File size: 9,091 Bytes
53715b3
7409f0d
301d4ae
 
d804135
301d4ae
d804135
7409f0d
53715b3
ca842a9
 
0a5f1f3
 
 
fa7df72
 
 
 
 
 
 
 
0a5f1f3
 
e55fb20
b172c75
 
 
 
 
 
 
 
 
ca842a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b172c75
 
 
ca842a9
 
 
 
 
 
 
 
 
 
eacfaf7
 
 
 
 
 
b172c75
 
 
 
 
eacfaf7
 
 
 
 
 
 
 
 
b172c75
eacfaf7
 
 
 
 
 
 
 
 
 
 
 
ca842a9
 
 
 
 
 
 
 
 
 
b172c75
 
 
 
 
 
 
 
ca842a9
 
 
 
 
301d4ae
cff025c
 
301d4ae
b172c75
 
 
 
ca842a9
 
301d4ae
cff025c
 
ca842a9
 
 
cff025c
 
ca842a9
b172c75
ca842a9
5c5f11f
e55fb20
cff025c
ca842a9
cff025c
301d4ae
ca842a9
 
 
 
b172c75
 
 
 
 
 
 
 
301d4ae
 
 
 
 
 
 
 
 
 
ca842a9
 
 
 
301d4ae
 
 
cff025c
301d4ae
 
 
 
 
 
 
 
 
 
 
 
 
 
e55fb20
 
 
301d4ae
 
 
 
 
 
 
 
 
 
cff025c
 
 
 
 
 
301d4ae
 
 
cff025c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from feature_engineering import heroes, hero_information

# Define expected columns
EXPECTED_COLUMNS = ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum',
                   'total_games_played', 'total_winrate']

# Add games columns
games_ids = list(range(1, 24)) + [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
                                 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
                                 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
                                 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
                                 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
                                 107, 108, 109, 110, 111, 112, 113, 114, 119, 120, 121, 123, 126,
                                 128, 129, 131, 135, 136, 137, 138, 145]

EXPECTED_COLUMNS.extend([f'games_{i}' for i in games_ids])
EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])

def load_reference_data(player_id):
    """Load reference prediction data for comparison"""
    try:
        ref_df = pd.read_csv(f"{player_id}.csv")
        return ref_df.iloc[-1][f"{player_id}_S34"]
    except Exception as e:
        print(f"Could not load reference data: {e}")
        return None

def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Creates a DataFrame in the expected format for the model"""
    try:
        # Extract player_id from URL if needed
        player_id = user_id.split("/")[-1] if "/" in user_id else user_id
        
        # Create initial data dictionary with zeros for all columns
        data = {col: 0 for col in EXPECTED_COLUMNS}
        
        # Fill in the basic features
        data.update({
            'mmr': float(mmr),
            'p1': int(comf_1),
            'p2': int(comf_2),
            'p3': int(comf_3),
            'p4': int(comf_4),
            'p5': int(comf_5),
        })
        
        # Get hero statistics using OpenDota API
        hero_stats = hero_information(player_id)
        
        # Add hero statistics
        if hero_stats is not None:
            data['total_games_played'] = hero_stats.get('total_games_played', 0)
            data['total_winrate'] = hero_stats.get('total_winrate', 0)
            
            # Fill in the games and winrate columns from hero_stats
            for key, value in hero_stats.items():
                if key in EXPECTED_COLUMNS:
                    data[key] = value
        
        # Get statistics from league data
        try:
            captains_df = pd.read_csv("S34 Draft Sheet  Captains.csv")
            bucks_stats = captains_df["Buck's Bucks"].describe()
            cents_stats = captains_df["Crub Cents"].describe()
            
            # Print stats for debugging
            print("\nLeague Money Statistics:")
            print("Buck's Bucks stats:", bucks_stats)
            print("Crub Cents stats:", cents_stats)
            
            # Combine stats from both currencies
            combined_stats = {
                'count': bucks_stats['count'] + cents_stats['count'],
                'mean': (bucks_stats['mean'] + cents_stats['mean']) / 2,
                'std': (bucks_stats['std'] + cents_stats['std']) / 2,
                'min': min(bucks_stats['min'], cents_stats['min']),
                'max': max(bucks_stats['max'], cents_stats['max']),
                'sum': bucks_stats['count'] * bucks_stats['mean'] + cents_stats['count'] * cents_stats['mean']
            }
            print("Combined stats:", combined_stats)
            data.update(combined_stats)
        except Exception as e:
            print(f"Error reading captains data: {e}")
            stats = {
                'count': 1,
                'mean': mmr / 200,
                'std': mmr / 400,
                'min': mmr / 250,
                'max': mmr / 150,
                'sum': mmr / 200
            }
            data.update(stats)
        
