Spaces:
Paused
Paused
Update train.py
Browse files
train.py
CHANGED
|
@@ -15,6 +15,7 @@ FACTOR = 128
|
|
| 15 |
VOCAB_SIZE = 3200
|
| 16 |
INPUT_DATASET = "nroggendorff/elephant"
|
| 17 |
OUTPUT_REPO = "smallama"
|
|
|
|
| 18 |
|
| 19 |
def load_data():
|
| 20 |
dataset = load_dataset(INPUT_DATASET, split="train")
|
|
@@ -55,8 +56,8 @@ def create_model(tokenizer):
|
|
| 55 |
vocab_size=tokenizer.vocab_size,
|
| 56 |
hidden_size=FACTOR,
|
| 57 |
intermediate_size=FACTOR * 4,
|
| 58 |
-
num_hidden_layers=FACTOR // 32,
|
| 59 |
-
num_attention_heads=FACTOR // 64,
|
| 60 |
max_position_embeddings=MAX_SEQ_LENGTH,
|
| 61 |
rms_norm_eps=1e-6,
|
| 62 |
initializer_range=0.02,
|
|
@@ -87,7 +88,7 @@ def configure_tokenizer(tokenizer):
|
|
| 87 |
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
|
| 88 |
tokenizer.chat_template = chat_template
|
| 89 |
|
| 90 |
-
def train_model(model, tokenizer, dataset):
|
| 91 |
args = TrainingArguments(
|
| 92 |
output_dir="model",
|
| 93 |
num_train_epochs=EPOCHS,
|
|
@@ -109,18 +110,21 @@ def train_model(model, tokenizer, dataset):
|
|
| 109 |
trained_model = trainer.model
|
| 110 |
trained_tokenizer = trainer.tokenizer
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
| 115 |
|
| 116 |
-
def main():
|
| 117 |
dataset = load_data()
|
| 118 |
training_corpus = get_training_corpus(dataset)
|
| 119 |
tokenizer = create_tokenizer(training_corpus)
|
| 120 |
configure_tokenizer(tokenizer)
|
| 121 |
model = create_model(tokenizer)
|
| 122 |
-
train_model(model, tokenizer, dataset)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
-
main()
|
| 126 |
raise RuntimeError("The script is finished.")
|
|
|
|
| 15 |
VOCAB_SIZE = 3200
|
| 16 |
INPUT_DATASET = "nroggendorff/elephant"
|
| 17 |
OUTPUT_REPO = "smallama"
|
| 18 |
+
PUSH_TO_HUB = True
|
| 19 |
|
| 20 |
def load_data():
|
| 21 |
dataset = load_dataset(INPUT_DATASET, split="train")
|
|
|
|
| 56 |
vocab_size=tokenizer.vocab_size,
|
| 57 |
hidden_size=FACTOR,
|
| 58 |
intermediate_size=FACTOR * 4,
|
| 59 |
+
num_hidden_layers=max(1, FACTOR // 32),
|
| 60 |
+
num_attention_heads=max(1, FACTOR // 64),
|
| 61 |
max_position_embeddings=MAX_SEQ_LENGTH,
|
| 62 |
rms_norm_eps=1e-6,
|
| 63 |
initializer_range=0.02,
|
|
|
|
| 88 |
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
|
| 89 |
tokenizer.chat_template = chat_template
|
| 90 |
|
| 91 |
+
def train_model(model, tokenizer, dataset, push):
|
| 92 |
args = TrainingArguments(
|
| 93 |
output_dir="model",
|
| 94 |
num_train_epochs=EPOCHS,
|
|
|
|
| 110 |
trained_model = trainer.model
|
| 111 |
trained_tokenizer = trainer.tokenizer
|
| 112 |
|
| 113 |
+
if push:
|
| 114 |
+
repo_id = OUTPUT_REPO
|
| 115 |
+
trained_model.push_to_hub(repo_id)
|
| 116 |
+
trained_tokenizer.push_to_hub(repo_id)
|
| 117 |
+
else:
|
| 118 |
+
trained_tokenizer.save_pretrained("tokenizer")
|
| 119 |
|
| 120 |
+
def main(push_to_hub=True):
|
| 121 |
dataset = load_data()
|
| 122 |
training_corpus = get_training_corpus(dataset)
|
| 123 |
tokenizer = create_tokenizer(training_corpus)
|
| 124 |
configure_tokenizer(tokenizer)
|
| 125 |
model = create_model(tokenizer)
|
| 126 |
+
train_model(model, tokenizer, dataset, push_to_hub)
|
| 127 |
|
| 128 |
if __name__ == "__main__":
|
| 129 |
+
main(PUSH_TO_HUB)
|
| 130 |
raise RuntimeError("The script is finished.")
|