noamholz commited on
Commit
86a4add
·
verified ·
1 Parent(s): 7d8661a

normalize logits

Browse files
Files changed (1) hide show
  1. run.py +4 -3
run.py CHANGED
@@ -3,7 +3,7 @@ import numpy as np
3
  from time import sleep
4
  import torch
5
  from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
6
- from torchvision import transforms
7
 
8
  weights2load = 'segformer_ep15_loss0.00.pth'
9
  id2label = {0: 'seal', 255: 'bck'}
@@ -32,12 +32,13 @@ def flip_periodically(im, interval_ms=0):
32
  The flipped image.
33
  """
34
 
35
- transforms.ToTensor()(im)
36
  pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
37
  outputs = model(pixel_values=pixel_values)
38
  logits = outputs.logits.cpu().detach().numpy()
39
  sleep(interval_ms / 1000) # Convert milliseconds to seconds
40
- return logits[0, 0] #np.flipud(im)
 
41
 
42
  with gr.Blocks() as demo:
43
  inp = gr.Image(sources=["webcam"], streaming=True)
 
3
  from time import sleep
4
  import torch
5
  from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
6
+ # from torchvision import transforms
7
 
8
  weights2load = 'segformer_ep15_loss0.00.pth'
9
  id2label = {0: 'seal', 255: 'bck'}
 
32
  The flipped image.
33
  """
34
 
35
+ # transforms.ToTensor()(im)
36
  pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
37
  outputs = model(pixel_values=pixel_values)
38
  logits = outputs.logits.cpu().detach().numpy()
39
  sleep(interval_ms / 1000) # Convert milliseconds to seconds
40
+ imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min())
41
+ return imout #np.flipud(im)
42
 
43
  with gr.Blocks() as demo:
44
  inp = gr.Image(sources=["webcam"], streaming=True)