Spaces:
Sleeping
Sleeping
Commit
·
cff025c
1
Parent(s):
ddcf7cb
Simplification
Browse files
app.py
CHANGED
@@ -8,98 +8,64 @@ sys.path.append("rd2l_pred")
|
|
8 |
from training_data_prep import list_format, modification, league_money, df_gen
|
9 |
from feature_engineering import heroes, hero_information
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
def
|
15 |
-
"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
return f"Error loading model: {str(e)}"
|
26 |
|
27 |
-
def
|
28 |
-
"""
|
29 |
try:
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
'p1': int(comf_1),
|
38 |
-
'p2': int(comf_2),
|
39 |
-
'p3': int(comf_3),
|
40 |
-
'p4': int(comf_4),
|
41 |
-
'p5': int(comf_5),
|
42 |
-
'count': 0,
|
43 |
-
'mean': 0,
|
44 |
-
'std': 0,
|
45 |
-
'min': 0,
|
46 |
-
'max': 0,
|
47 |
-
'sum': 0,
|
48 |
-
'total_games_played': 0,
|
49 |
-
'total_winrate': 0
|
50 |
-
}
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
# Get hero statistics from OpenDota
|
58 |
try:
|
|
|
59 |
hero_stats = hero_information(player_id)
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# Update hero-specific stats
|
64 |
-
for key, value in hero_stats.items():
|
65 |
-
if key in data:
|
66 |
-
data[key] = value
|
67 |
except Exception as e:
|
68 |
print(f"Warning - Error fetching hero data: {str(e)}")
|
69 |
|
70 |
-
# Convert to DataFrame
|
71 |
-
df = pd.DataFrame([data])
|
72 |
-
|
73 |
-
print(f"Processed data shape: {df.shape}")
|
74 |
-
print(f"Number of features: {len(df.columns)}")
|
75 |
-
print(f"First few columns: {list(df.columns)[:5]}")
|
76 |
-
|
77 |
-
return df
|
78 |
-
except Exception as e:
|
79 |
-
return f"Error processing player data: {str(e)}"
|
80 |
-
|
81 |
-
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
82 |
-
"""Main prediction function for Gradio interface"""
|
83 |
-
try:
|
84 |
-
# Check if model is loaded
|
85 |
-
if MODEL is None:
|
86 |
-
result = load_model()
|
87 |
-
if not result.startswith("Model loaded"):
|
88 |
-
return result
|
89 |
-
|
90 |
-
# Process input data
|
91 |
-
processed_data = process_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
|
92 |
-
|
93 |
-
if isinstance(processed_data, str): # Error occurred
|
94 |
-
return processed_data
|
95 |
-
|
96 |
# Make prediction
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
predicted_cost = round(float(prediction[0]), 2)
|
101 |
-
except Exception as e:
|
102 |
-
return f"Error during prediction: {str(e)}\nProcessed data shape: {processed_data.shape}"
|
103 |
|
104 |
return f"""Predicted Cost: {predicted_cost}
|
105 |
|
@@ -115,7 +81,7 @@ Player Details:
|
|
115 |
Note: This prediction is based on historical data and player statistics from OpenDota."""
