Spaces:
Sleeping
Sleeping
File size: 9,091 Bytes
53715b3 7409f0d 301d4ae d804135 301d4ae d804135 7409f0d 53715b3 ca842a9 0a5f1f3 fa7df72 0a5f1f3 e55fb20 b172c75 ca842a9 b172c75 ca842a9 eacfaf7 b172c75 eacfaf7 b172c75 eacfaf7 ca842a9 b172c75 ca842a9 301d4ae cff025c 301d4ae b172c75 ca842a9 301d4ae cff025c ca842a9 cff025c ca842a9 b172c75 ca842a9 5c5f11f e55fb20 cff025c ca842a9 cff025c 301d4ae ca842a9 b172c75 301d4ae ca842a9 301d4ae cff025c 301d4ae e55fb20 301d4ae cff025c 301d4ae cff025c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import gradio as gr
import pandas as pd
import numpy as np
import onnxruntime as ort
import sys
from pathlib import Path
sys.path.append("rd2l_pred")
from feature_engineering import heroes, hero_information
# Define expected columns
EXPECTED_COLUMNS = ['mmr', 'p1', 'p2', 'p3', 'p4', 'p5', 'count', 'mean', 'std', 'min', 'max', 'sum',
'total_games_played', 'total_winrate']
# Add games columns
games_ids = list(range(1, 24)) + [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
107, 108, 109, 110, 111, 112, 113, 114, 119, 120, 121, 123, 126,
128, 129, 131, 135, 136, 137, 138, 145]
EXPECTED_COLUMNS.extend([f'games_{i}' for i in games_ids])
EXPECTED_COLUMNS.extend([f'winrate_{i}' for i in games_ids])
def load_reference_data(player_id):
"""Load reference prediction data for comparison"""
try:
ref_df = pd.read_csv(f"{player_id}.csv")
return ref_df.iloc[-1][f"{player_id}_S34"]
except Exception as e:
print(f"Could not load reference data: {e}")
return None
def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Creates a DataFrame in the expected format for the model"""
try:
# Extract player_id from URL if needed
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
# Create initial data dictionary with zeros for all columns
data = {col: 0 for col in EXPECTED_COLUMNS}
# Fill in the basic features
data.update({
'mmr': float(mmr),
'p1': int(comf_1),
'p2': int(comf_2),
'p3': int(comf_3),
'p4': int(comf_4),
'p5': int(comf_5),
})
# Get hero statistics using OpenDota API
hero_stats = hero_information(player_id)
# Add hero statistics
if hero_stats is not None:
data['total_games_played'] = hero_stats.get('total_games_played', 0)
data['total_winrate'] = hero_stats.get('total_winrate', 0)
# Fill in the games and winrate columns from hero_stats
for key, value in hero_stats.items():
if key in EXPECTED_COLUMNS:
data[key] = value
# Get statistics from league data
try:
captains_df = pd.read_csv("S34 Draft Sheet Captains.csv")
bucks_stats = captains_df["Buck's Bucks"].describe()
cents_stats = captains_df["Crub Cents"].describe()
# Print stats for debugging
print("\nLeague Money Statistics:")
print("Buck's Bucks stats:", bucks_stats)
print("Crub Cents stats:", cents_stats)
# Combine stats from both currencies
combined_stats = {
'count': bucks_stats['count'] + cents_stats['count'],
'mean': (bucks_stats['mean'] + cents_stats['mean']) / 2,
'std': (bucks_stats['std'] + cents_stats['std']) / 2,
'min': min(bucks_stats['min'], cents_stats['min']),
'max': max(bucks_stats['max'], cents_stats['max']),
'sum': bucks_stats['count'] * bucks_stats['mean'] + cents_stats['count'] * cents_stats['mean']
}
print("Combined stats:", combined_stats)
data.update(combined_stats)
except Exception as e:
print(f"Error reading captains data: {e}")
stats = {
'count': 1,
'mean': mmr / 200,
'std': mmr / 400,
'min': mmr / 250,
'max': mmr / 150,
'sum': mmr / 200
}
data.update(stats)
# Convert to DataFrame
df = pd.DataFrame([data])
# Ensure columns are in correct order
df = df[EXPECTED_COLUMNS]
print(f"DataFrame shape: {df.shape}")
print("Missing columns:", set(EXPECTED_COLUMNS) - set(df.columns))
# Print key feature values for debugging
print("\nKey feature values:")
