Spaces:
Runtime error
Runtime error
File size: 11,084 Bytes
d72e6ae 892e2f9 d72e6ae 632f592 ab391c2 d72e6ae b225b76 632f592 ab391c2 d72e6ae 239454d 5720fe4 3f18689 5123979 5720fe4 239454d c5cf0dd fea8645 8cbd82e 9a5c3c2 5720fe4 fb56e7c 9a5c3c2 5720fe4 1f2defa d72e6ae 5720fe4 b225b76 a04f2e1 d72e6ae 5ec318d 5720fe4 5ec318d d72e6ae 05f6fa1 ba5c790 8a6b116 411ad3b 8a6b116 411ad3b ba5c790 411ad3b d72e6ae 062ca1d d72e6ae 062ca1d d72e6ae f81694f 1f732b8 4aafa13 93fda42 ab391c2 93fda42 fc4a559 d72e6ae ba5c790 aa518eb 411ad3b aa518eb 411ad3b fc4a559 aa518eb 411ad3b ba5c790 411ad3b d72e6ae 861cd57 d72e6ae 304de92 632f592 d72e6ae 632f592 d72e6ae 632f592 d72e6ae 3304e16 1f732b8 3304e16 d72e6ae 5ec318d d72e6ae 5c9b987 d72e6ae d4793df d72e6ae d4793df d72e6ae 411ad3b c7feb81 f3687e0 c7feb81 f3687e0 14ddc53 f3687e0 c7feb81 f3687e0 c7feb81 fc4a559 d72e6ae a3dd2de 632f592 837ed4a 67fdfd0 ee162e7 5720fe4 aa518eb 06ebaba 632f592 d72e6ae a3dd2de 632f592 d0eec81 fc4a559 a3dd2de 5720fe4 d72e6ae ab391c2 721bf9a ba5c790 aa518eb ba5c790 4d0ffb6 721bf9a ab391c2 93fda42 ab391c2 1f2defa 632f592 ab391c2 1f2defa ab391c2 93fda42 892e2f9 93fda42 892e2f9 871e408 53f6ddc 892e2f9 c7feb81 892e2f9 93fda42 eb2ea54 892e2f9 0d3291b 892e2f9 93fda42 53f6ddc 892e2f9 93fda42 892e2f9 93fda42 534bbd6 53f6ddc 534bbd6 298affb ba5c790 892e2f9 ba5c790 534bbd6 892e2f9 93fda42 534bbd6 d72e6ae f9b4329 a04f2e1 8255333 f9b4329 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import os
from sys import exit
import torch
import trl
from transformers import (
AutoTokenizer, LlamaConfig, AutoModelForCausalLM, LlamaForCausalLM,
TrainingArguments, PreTrainedTokenizerFast, AdamW, get_cosine_schedule_with_warmup
)
from datasets import load_dataset, Dataset
from tokenizers import ByteLevelBPETokenizer
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from itertools import islice
BATCH_SIZE = 16
EPOCHS = 3
LEARNING_RATE = 2e-4
FACTOR = 12 ** 3 // 3
MAX_SEQ_LENGTH = 512
VOCAB_SIZE = 32000
INPUT_DATASET = "HuggingFaceTB/smollm-corpus"
INSTRUCT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "nroggendorff/smallama"
INSTRUCT_FINETUNE_BOOL = False
INIT = 0
SHARD_SIZE = int(2e+5)
FP16 = True
WEIGHT_DECAY = 1e-3
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // 4
WARMUP_STEPS = ((SHARD_SIZE // (BATCH_SIZE * GRADIENT_ACCUMULATION_STEPS)) * EPOCHS) // 10
PUSH_TO_HUB = True
total_steps = WARMUP_STEPS * 10
class Space:
def __init__(self):
self.api = HfApi()
self.pause = lambda: self.api.pause_space("nroggendorff/train-llama")
space = Space()
class FineError(Exception):
def __init__(self, message="Script execution has completed."):
self.message = message
super().__init__(self.message)
def load_data():
if not INSTRUCT_FINETUNE_BOOL:
dataset = load_dataset(INPUT_DATASET, "cosmopedia-v2", split="train", streaming=True)
else:
dataset = load_dataset(INSTRUCT_DATASET, split="train", streaming=True)
start = INIT * SHARD_SIZE
data_list = list(islice(dataset, start, start + SHARD_SIZE))
dataset = Dataset.from_dict({'text': [example['text'] for example in data_list]})
return dataset
def encode_decode(texts, tok):
if tok.pad_token is None:
tok.pad_token = tok.eos_token
tokenized_texts = tok(
texts,
padding="max_length",
truncation=True,
max_length=MAX_SEQ_LENGTH,
return_tensors="pt"
).input_ids
if tokenized_texts.dim() >= 1:
decoded_texts = tok.batch_decode(tokenized_texts)
else:
print('Found invalid entry in examples. Returning dummy..')