|
116 |
|
117 |
except Exception as e:
|
118 |
-
return f"Error in prediction pipeline: {str(e)}"
|
119 |
|
120 |
# Create Gradio interface
|
121 |
demo = gr.Interface(
|
@@ -143,10 +109,13 @@ demo = gr.Interface(
|
|
143 |
- The predictor uses machine learning trained on historical RD2L draft data
|
144 |
- Player statistics are fetched from OpenDota API
|
145 |
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
|
146 |
-
- Predictions are based on both current stats and historical performance
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
|
149 |
if __name__ == "__main__":
|
150 |
-
|
151 |
-
print(load_model())
|
152 |
-
demo.launch(server_name="0.0.0.0")
|
|
|
8 |
from training_data_prep import list_format, modification, league_money, df_gen
|
9 |
from feature_engineering import heroes, hero_information
|
10 |
|
11 |
+
def prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
12 |
+
"""Creates a draft sheet format DataFrame for a single player"""
|
13 |
+
# Create player data in the format expected by the original pipeline
|
14 |
+
player_data = {
|
15 |
+
'Discord ID': ['N/A'], # Placeholder for Discord ID
|
16 |
+
'Dotabuff Link': [user_id],
|
17 |
+
'MMR': [mmr],
|
18 |
+
'Comfort (Pos 1)': [comf_1],
|
19 |
+
'Comfort (Pos 2)': [comf_2],
|
20 |
+
'Comfort (Pos 3)': [comf_3],
|
21 |
+
'Comfort (Pos 4)': [comf_4],
|
22 |
+
'Comfort (Pos 5)': [comf_5],
|
23 |
+
'Player statement': ['N/A'] # Placeholder for player statement
|
24 |
+
}
|
25 |
+
|
26 |
+
return pd.DataFrame(player_data)
|
27 |
|
28 |
+
def prepare_mock_captains():
|
29 |
+
"""Creates a minimal captains DataFrame for the league money calculation"""
|
30 |
+
captains_data = {
|
31 |
+
'Name': ['Mock Captain'],
|
32 |
+
'Dotabuff': ['N/A'],
|
33 |
+
'MMR': [3000],
|
34 |
+
"Buck's Bucks": [100],
|
35 |
+
'Crub Cents': [100],
|
36 |
+
'Remaining': [100]
|
37 |
+
}
|
38 |
+
return pd.DataFrame(captains_data)
|
|
|
39 |
|
40 |
+
def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
41 |
+
"""Main prediction function for Gradio interface"""
|
42 |
try:
|
43 |
+
# Create a single-player draft sheet
|
44 |
+
draft_df = prepare_single_player_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5)
|
45 |
+
captains_df = prepare_mock_captains()
|
46 |
+
|
47 |
+
# Use the original pipeline functions
|
48 |
+
money = league_money(captains_df, 'prediction')
|
49 |
+
prepped_data = df_gen(draft_df, money, 'prediction')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Load and use the model
|
52 |
+
model_path = Path("model/rd2l_forest.onnx")
|
53 |
+
session = ort.InferenceSession(str(model_path))
|
54 |
+
|
55 |
+
# Get hero information using the original feature engineering
|
|
|
56 |
try:
|
57 |
+
player_id = modification(user_id) # Use the original modification function
|
58 |
hero_stats = hero_information(player_id)
|
59 |
+
# Add hero stats to prepped data
|
60 |
+
for col, value in hero_stats.items():
|
61 |
+
prepped_data[col] = value
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
print(f"Warning - Error fetching hero data: {str(e)}")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# Make prediction
|
66 |
+
input_name = session.get_inputs()[0].name
|
67 |
+
prediction = session.run(None, {input_name: prepped_data.values.astype(np.float32)})[0]
|
68 |
+
predicted_cost = round(float(prediction[0]), 2)
|
|
|
|
|
|
|
69 |
|
70 |
return f"""Predicted Cost: {predicted_cost}
|
71 |
|
|
|
81 |
Note: This prediction is based on historical data and player statistics from OpenDota."""
|
82 |
|
83 |
except Exception as e:
|
84 |
+
return f"Error in prediction pipeline: {str(e)}\n\nDebug info:\n{type(e).__name__}: {str(e)}"
|
85 |
|
86 |
# Create Gradio interface
|
87 |
demo = gr.Interface(
|
|
|
109 |
- The predictor uses machine learning trained on historical RD2L draft data
|
110 |
- Player statistics are fetched from OpenDota API
|
111 |
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
|
112 |
+
- Predictions are based on both current stats and historical performance
|
113 |
+
|
114 |
+
### Notes
|
115 |
+
- MMR should be the player's current solo MMR
|
116 |
+
- Position comfort should reflect actual role experience
|
117 |
+
- Predictions are estimates and may vary from actual draft results"""
|
118 |
)
|
119 |
|
120 |
if __name__ == "__main__":
|
121 |
+
demo.launch()
|
|
|
|