nightfury commited on
Commit
fe8a215
·
verified ·
1 Parent(s): 28fc77c

Update appChatbot.py

Browse files
Files changed (1) hide show
  1. appChatbot.py +14 -6
appChatbot.py CHANGED
@@ -31,6 +31,8 @@ embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
31
  ABS_PATH = os.path.dirname(os.path.abspath(__file__))
32
  DB_DIR = os.path.join(ABS_PATH, "db")
33
 
 
 
34
  def replace_newlines_and_spaces(text):
35
  # Replace all newline characters with spaces
36
  text = text.replace("\n", " ")
@@ -63,8 +65,7 @@ def init_chromadb():
63
  # Create the vectorestore to use as the index
64
  vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
65
  vectorstore.persist()
66
- print(vectorstore)
67
- vectorstore = None
68
 
69
  def query_chromadb(ASK):
70
  if not os.path.exists(DB_DIR):
@@ -75,8 +76,8 @@ def query_chromadb(ASK):
75
 
76
  result = vectorstore.similarity_search_with_score(query=ASK, k=4)
77
  jsonable_result = jsonable_encoder(result)
78
- print(json.dumps(jsonable_result, indent=2))
79
- return json.dumps(jsonable_result, indent=2)
80
 
81
 
82
  def respond(
@@ -106,11 +107,18 @@ def respond(
106
  temperature=temperature,
107
  top_p=top_p,
108
  ):
 
109
  token = message.choices[0].delta.content
110
 
111
  response += token
112
- #yield response
113
- yield query_chromadb(message)
 
 
 
 
 
 
114
 
115
 
116
  """
 
31
  ABS_PATH = os.path.dirname(os.path.abspath(__file__))
32
  DB_DIR = os.path.join(ABS_PATH, "db")
33
 
34
+ vectorstore = None
35
+
36
  def replace_newlines_and_spaces(text):
37
  # Replace all newline characters with spaces
38
  text = text.replace("\n", " ")
 
65
  # Create the vectorestore to use as the index
66
  vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
67
  vectorstore.persist()
68
+ print("vectorstore::", vectorstore)
 
69
 
70
  def query_chromadb(ASK):
71
  if not os.path.exists(DB_DIR):
 
76
 
77
  result = vectorstore.similarity_search_with_score(query=ASK, k=4)
78
  jsonable_result = jsonable_encoder(result)
79
+ print("Json pdf response ::", json.dumps(jsonable_result, indent=2))
80
+ #return json.dumps(jsonable_result, indent=2)
81
 
82
 
83
  def respond(
 
107
  temperature=temperature,
108
  top_p=top_p,
109
  ):
110
+
111
  token = message.choices[0].delta.content
112
 
113
  response += token
114
+
115
+ print ("message::",message)
116
+ print ("token::",token)
117
+ print ("response::",response)
118
+ print ("query_chromadb::",query_chromadb("how could an AI be used in smart water management systems?"))
119
+
120
+ yield response
121
+ #yield query_chromadb(message)
122
 
123
 
124
  """