File size: 6,244 Bytes
1afde00
11a4786
9dee257
 
1afde00
af5492a
 
 
df9ff7b
4879c2c
df9ff7b
0dc9dbf
11a4786
 
 
 
 
 
f5a896d
 
 
 
af5492a
 
 
 
 
df9ff7b
 
 
 
 
 
 
3cd0964
 
 
c1fa79c
f5a896d
c1fa79c
f5a896d
 
c1fa79c
f5a896d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8a215
 
3cd0964
 
0642011
 
3cd0964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8a215
3cd0964
 
 
 
 
 
 
 
 
 
fe8a215
 
3cd0964
af5492a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
423c62e
 
af5492a
 
423c62e
 
af5492a
423c62e
 
fe8a215
 
423c62e
fe8a215
af5492a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cd0964
 
 
af5492a
3cd0964
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import json
import re
import sys

import gradio as gr
from huggingface_hub import InferenceClient

from langchain_huggingface import HuggingFaceEmbeddings
#from chromadb.utils import embedding_functions
#from langchain_community.embeddings import SentenceTransformerEmbeddings

from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from fastapi.encoders import jsonable_encoder

from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
#embeddings = SentenceTransformerEmbeddings(model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code":True}) 

embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")


ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")

cache_dir=f"book_cache"

vectorstore = snapshot_download(repo_id="waterdb/book-embeddings",
                                repo_type="dataset",
                                revision="main",
                                allow_patterns=f"book/*", # to download only the one book
                                cache_dir=cache_dir,
                                )
# get path to the `vectorstore` folder that you just downloaded
# we'll look inside the `cache_dir` for the folder we want
target_dir = BOOK

# Walk through the directory tree recursively
for root, dirs, files in os.walk(cache_dir):
    # Check if the target directory is in the list of directories
    if target_dir in dirs:
        # Get the full path of the target directory
        target_path = os.path.join(root, target_dir)

# load embeddings
# this is what was used to create embeddings for the book
embeddings = HuggingFaceInstructEmbeddings(
    embed_instruction="Represent the book passage for retrieval: ",
    query_instruction="Represent the question for retrieving supporting texts from the book passage: "
    )

# load vector store to use with langchain
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)

# similarity search
question = "Who is big brother?"
search = docsearch.similarity_search(question, k=4)

for item in search:
    print(item.page_content)
    print(f"From page: {item.metadata['page']}")
    print("---")
    
vectorstore = None

def replace_newlines_and_spaces(text):
    # Replace all newline characters with spaces
    text= text.replace('\t\r','')     # tab, enter
    text= text.replace('\xa0','')     # non-breaki
    text = text.replace("\n", " ")
    # Replace multiple spaces with a single space
    text = re.sub(r'\s+', ' ', text)
    return text


def get_documents():
    return PyPDFLoader("AI-smart-water-management-systems.pdf").load()


def init_chromadb():
    # Delete existing index directory and recreate the directory
    if os.path.exists(DB_DIR):
        import shutil
        shutil.rmtree(DB_DIR, ignore_errors=True)
        os.mkdir(DB_DIR)

    documents = []
    for num, doc in enumerate(get_documents()):
        doc.page_content = replace_newlines_and_spaces(doc.page_content)
        documents.append(doc)

    # Split the documents into chunks
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(documents)
    #query_chromadb()

    # Create the vectorestore to use as the index
    vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
    vectorstore.persist()
    print("vectorstore::", vectorstore)

def query_chromadb(ASK):
    if not os.path.exists(DB_DIR):
        raise Exception(f"{DB_DIR} does not exist, nothing can be queried")

    # Load Vector store from local disk
    vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)

    result = vectorstore.similarity_search_with_score(query=ASK, k=4)
    jsonable_result = jsonable_encoder(result)
    print("Json pdf response ::", json.dumps(jsonable_result, indent=2))
    #return json.dumps(jsonable_result, indent=2)


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        print ("**message :: ",message)
        
        token = message.choices[0].delta.content

        print ("**token :: ",token)
        
        response += token
       
        print ("**response :: ",response)
        
        yield response
        print ("**query_chromadb::",query_chromadb("how could an AI be used in smart water management systems?"))
        #yield query_chromadb(message)


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)



def main():
    init_chromadb()
    demo.launch()

if __name__ == "__main__":
    main()
    #demo.launch()