decoded_texts = [tokenizer.pad_token * MAX_SEQ_LENGTH]
islist = not len(decoded_texts) == 1
return decoded_texts if islist else decoded_texts[0]
def create_tokenizer(training_corpus):
tokenizer = ByteLevelBPETokenizer()
special_tokens = ["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
tokenizer.train_from_iterator(
training_corpus,
vocab_size=VOCAB_SIZE,
min_frequency=2,
special_tokens=special_tokens
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
return fast_tokenizer
def load_tokenizer():
return AutoTokenizer.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
def get_training_corpus(dataset):
for i in range(0, len(dataset['text']), 1000):
yield dataset['text'][i : i + 1000]
def format_prompts(examples, tokenizer, isinst):
texts = []
for text in examples['text']:
if text and len(text.strip()) > 0:
if isinst:
conversation = []
parts = text.split('<|end|>')
for i in range(0, len(parts) - 1, 2):
prompt = parts[i].replace("<|user|>", "").strip()
response = parts[i + 1].replace("<|bot|>", "").strip()
conversation.append({"role": "user", "content": prompt})
conversation.append({"role": "assistant", "content": response})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
coded_text = tokenizer.code(formatted_conversation)
texts.append(coded_text)
else:
texts.append(tokenizer.bos_token + tokenizer.code(text) + tokenizer.eos_token)
else:
print('Found empty entry in examples. Moving on..')
continue
if len(texts) == 0:
raise ValueError("No valid texts found in examples for formatting.")
coded_texts = tokenizer.code(texts)
return {'text': coded_texts}
def create_model(tokenizer):
config = LlamaConfig(
vocab_size=tokenizer.vocab_size,
hidden_size=FACTOR,
intermediate_size=FACTOR * 4,
num_hidden_layers=12,
num_attention_heads=12,
max_position_embeddings=MAX_SEQ_LENGTH,
rms_norm_eps=1e-5,
initializer_range=0.02,
use_cache=True,
pad_token_id=tokenizer.pad_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
tie_word_embeddings=False,
)
return LlamaForCausalLM(config)
def load_model():
return AutoModelForCausalLM.from_pretrained(OUTPUT_REPO + '-it' if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO)
def configure_tokenizer(tokenizer):
special_tokens = {
"bos_token": "<s>",
"eos_token": "</s>",
"unk_token": "<unk>",
"pad_token": "<pad>",
"mask_token": "<mask>",
"additional_special_tokens": []
}
if INSTRUCT_FINETUNE_BOOL:
special_tokens["additional_special_tokens"] = ["<|user|>", "<|bot|>", "<|end|>"]
tokenizer.add_special_tokens(special_tokens)
if INSTRUCT_FINETUNE_BOOL:
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
tokenizer.chat_template = chat_template
tokenizer.code = lambda example: encode_decode(example, tokenizer)
def update_tokenizer(tokenizer, dataset, batch_size=1000):
existing_vocab = tokenizer.get_vocab()
oov_tokens = set()
for i in range(0, len(dataset['text']), batch_size):
batch = dataset['text'][i:i + batch_size]
for text in batch:
token_ids = tokenizer.encode(text, add_special_tokens=False)
for token_id in token_ids:
token = tokenizer.decode([token_id])
if token.strip() and token not in existing_vocab:
oov_tokens.add(token)
if oov_tokens:
num_added = tokenizer.add_tokens(list(oov_tokens))
return num_added
return 0
def train_model(model, tokenizer, dataset, push, isinst):
args = TrainingArguments(
output_dir="model",
num_train_epochs=EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
learning_rate=LEARNING_RATE,
optim="adamw_torch",
warmup_steps=WARMUP_STEPS,
weight_decay=WEIGHT_DECAY,
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
fp16=FP16,
save_steps=WARMUP_STEPS * 5,
logging_steps=WARMUP_STEPS,
eval_strategy="no",
# eval_steps=WARMUP_STEPS,
save_total_limit=2,
)
optimizer = AdamW(model.parameters(), lr=args.learning_rate, weight_decay=WEIGHT_DECAY)
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=args.warmup_steps,
num_training_steps=total_steps
)
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer, isinst), batched=True, remove_columns=dataset.column_names)
if 'text' not in dataset.column_names:
raise ValueError("Dataset transformation failed: 'text' column missing after mapping.")
