noamholz commited on
Commit
f08406b
·
verified ·
1 Parent(s): b90cf97

Update run.py

Browse files
Files changed (1) hide show
  1. run.py +16 -8
run.py CHANGED
@@ -5,6 +5,14 @@ import torch
5
  from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
6
  # from torchvision import transforms
7
 
 
 
 
 
 
 
 
 
8
  weights2load = 'segformer_ep15_loss0.00.pth'
9
  id2label = {0: 'seal', 255: 'bck'}
10
  label2id = {'seal': 0, 'bck': 255}
@@ -19,6 +27,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
  model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device))
20
  model.to(device).eval()
21
 
 
22
 
23
  def flip_periodically(im, interval_s=2):
24
  """
@@ -31,14 +40,13 @@ def flip_periodically(im, interval_s=2):
31
  Returns:
32
  The flipped image.
33
  """
34
-
35
- # transforms.ToTensor()(im)
36
- pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
37
- outputs = model(pixel_values=pixel_values)
38
- logits = outputs.logits.cpu().detach().numpy() ** 2
39
- sleep(interval_s)
40
- imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min())
41
- return imout #np.flipud(im)
42
 
43
  with gr.Blocks() as demo:
44
  inp = gr.Image(sources=["webcam"], streaming=True)
 
5
  from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
6
  # from torchvision import transforms
7
 
8
+ class Count:
9
+ def __init__(self):
10
+ self.n = 0
11
+
12
+ def step(self):
13
+ self.n += 1
14
+
15
+
16
  weights2load = 'segformer_ep15_loss0.00.pth'
17
  id2label = {0: 'seal', 255: 'bck'}
18
  label2id = {'seal': 0, 'bck': 255}
 
27
  model.load_state_dict(torch.load(weights2load, weights_only=True, map_location=device))
28
  model.to(device).eval()
29
 
30
+ counter = Count()
31
 
32
  def flip_periodically(im, interval_s=2):
33
  """
 
40
  Returns:
41
  The flipped image.
42
  """
43
+ counter.step()
44
+ if (counter.n % 100) == 0:
45
+ pixel_values = image_processor(im, return_tensors="pt").pixel_values.to(device)
46
+ outputs = model(pixel_values=pixel_values)
47
+ logits = outputs.logits.cpu().detach().numpy() ** 2
48
+ counter.imout = (logits[0, 0] - logits[0, 0].min()) / (logits[0, 0].max() - logits[0, 0].min())
49
+ return counter.imout #np.flipud(im)
 
50
 
51
  with gr.Blocks() as demo:
52
  inp = gr.Image(sources=["webcam"], streaming=True)