File size: 11,084 Bytes
d72e6ae
892e2f9
d72e6ae
 
632f592
 
 
 
ab391c2
d72e6ae
b225b76
632f592
ab391c2
d72e6ae
239454d
5720fe4
3f18689
5123979
5720fe4
239454d
c5cf0dd
fea8645
8cbd82e
9a5c3c2
 
5720fe4
fb56e7c
9a5c3c2
5720fe4
 
1f2defa
d72e6ae
5720fe4
 
b225b76
 
 
 
 
 
 
a04f2e1
 
 
 
 
d72e6ae
5ec318d
 
 
 
5720fe4
5ec318d
 
 
 
 
d72e6ae
05f6fa1
ba5c790
 
 
8a6b116
411ad3b
 
 
 
 
 
 
 
8a6b116
411ad3b
 
ba5c790
411ad3b
 
 
 
 
d72e6ae
 
062ca1d
d72e6ae
 
 
 
062ca1d
d72e6ae
 
 
 
f81694f
1f732b8
4aafa13
93fda42
ab391c2
 
93fda42
fc4a559
d72e6ae
 
ba5c790
aa518eb
 
 
 
 
 
 
 
 
411ad3b
 
aa518eb
411ad3b
fc4a559
aa518eb
 
411ad3b
ba5c790
 
 
411ad3b
 
d72e6ae
 
 
861cd57
d72e6ae
304de92
632f592
 
d72e6ae
632f592
d72e6ae
 
 
 
 
 
 
632f592
d72e6ae
3304e16
1f732b8
3304e16
d72e6ae
 
 
 
 
 
5ec318d
 
d72e6ae
5c9b987
 
d72e6ae
d4793df
 
 
 
d72e6ae
d4793df
 
d72e6ae
411ad3b
 
c7feb81
 
 
f3687e0
c7feb81
f3687e0
 
14ddc53
f3687e0
 
 
 
 
c7feb81
f3687e0
 
 
 
 
 
c7feb81
fc4a559
d72e6ae
 
 
 
 
a3dd2de
 
632f592
837ed4a
67fdfd0
ee162e7
5720fe4
aa518eb
06ebaba
632f592
d72e6ae
a3dd2de
632f592
d0eec81
fc4a559
a3dd2de
5720fe4
d72e6ae
ab391c2
721bf9a
ba5c790
 
 
 
aa518eb
ba5c790
 
 
 
 
 
 
 
 
 
 
 
 
4d0ffb6
721bf9a
 
 
 
 
ab391c2
 
 
93fda42
ab391c2
 
 
 
 
 
1f2defa
632f592
ab391c2
 
 
1f2defa
ab391c2
 
93fda42
 
892e2f9
93fda42
892e2f9
871e408
53f6ddc
 
 
 
 
892e2f9
c7feb81
892e2f9
 
 
93fda42
eb2ea54
892e2f9
0d3291b
 
 
892e2f9
 
 
 
 
93fda42
53f6ddc
892e2f9
93fda42
892e2f9
93fda42
534bbd6
53f6ddc
534bbd6
298affb
ba5c790
 
 
892e2f9
ba5c790
 
 
 
534bbd6
892e2f9
 
93fda42
534bbd6
d72e6ae
 
f9b4329
 
a04f2e1
8255333
f9b4329
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
from sys import exit
import torch
import trl
from transformers import (
    AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
    TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from itertools import islice

BATCH_SIZE = 16
EPOCHS = 3
LEARNING_RATE = 2e-4
FACTOR = 12 ** 3 // 3
MAX_SEQ_LENGTH = 512
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
INIT = 0
SHARD_SIZE = int(2e+5)
FP16 = True
WEIGHT_DECAY = 1e-3
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
WARMUP_STEPS = ((SHARD_SIZE // (BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)) * EPOCHS) // 10
PUSH_TO_HUB = True

total_steps = WARMUP_STEPS * 10

class Space:
    def __init__(self):
        self.api = HfApi()
        self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")

space = Space()

class FineError(Exception):
    def __init__(self, message="Script execution has completed."):
        self.message = message
        super().__init__(self.message)

def load_data():
    if not INSTRUCT_FINETUNE_BOOL:
        dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
    else:
        dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)

    start = INIT * SHARD_SIZE
    data_list = list(islice(dataset, start, start + SHARD_SIZE))
    
    dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
    return dataset

def encode_decode(texts, tok):
    if tok.pad_token is None:
        tok.pad_token = tok.eos_token
    
    tokenized_texts = tok(
        texts,
        padding="max_length",
        truncation=True,
        max_length=MAX_SEQ_LENGTH,
        return_tensors="pt"
    ).input_ids

    if tokenized_texts.dim() >= 1:
        decoded_texts = tok.batch_decode(tokenized_texts)
    else:
        print('Found invalid entry in examples. Returning dummy..')
        decoded_texts = [tokenizer.pad_token * MAX_SEQ_LENGTH]
    
    islist = not len(decoded_texts) == 1
    
    return decoded_texts if islist else decoded_texts[0]

