File size: 6,244 Bytes
1afde00 11a4786 9dee257 1afde00 af5492a df9ff7b 4879c2c df9ff7b 0dc9dbf 11a4786 f5a896d af5492a df9ff7b 3cd0964 c1fa79c f5a896d c1fa79c f5a896d c1fa79c f5a896d fe8a215 3cd0964 0642011 3cd0964 fe8a215 3cd0964 fe8a215 3cd0964 af5492a 423c62e af5492a 423c62e af5492a 423c62e fe8a215 423c62e fe8a215 af5492a 3cd0964 af5492a 3cd0964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import json
import re
import sys
import gradio as gr
from huggingface_hub import InferenceClient
from langchain_huggingface import HuggingFaceEmbeddings
#from chromadb.utils import embedding_functions
#from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from fastapi.encoders import jsonable_encoder
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores.faiss import FAISS
from huggingface_hub import snapshot_download
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
#embeddings = SentenceTransformerEmbeddings(model_name="nomic-ai/nomic-embed-text-v1", model_kwargs={"trust_remote_code":True})
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")
cache_dir=f"book_cache"
vectorstore = snapshot_download(repo_id="waterdb/book-embeddings",
repo_type="dataset",
revision="main",
allow_patterns=f"book/*", # to download only the one book
cache_dir=cache_dir,
)
# get path to the `vectorstore` folder that you just downloaded
# we'll look inside the `cache_dir` for the folder we want
target_dir = BOOK
# Walk through the directory tree recursively
for root, dirs, files in os.walk(cache_dir):
# Check if the target directory is in the list of directories
if target_dir in dirs:
# Get the full path of the target directory
target_path = os.path.join(root, target_dir)
# load embeddings
# this is what was used to create embeddings for the book
embeddings = HuggingFaceInstructEmbeddings(
embed_instruction="Represent the book passage for retrieval: ",
query_instruction="Represent the question for retrieving supporting texts from the book passage: "
)
# load vector store to use with langchain
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)
# similarity search
question = "Who is big brother?"
search = docsearch.similarity_search(question, k=4)
for item in search:
print(item.page_content)
print(f"From page: {item.metadata['page']}")
print("---")
vectorstore = None
def replace_newlines_and_spaces(text):
# Replace all newline characters with spaces
text= text.replace('\t\r','') # tab, enter
text= text.replace('\xa0','') # non-breaki
text = text.replace("\n", " ")
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text)
return text
def get_documents():
return PyPDFLoader("AI-smart-water-management-systems.pdf").load()
def init_chromadb():
# Delete existing index directory and recreate the directory
if os.path.exists(DB_DIR):
import shutil
shutil.rmtree(DB_DIR, ignore_errors=True)
os.mkdir(DB_DIR)
documents = []
for num, doc in enumerate(get_documents()):
doc.page_content = replace_newlines_and_spaces(doc.page_content)
documents.append(doc)
# Split the documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
#query_chromadb()
# Create the vectorestore to use as the index
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
vectorstore.persist()
print("vectorstore::", vectorstore)
def query_chromadb(ASK):
if not os.path.exists(DB_DIR):
raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
# Load Vector store from local disk
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
result = vectorstore.similarity_search_with_score(query=ASK, k=4)
jsonable_result = jsonable_encoder(result)
print("Json pdf response ::", json.dumps(jsonable_result, indent=2))
#return json.dumps(jsonable_result, indent=2)
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
print ("**message :: ",message)
token = message.choices[0].delta.content
print ("**token :: ",token)
response += token
print ("**response :: ",response)
yield response
print ("**query_chromadb::",query_chromadb("how could an AI be used in smart water management systems?"))
#yield query_chromadb(message)
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
def main():
init_chromadb()
demo.launch()
if __name__ == "__main__":
main()
#demo.launch()
|