File size: 2,372 Bytes
1a3844d
b41cba1
 
85f0e91
c596df4
86a4add
42159c7
405fa0d
 
06aac96
 
 
 
eec0220
06aac96
 
f08406b
405fa0d
06aac96
42159c7
c596df4
 
 
 
 
 
 
85f0e91
 
 
 
 
 
06aac96
85f0e91
06aac96
 
 
 
 
 
 
1a3844d
06aac96
 
 
1a3844d
98e85e1
 
 
 
 
85f0e91
98e85e1
 
 
 
 
85f0e91
98e85e1
 
 
 
 
 
 
 
 
 
 
 
 
 
b41cba1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import gradio as gr
import numpy as np
from time import sleep
import torch
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
# from torchvision import transforms



# class Count:
#     def __init__(self):
#         self.n = 0
#         self.imout = np.zeros((1000, 1000))
        
#     def step(self):
#         self.n += 1


# cnt = 0        
weights2load = 'segformer_ep15_loss0.00.pth'
id2label = {0: 'seal', 255: 'bck'}
label2id = {'seal': 0, 'bck': 255}
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/mit-b0",
                                                         num_labels=2,
                                                         id2label=id2label,
                                                         label2id=label2id,
)
image_processor = SegformerImageProcessor(reduce_labels=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device))
model.to(device).eval()

# counter = Count()

def segment(im, interval_s=2):
    # if (counter.imout.sum() == 0) or ((cnt % 100) == 0):
    pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
    outputs = model(pixel_values=pixel_values)
    logits = outputs.logits.cpu().detach().numpy() ** 2
    imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min())
    return imout  #, cnt  #np.flipud(im)

# with gr.Blocks() as demo:
#     inp = gr.Image(sources=["webcam"], streaming=True)
#     inp.stream(segment, inputs=inp, outputs=[gr.Image(), gr.Number()]) 

# demo = gr.Interface(
#     segment,
#     [gr.Image(sources=["webcam"], streaming=True)],
#     ["image"],
# )

# if __name__ == "__main__":

#     demo.launch()

from gradio_webrtc import WebRTC

css = """.my-group {max-width: 600px !important; max-height: 600px !important;}
         .my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""

with gr.Blocks(css=css) as demo:
    gr.HTML(
    )
    with gr.Column(elem_classes=["my-column"]):
        with gr.Group(elem_classes=["my-group"]):
            image = WebRTC(label="Stream"n)
        image.stream(
            fn=segment, inputs=[image], outputs=[image], time_limit=10
        )

if __name__ == "__main__":
    demo.launch()