        # Convert to DataFrame
        df = pd.DataFrame([data])
        
        # Ensure columns are in correct order
        df = df[EXPECTED_COLUMNS]
        
        print(f"DataFrame shape: {df.shape}")
        print("Missing columns:", set(EXPECTED_COLUMNS) - set(df.columns))
        
        # Print key feature values for debugging
        print("\nKey feature values:")
        print(f"MMR: {df['mmr'].iloc[0]}")
        print(f"Position comfort: {df[['p1', 'p2', 'p3', 'p4', 'p5']].iloc[0].tolist()}")
        print(f"Money stats: {df[['count', 'mean', 'std', 'min', 'max', 'sum']].iloc[0].tolist()}")
        print(f"Total games: {df['total_games_played'].iloc[0]}")
        print(f"Total winrate: {df['total_winrate'].iloc[0]}")
        
        return df
        
    except Exception as e:
        print(f"Error in data preparation: {e}")
        raise e

def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    """Main prediction function for Gradio interface"""
    try:
        # Extract player_id for reference data
        player_id = user_id.split("/")[-1] if "/" in user_id else user_id
        reference_cost = load_reference_data(player_id)
        
        # Prepare the player data
        processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
        
        # Load and use the model
        model_path = Path("model/rd2l_forest.onnx")
        if not model_path.exists():
            return f"Model file not found at: {model_path}"
            
        session = ort.InferenceSession(str(model_path))
        
        # Debug information
        print("\nModel Input Information:")
        print("Processed data shape:", processed_data.shape)
        
        # Make prediction
        input_name = session.get_inputs()[0].name
        prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
        predicted_cost = round(float(prediction[0]), 2)
        
        hero_stats = processed_data.iloc[0]
        total_games = hero_stats.get('total_games_played', 'N/A')
        total_winrate = hero_stats.get('total_winrate', 'N/A')
        
        comparison = ""
        if reference_cost is not None:
            diff = abs(predicted_cost - reference_cost)
            comparison = f"""
Reference Cost: {reference_cost}
Difference: {diff:.2f} ({(diff/reference_cost*100):.1f}% {'higher' if predicted_cost > reference_cost else 'lower'})"""
        
        return f"""Predicted Cost: {predicted_cost}{comparison}

Player Details:
- MMR: {mmr}
- Position Comfort:
  * Pos 1: {comf_1}
  * Pos 2: {comf_2}
  * Pos 3: {comf_3}
  * Pos 4: {comf_4}
  * Pos 5: {comf_5}

Player Statistics:
- Total Games: {total_games}
- Overall Winrate: {total_winrate:.1%} if isinstance(total_winrate, float) else 'N/A'

Note: This prediction is based on historical data and player statistics from OpenDota."""
        
    except Exception as e:
        return f"Error in prediction pipeline: {str(e)}\n\nDebug info:\n{type(e).__name__}: {str(e)}"

# Create Gradio interface
demo = gr.Interface(
    fn=predict_cost,
    inputs=[
        gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
                  placeholder="Enter player ID or full profile URL"),
        gr.Number(label="MMR", value=3000),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
        gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
    ],
    examples=[
        ["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
    ],
    outputs=gr.Textbox(label="Prediction Results"),
    title="RD2L Player Cost Predictor",
    description="""This tool predicts the auction cost for RD2L players based on their MMR, 
                   position comfort levels, and historical performance data from OpenDota. 
                   Enter a player's OpenDota ID or profile URL along with their current stats 
                   to get a predicted cost.""",
    article="""### How it works
                - The predictor uses machine learning trained on historical RD2L draft data
                - Player statistics are fetched from OpenDota API
                - Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
                - Predictions are based on both current stats and historical performance
                
                ### Notes
                - MMR should be the player's current solo MMR
                - Position comfort should reflect actual role experience
                - Predictions are estimates and may vary from actual draft results"""
)

if __name__ == "__main__":
    demo.launch()