Spaces:
Sleeping
Sleeping
Commit
·
d804135
1
Parent(s):
53715b3
Updated a lot of info here
Browse files- .gitignore +2 -0
- .gitmodules +3 -0
- app.py +48 -0
- money_generation.py +20 -0
- rd2l_pred +1 -0
- result_money.csv +10 -0
- todo.md +1 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
venv/
|
|
|
|
|
|
1 |
venv/
|
2 |
+
.venv/
|
3 |
+
__pycache__/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "rd2l_pred"]
|
2 |
+
path = rd2l_pred
|
3 |
+
url = https://github.com/nick-leland/rd2l_pred
|
app.py
CHANGED
@@ -1,11 +1,59 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
def greet(name):
|
4 |
return "Hello " + name + "!!"
|
5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
# Needs a text input for dotabuff link
|
7 |
|
8 |
|
9 |
demo = gr.Interface(fn=greet, inputs="textbox", outputs="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
demo.launch()
|
11 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import sys
|
3 |
+
sys.path.append("rd2l_pred")
|
4 |
+
from training_data_prep import list_format, modification, league_money, df_gen
|
5 |
|
6 |
def greet(name):
|
7 |
return "Hello " + name + "!!"
|
8 |
|
9 |
+
|
10 |
+
def fetch_data(user_input):
|
11 |
+
# We need to generate the inputs for the sheet using hugging face
|
12 |
+
# We also need to load the money values from the generated csv file
|
13 |
+
df_gen(draft, league_money(captains, data_type), data_type)
|
14 |
+
return
|
15 |
+
|
16 |
# Needs a text input for dotabuff link
|
17 |
|
18 |
|
19 |
demo = gr.Interface(fn=greet, inputs="textbox", outputs="text")
|
20 |
+
demo = gr.Interface(
|
21 |
+
fn=greet,
|
22 |
+
inputs=[
|
23 |
+
"textbox"
|
24 |
+
# gr.Image(type="filepath"),
|
25 |
+
# gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
|
26 |
+
# gr.Checkbox(label="Randomize inputs?"),
|
27 |
+
# gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
|
28 |
+
# gr.Slider(0, 1, value=0.5, label="Center X"),
|
29 |
+
# gr.Slider(0, 1, value=0.5, label="Center Y"),
|
30 |
+
# gr.Slider(0, 1, value=0.5, label="Strength"),
|
31 |
+
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
|
32 |
+
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
|
33 |
+
# gr.Checkbox(label="Reverse Gradient Direction"),
|
34 |
+
],
|
35 |
+
# examples=[
|
36 |
+
# [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
37 |
+
# [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
38 |
+
# [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
39 |
+
# [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
|
40 |
+
# ],
|
41 |
+
outputs=[
|
42 |
+
"text"
|
43 |
+
# gr.Image(label="Transformed Image"),
|
44 |
+
# gr.Image(label="bulge_model Model Classification"),
|
45 |
+
# gr.Image(label="yolov8n Model Classification"),
|
46 |
+
# gr.Image(label="yolov8x Model Classification"),
|
47 |
+
# gr.Label(),
|
48 |
+
# gr.Label(),
|
49 |
+
# gr.Image(label="Gradient Vector Field"),
|
50 |
+
# gr.Image(label="Inverse Gradient"),
|
51 |
+
# gr.Image(label="Inverted Vector Field"),
|
52 |
+
# gr.Image(label="Fixed Image")
|
53 |
+
],
|
54 |
+
title="RD2L Pricing Prediction",
|
55 |
+
article="Uhhhhh this is the article",
|
56 |
+
description="Uhhhhh this is the description"
|
57 |
+
)
|
58 |
demo.launch()
|
59 |
|
money_generation.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import os
|
3 |
+
from os import path
|
4 |
+
|
5 |
+
from rd2l_pred.training_data_prep import list_format, modification, league_money, df_gen
|
6 |
+
|
7 |
+
if __name__ == "__main__":
|
8 |
+
os.chdir("rd2l_pred/")
|
9 |
+
data_type = "prediction"
|
10 |
+
|
11 |
+
draft, captains = list_format("input")
|
12 |
+
money = league_money(captains, data_type)
|
13 |
+
result_money = money[list(money.keys())[0]]
|
14 |
+
season = list(money.keys())[0]
|
15 |
+
|
16 |
+
result_money.index.name = season
|
17 |
+
|
18 |
+
os.chdir("../")
|
19 |
+
result_money.to_csv("result_money.csv")
|
20 |
+
print("Saved?")
|
rd2l_pred
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 6e1cdcc6353edf1f4a17184ac3d0b9c836efa2a3
|
result_money.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
S33,0
|
2 |
+
count,9.0
|
3 |
+
mean,499.1111111111111
|
4 |
+
std,82.31713740838606
|
5 |
+
min,362.0
|
6 |
+
25%,464.0
|
7 |
+
50%,525.0
|
8 |
+
75%,559.0
|
9 |
+
max,597.0
|
10 |
+
sum,4492.0
|
todo.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
There should be a general install app here where it will install the submodule and then pip install -r requirements with gradio as well
|