print("Mapped dataset sample length:", len(dataset[0]['text']))
try:
test_input = tokenizer(
["This is a test input."],
return_tensors="pt",
padding="max_length",
truncation=True,
max_length=MAX_SEQ_LENGTH
)
test_output = model(**test_input)
print("Model test output shape:", test_output.logits.shape)
except RuntimeError as e:
print(f"Error processing test batch: {e}")
trainer = trl.SFTTrainer(
model=model,
tokenizer=tokenizer,
args=args,
train_dataset=dataset,
dataset_text_field='text',
max_seq_length=MAX_SEQ_LENGTH,
optimizers=(optimizer, scheduler)
)
train = trainer.train()
trained_model = trainer.model
trained_tokenizer = trainer.tokenizer
if push:
repo_id = OUTPUT_REPO + "-it" if INSTRUCT_FINETUNE_BOOL else OUTPUT_REPO
msg = f"Training loss: {train.training_loss:.4f}"
trained_model.push_to_hub(repo_id, commit_message=msg, force=True)
trained_tokenizer.push_to_hub(repo_id, commit_message=msg, force=True)
else:
trained_model.save_pretrained("model")
trained_tokenizer.save_pretrained("tokenizer")
def main(push_to_hub=True, is_inst_finetune=False):
print("Loading Data..")
dataset = load_data()
print("Loaded data.")
if is_inst_finetune and INIT > 0:
print("Loading Tokenizer..")
tokenizer = load_tokenizer()
print("Loaded Tokenizer.")
else:
print("Making Corpus..")
training_corpus = get_training_corpus(dataset)
print("Made Corpus.")
print("Making Tokenizer..")
tokenizer = create_tokenizer(training_corpus)
print(f"Made Tokenizer with size {len(tokenizer)}.")
# print("Adding Tokens..")
# num_new_tokens = update_tokenizer(tokenizer, dataset)
# print(f"Added {num_new_tokens} new tokens to the vocabulary")
if INIT == 0:
print("Adding Special Tokens..")
configure_tokenizer(tokenizer)
print("Added Tokens.")
if is_inst_finetune or INIT > 0:
print("Loading Model..")
model = load_model()
print("Loaded Model.")
else:
print("Creating Model..")
model = create_model(tokenizer)
print("Created Model.")
print(f"Tokenizer vocabulary size: {len(tokenizer)}")
print(f"Special tokens: {tokenizer.special_tokens_map}")
print("Resizing Token Embeddings..")
try:
model.resize_token_embeddings(len(tokenizer))
except RuntimeError as e:
raise RuntimeError(f"Error resizing token embeddings: {e}")
print("Resized Embeddings.")
print("Training Model..")
train_model(model, tokenizer, dataset, push_to_hub, is_inst_finetune)
raise FineError("Trained Model.")
if __name__ == "__main__":
try:
main(PUSH_TO_HUB, INSTRUCT_FINETUNE_BOOL)
except Exception as e:
print(f'{type(e).__name__}: {e}')
space.pause() |