nightfury commited on
Commit
f5a896d
·
verified ·
1 Parent(s): 0642011

Update appChatbot.py

Browse files
Files changed (1) hide show
  1. appChatbot.py +42 -0
appChatbot.py CHANGED
@@ -16,6 +16,10 @@ from langchain.vectorstores import Chroma
16
  from langchain.document_loaders import PyPDFLoader
17
  from fastapi.encoders import jsonable_encoder
18
 
 
 
 
 
19
  """
20
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
21
  """
@@ -31,6 +35,44 @@ embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
31
  ABS_PATH = os.path.dirname(os.path.abspath(__file__))
32
  DB_DIR = os.path.join(ABS_PATH, "db")
33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  vectorstore = None
35
 
36
  def replace_newlines_and_spaces(text):
 
16
  from langchain.document_loaders import PyPDFLoader
17
  from fastapi.encoders import jsonable_encoder
18
 
19
+ from langchain.embeddings import HuggingFaceInstructEmbeddings
20
+ from langchain.vectorstores.faiss import FAISS
21
+ from huggingface_hub import snapshot_download
22
+
23
  """
24
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
25
  """
 
35
  ABS_PATH = os.path.dirname(os.path.abspath(__file__))
36
  DB_DIR = os.path.join(ABS_PATH, "db")
37
 
38
+ cache_dir=f"{book}_cache"
39
+
40
+ vectorstore = snapshot_download(repo_id="calmgoose/book-embeddings",
41
+ repo_type="dataset",
42
+ revision="main",
43
+ allow_patterns=f"books/{BOOK}/*", # to download only the one book
44
+ cache_dir=cache_dir,
45
+ )
46
+ # get path to the `vectorstore` folder that you just downloaded
47
+ # we'll look inside the `cache_dir` for the folder we want
48
+ target_dir = BOOK
49
+
50
+ # Walk through the directory tree recursively
51
+ for root, dirs, files in os.walk(cache_dir):
52
+ # Check if the target directory is in the list of directories
53
+ if target_dir in dirs:
54
+ # Get the full path of the target directory
55
+ target_path = os.path.join(root, target_dir)
56
+
57
+ # load embeddings
58
+ # this is what was used to create embeddings for the book
59
+ embeddings = HuggingFaceInstructEmbeddings(
60
+ embed_instruction="Represent the book passage for retrieval: ",
61
+ query_instruction="Represent the question for retrieving supporting texts from the book passage: "
62
+ )
63
+
64
+ # load vector store to use with langchain
65
+ docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)
66
+
67
+ # similarity search
68
+ question = "Who is big brother?"
69
+ search = docsearch.similarity_search(question, k=4)
70
+
71
+ for item in search:
72
+ print(item.page_content)
73
+ print(f"From page: {item.metadata['page']}")
74
+ print("---")
75
+
76
  vectorstore = None
77
 
78
  def replace_newlines_and_spaces(text):