72e6ae
 
 
 
 
 
 
632f592
d72e6ae
3304e16
632f592
3304e16
d72e6ae
 
 
 
 
 
5c9b987
d72e6ae
5c9b987
 
d72e6ae
d4793df
 
 
 
d72e6ae
d4793df
 
d72e6ae
c7feb81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871e408
fc4a559
d72e6ae
 
 
 
 
a3dd2de
 
632f592
837ed4a
67fdfd0
5d4d177
632f592
a2692eb
632f592
 
d72e6ae
a3dd2de
5000c29
ab391c2
632f592
d0eec81
fc4a559
a3dd2de
ab391c2
d72e6ae
ab391c2
721bf9a
ab391c2
721bf9a
 
 
 
 
ab391c2
 
 
93fda42
ab391c2
 
 
 
 
 
1f2defa
632f592
ab391c2
 
 
1f2defa
ab391c2
 
93fda42
 
 
871e408
dcc51de
c7feb81
93fda42
 
 
c7feb81
871e408
93fda42
 
 
 
 
 
298affb
 
93fda42
 
d72e6ae
 
3304e16
632f592
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import torch
import trl
from transformers import (
    AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
    TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from torch.utils.data import DataLoader
from torch.cuda.amp import autocast, GradScaler
from itertools import islice

BATCH_SIZE = 8
EPOCHS = 3
LEARNING_RATE = 1e-4
FACTOR = 12 ** 3 // 3
MAX_SEQ_LENGTH = 512
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
INIT = 1#/3
SHARD_SIZE = int(5e+5)
FP16 = True
WARMUP_STEPS = 1000
WEIGHT_DECAY = 0.01
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
PUSH_TO_HUB = True
NUM_WORKERS = 4

def load_data():
    if not INSTRUCT_FINETUNE_BOOL:
        dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
        start = INIT * SHARD_SIZE
        dataset = Dataset.from_dict({'text': [example['text'] for example in islice(dataset, start, start + SHARD_SIZE)]})
    else:
        dataset = load_dataset(INSTRUCT_DATASET, split="train")
    return dataset

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
    if INSTRUCT_FINETUNE_BOOL:
        special_tokens.extend(["<|user|>", "<|bot|>", "<|end|>"])
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=special_tokens
    )
    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def load_tokenizer():
    return AutoTokenizer.from_pretrained(OUTPUT_REPO)

def get_training_corpus(dataset):
    for i in range(0, len(dataset['text']), 1000):
        yield dataset['text'][i : i + 1000]

def format_prompts(examples, tokenizer, isinst):
    texts = []
    for text in examples['text']:
        if isinst:
            conversation = []
            parts = text.split('<|end|>')
            for i in range(0, len(parts) - 1, 2):
                prompt = parts[i].replace("<|user|>", "").strip()
                response = parts[i + 1].replace("<|bot|>", "").strip()
                conversation.append({"role": "user", "content": prompt})
                conversation.append({"role": "assistant", "content": response})
            formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
            texts.append(formatted_conversation)
        else:
            texts.append(tokenizer.bos_token + text + tokenizer.eos_token)
    return {"text": texts}

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=12,
        num_attention_heads=12,
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-5,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    return LlamaForCausalLM(config)

def load_model():
    return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO)

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>"
    }
    if INSTRUCT_FINETUNE_BOOL:
        special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
    tokenizer.add_special_tokens(special_tokens)

    if INSTRUCT_FINETUNE_BOOL:
        tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
        tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
        chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
        tokenizer.chat_template = chat_template

def update_tokenizer(tokenizer, dataset, batch_size=1000):
    existing_vocab = tokenizer.get_vocab()

    oov_tokens = set()

    for i in range(0, len(dataset['text']), batch_size):
        batch = dataset['text'][i : i + batch_size]
        
        batch_tokens = tokenizer.encode_batch(batch)
        
        for encoded in batch_tokens:
            for token in encoded.tokens:
                if token not in existing_vocab:
                    oov_tokens.add(token)

    tokenizer.add_tokens(list(oov_tokens))


def train_model(model, tokenizer, dataset, push, isinst):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="adamw_torch",
        warmup_steps=WARMUP_STEPS,
        weight_decay=WEIGHT_DECAY,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        fp16=FP16,
        save_steps=int(1e+10),
        logging_steps=10,
        evaluation_strategy="no",
        eval_steps=500,
        save_total_limit=2,
    )

    # dataset = dataset.shard(num_shards=len(dataset) // SHARD_SIZE, index=INIT)

    optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
    scheduler = get_cosine_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps, 
        num_training_steps=(len(dataset) // args.per_device_train_batch_size) * args.num_train_epochs
    )
    
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
   
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH,
        optimizers=(optimizer, scheduler)
    )
    
    train = trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    if push:
        repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
        msg = f"Training loss: {train.training_loss:.4f}"
        trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
        trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
    else:
        trained_model.save_pretrained("model")
        trained_tokenizer.save_pretrained("tokenizer")

def main(push_to_hub=True, is_inst_finetune=False):
    dataset = load_data()
    
    if not is_inst_finetune and INIT == 0:
        training_corpus = get_training_corpus(dataset)
        tokenizer = create_tokenizer(training_corpus)
    else:
        tokenizer = load_tokenizer()
        update_tokenizer(tokenizer, dataset)
        
    configure_tokenizer(tokenizer)
    
    if is_inst_finetune:
        model = load_model()
    else:
        model = create_model(tokenizer) if INIT == 0 else load_model()

    model.resize_token_embeddings(len(tokenizer))
    
    train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)

if __name__ == "__main__":
    main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
    raise Exception("Done baking!")