print(f"MMR: {df['mmr'].iloc[0]}")
print(f"Position comfort: {df[['p1', 'p2', 'p3', 'p4', 'p5']].iloc[0].tolist()}")
print(f"Money stats: {df[['count', 'mean', 'std', 'min', 'max', 'sum']].iloc[0].tolist()}")
print(f"Total games: {df['total_games_played'].iloc[0]}")
print(f"Total winrate: {df['total_winrate'].iloc[0]}")
return df
except Exception as e:
print(f"Error in data preparation: {e}")
raise e
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
"""Main prediction function for Gradio interface"""
try:
# Extract player_id for reference data
player_id = user_id.split("/")[-1] if "/" in user_id else user_id
reference_cost = load_reference_data(player_id)
# Prepare the player data
processed_data = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
# Load and use the model
model_path = Path("model/rd2l_forest.onnx")
if not model_path.exists():
return f"Model file not found at: {model_path}"
session = ort.InferenceSession(str(model_path))
# Debug information
print("\nModel Input Information:")
print("Processed data shape:", processed_data.shape)
# Make prediction
input_name = session.get_inputs()[0].name
prediction = session.run(None, {input_name: processed_data.values.astype(np.float32)})[0]
predicted_cost = round(float(prediction[0]), 2)
hero_stats = processed_data.iloc[0]
total_games = hero_stats.get('total_games_played', 'N/A')
total_winrate = hero_stats.get('total_winrate', 'N/A')
comparison = ""
if reference_cost is not None:
diff = abs(predicted_cost - reference_cost)
comparison = f"""
Reference Cost: {reference_cost}
Difference: {diff:.2f} ({(diff/reference_cost*100):.1f}% {'higher' if predicted_cost > reference_cost else 'lower'})"""
return f"""Predicted Cost: {predicted_cost}{comparison}
Player Details:
- MMR: {mmr}
- Position Comfort:
* Pos 1: {comf_1}
* Pos 2: {comf_2}
* Pos 3: {comf_3}
* Pos 4: {comf_4}
* Pos 5: {comf_5}
Player Statistics:
- Total Games: {total_games}
- Overall Winrate: {total_winrate:.1%} if isinstance(total_winrate, float) else 'N/A'
Note: This prediction is based on historical data and player statistics from OpenDota."""
except Exception as e:
return f"Error in prediction pipeline: {str(e)}\n\nDebug info:\n{type(e).__name__}: {str(e)}"
# Create Gradio interface
demo = gr.Interface(
fn=predict_cost,
inputs=[
gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff",
placeholder="Enter player ID or full profile URL"),
gr.Number(label="MMR", value=3000),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 1)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 2)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 3)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 4)"),
gr.Slider(1, 5, value=3, step=1, label="Comfort (Pos 5)")
],
examples=[
["https://www.dotabuff.com/players/188649776", 6812, 5, 5, 4, 2, 1]
],
outputs=gr.Textbox(label="Prediction Results"),
title="RD2L Player Cost Predictor",
description="""This tool predicts the auction cost for RD2L players based on their MMR,
position comfort levels, and historical performance data from OpenDota.
Enter a player's OpenDota ID or profile URL along with their current stats
to get a predicted cost.""",
article="""### How it works
- The predictor uses machine learning trained on historical RD2L draft data
- Player statistics are fetched from OpenDota API
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
- Predictions are based on both current stats and historical performance
### Notes
- MMR should be the player's current solo MMR
- Position comfort should reflect actual role experience
- Predictions are estimates and may vary from actual draft results"""
)
if __name__ == "__main__":
demo.launch()
|