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=special_tokens
    )
    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def load_tokenizer():
    return AutoTokenizer.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)

def get_training_corpus(dataset):
    for i in range(0, len(dataset['text']), 1000):
        yield dataset['text'][i : i + 1000]

def format_prompts(examples, tokenizer, isinst):
    texts = []
    for text in examples['text']:
        if text and len(text.strip()) > 0:
            if isinst:
                conversation = []
                parts = text.split('<|end|>')
                for i in range(0, len(parts) - 1, 2):
                    prompt = parts[i].replace("<|user|>", "").strip()
                    response = parts[i + 1].replace("<|bot|>", "").strip()
                    conversation.append({"role": "user", "content": prompt})
                    conversation.append({"role": "assistant", "content": response})
                formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
                coded_text = tokenizer.code(formatted_conversation)
                texts.append(coded_text)
            else:
                texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
        else:
            print('Found empty entry in examples. Moving on..')
            continue

    if len(texts) == 0:
        raise ValueError("No valid texts found in examples for formatting.")

    coded_texts = tokenizer.code(texts)
    return {'text': coded_texts}

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=12,
        num_attention_heads=12,
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-5,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    return LlamaForCausalLM(config)

def load_model():
    return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>",
        "additional_special_tokens": []
    }
    if INSTRUCT_FINETUNE_BOOL:
        special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
    tokenizer.add_special_tokens(special_tokens)

    if INSTRUCT_FINETUNE_BOOL:
        tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
        tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
        chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
        tokenizer.chat_template = chat_template

    tokenizer.code = lambda example: encode_decode(example, tokenizer)

def update_tokenizer(tokenizer, dataset, batch_size=1000):
    existing_vocab = tokenizer.get_vocab()
    oov_tokens = set()
    
    for i in range(0, len(dataset['text']), batch_size):
        batch = dataset['text'][i:i + batch_size]
        
        for text in batch:
            token_ids = tokenizer.encode(text, add_special_tokens=False)
            
            for token_id in token_ids:
                token = tokenizer.decode([token_id])
                if token.strip() and token not in existing_vocab:
                    oov_tokens.add(token)
    
    if oov_tokens:
        num_added = tokenizer.add_tokens(list(oov_tokens))
        return num_added
    
    return 0

def train_model(model, tokenizer, dataset, push, isinst):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="adamw_torch",
        warmup_steps=WARMUP_STEPS,
        weight_decay=WEIGHT_DECAY,
        gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
        fp16=FP16,
        save_steps=WARMUP_STEPS * 5,
        logging_steps=WARMUP_STEPS,
        eval_strategy="no",
        # eval_steps=WARMUP_STEPS,
        save_total_limit=2,
    )

    optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
    scheduler = get_cosine_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps, 
        num_training_steps=total_steps
    )
    
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)

    if 'text' not in dataset.column_names:
        raise ValueError("Dataset transformation failed: 'text' column missing after mapping.")
    
    print("Mapped dataset sample length:", len(dataset[0]['text']))

    try:
        test_input = tokenizer(
            ["This is a test input."], 
            return_tensors="pt", 
            padding="max_length", 
            truncation=True, 
            max_length=MAX_SEQ_LENGTH
        )
        test_output = model(**test_input)
        print("Model test output shape:", test_output.logits.shape)
    except RuntimeError as e:
        print(f"Error processing test batch: {e}")
    
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH,
        optimizers=(optimizer, scheduler)
    )
    
    train = trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    if push:
        repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
        msg = f"Training loss: {train.training_loss:.4f}"
        trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
        trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
    else:
        trained_model.save_pretrained("model")
        trained_tokenizer.save_pretrained("tokenizer")

def main(push_to_hub=True, is_inst_finetune=False):
    print("Loading Data..")
    dataset = load_data()
    print("Loaded data.")
    
    if is_inst_finetune and INIT > 0:
        print("Loading Tokenizer..")
        tokenizer = load_tokenizer()
        print("Loaded Tokenizer.")
    else:
        print("Making Corpus..")
        training_corpus = get_training_corpus(dataset)
        print("Made Corpus.")

        print("Making Tokenizer..")
        tokenizer = create_tokenizer(training_corpus)
        print(f"Made Tokenizer with size {len(tokenizer)}.")

        # print("Adding Tokens..")
        # num_new_tokens = update_tokenizer(tokenizer, dataset)
        # print(f"Added {num_new_tokens} new tokens to the vocabulary")

    if INIT == 0:
        print("Adding Special Tokens..")
        configure_tokenizer(tokenizer)
        print("Added Tokens.")
    
    if is_inst_finetune or INIT > 0:
        print("Loading Model..")
        model = load_model()
        print("Loaded Model.")
    else:
        print("Creating Model..")
        model = create_model(tokenizer)
        print("Created Model.")

    print(f"Tokenizer vocabulary size: {len(tokenizer)}")
    print(f"Special tokens: {tokenizer.special_tokens_map}")

    print("Resizing Token Embeddings..")
    try:
        model.resize_token_embeddings(len(tokenizer))
    except RuntimeError as e:
        raise RuntimeError(f"Error resizing token embeddings: {e}")
    print("Resized Embeddings.")

    print("Training Model..")
    train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
    raise FineError("Trained Model.")

if __name__ == "__main__":
    try:
        main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
    except Exception as e:
        print(f'{type(e).__name__}: {e}')
        space.pause()