Spaces:
Sleeping
Sleeping
Commit
·
ddcf7cb
1
Parent(s):
472609c
please
Browse files
app.py
CHANGED
@@ -10,10 +10,9 @@ from feature_engineering import heroes, hero_information
|
|
10 |
|
11 |
# Global variables for model and feature columns
|
12 |
MODEL = None
|
13 |
-
FEATURE_COLUMNS = None
|
14 |
|
15 |
def load_model():
|
16 |
-
"""Load the ONNX model
|
17 |
global MODEL
|
18 |
try:
|
19 |
model_path = Path("model/rd2l_forest.onnx")
|
@@ -26,93 +25,53 @@ def load_model():
|
|
26 |
return f"Error loading model: {str(e)}"
|
27 |
|
28 |
def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
29 |
-
"""Process player data
|
30 |
try:
|
31 |
# Clean player ID from URL if needed
|
32 |
if "/" in player_id:
|
33 |
player_id = player_id.split("/")[-1]
|
34 |
|
35 |
-
# Create initial
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
}
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if col not in player_data:
|
53 |
-
player_data[col] = 0
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Warning - Error reading prediction data template: {str(e)}")
|
56 |
-
|
57 |
-
# Get hero statistics using OpenDota API
|
58 |
try:
|
59 |
hero_stats = hero_information(player_id)
|
60 |
-
|
61 |
-
|
62 |
-
# Add season identifier to match training data format
|
63 |
-
player_season = f"{player_id}_S34" # Assuming current season is 34
|
64 |
-
temp_dict = {}
|
65 |
-
temp_dict[player_season] = 1.0 # Set current season flag to 1.0
|
66 |
-
player_data.update(temp_dict)
|
67 |
|
|
|
|
|
|
|
|
|
68 |
except Exception as e:
|
69 |
print(f"Warning - Error fetching hero data: {str(e)}")
|
70 |
-
# If hero stats fail, add placeholder values
|
71 |
-
player_data.update({
|
72 |
-
"total_games_played": 0,
|
73 |
-
"total_winrate": 0.0
|
74 |
-
})
|
75 |
-
|
76 |
-
# Convert to DataFrame for consistency with training
|
77 |
-
df = pd.DataFrame([player_data])
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
ref_data = pd.read_csv("result_prediction_data_prepped.csv")
|
82 |
-
if not ref_data.empty:
|
83 |
-
# Get all columns from reference data
|
84 |
-
for col in ref_data.columns:
|
85 |
-
if col not in df.columns:
|
86 |
-
df[col] = 0
|
87 |
-
# Reorder columns to match reference data
|
88 |
-
df = df[ref_data.columns]
|
89 |
-
except Exception as e:
|
90 |
-
print(f"Warning - Error matching reference data structure: {str(e)}")
|
91 |
-
|
92 |
-
# Load the expected columns from your prediction data
|
93 |
-
pred_data = pd.read_csv("prediction_data_prepped.csv")
|
94 |
-
expected_columns = pred_data.columns.tolist()
|
95 |
|
96 |
-
|
97 |
-
print(f"
|
98 |
-
print(f"Number of current columns: {len(df.columns)}")
|
99 |
-
|
100 |
-
# Find missing columns
|
101 |
-
missing_columns = [col for col in expected_columns if col not in df.columns]
|
102 |
-
extra_columns = [col for col in df.columns if col not in expected_columns]
|
103 |
-
|
104 |
-
print(f"\nMissing columns: {missing_columns}")
|
105 |
-
print(f"Extra columns: {extra_columns}")
|
106 |
-
|
107 |
-
# Ensure all expected columns exist
|
108 |
-
for col in expected_columns:
|
109 |
-
if col not in df.columns:
|
110 |
-
df[col] = 0
|
111 |
-
|
112 |
-
# Remove any extra columns
|
113 |
-
df = df[expected_columns]
|
114 |
-
|
115 |
-
print(f"\nFinal number of columns: {len(df.columns)}")
|
116 |
print(f"First few columns: {list(df.columns)[:5]}")
|
117 |
|
118 |
return df
|
@@ -133,11 +92,7 @@ def predict_cost(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
|
133 |
|
134 |
if isinstance(processed_data, str): # Error occurred
|
135 |
return processed_data
|
136 |
-
|
137 |
-
# Print debug information
|
138 |
-
print("Processed data shape:", processed_data.shape)
|
139 |
-
print("Processed data columns:", processed_data.columns.tolist())
|
140 |
-
|
141 |
# Make prediction
|
142 |
try:
|
143 |
input_name = MODEL.get_inputs()[0].name
|
@@ -188,16 +143,10 @@ demo = gr.Interface(
|
|
188 |
- The predictor uses machine learning trained on historical RD2L draft data
|
189 |
- Player statistics are fetched from OpenDota API
|
190 |
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
|
191 |
-
- Predictions are based on both current stats and historical performance
|
192 |
-
|
193 |
-
### Notes
|
194 |
-
- MMR should be the player's current solo MMR
|
195 |
-
- Position comfort should reflect actual role experience
|
196 |
-
- Predictions are estimates and may vary from actual draft results"""
|
197 |
)
|
198 |
|
199 |
-
# Load model on startup
|
200 |
-
print(load_model())
|
201 |
-
|
202 |
if __name__ == "__main__":
|
203 |
-
|
|
|
|
|
|
10 |
|
11 |
# Global variables for model and feature columns
|
12 |
MODEL = None
|
|
|
13 |
|
14 |
def load_model():
|
15 |
+
"""Load the ONNX model"""
|
16 |
global MODEL
|
17 |
try:
|
18 |
model_path = Path("model/rd2l_forest.onnx")
|
|
|
25 |
return f"Error loading model: {str(e)}"
|
26 |
|
27 |
def process_player_data(player_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
28 |
+
"""Process player data with correct feature structure"""
|
29 |
try:
|
30 |
# Clean player ID from URL if needed
|
31 |
if "/" in player_id:
|
32 |
player_id = player_id.split("/")[-1]
|
33 |
|
34 |
+
# Create initial data structure with basic features
|
35 |
+
data = {
|
36 |
+
'mmr': float(mmr),
|
37 |
+
'p1': int(comf_1),
|
38 |
+
'p2': int(comf_2),
|
39 |
+
'p3': int(comf_3),
|
40 |
+
'p4': int(comf_4),
|
41 |
+
'p5': int(comf_5),
|
42 |
+
'count': 0,
|
43 |
+
'mean': 0,
|
44 |
+
'std': 0,
|
45 |
+
'min': 0,
|
46 |
+
'max': 0,
|
47 |
+
'sum': 0,
|
48 |
+
'total_games_played': 0,
|
49 |
+
'total_winrate': 0
|
50 |
}
|
51 |
|
52 |
+
# Add hero-specific features
|
53 |
+
for i in range(1, 139): # Add all possible hero IDs
|
54 |
+
data[f'games_{i}'] = 0
|
55 |
+
data[f'winrate_{i}'] = 0
|
56 |
+
|
57 |
+
# Get hero statistics from OpenDota
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
hero_stats = hero_information(player_id)
|
60 |
+
data['total_games_played'] = hero_stats['total_games_played']
|
61 |
+
data['total_winrate'] = hero_stats['total_winrate']
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# Update hero-specific stats
|
64 |
+
for key, value in hero_stats.items():
|
65 |
+
if key in data:
|
66 |
+
data[key] = value
|
67 |
except Exception as e:
|
68 |
print(f"Warning - Error fetching hero data: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
# Convert to DataFrame
|
71 |
+
df = pd.DataFrame([data])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
print(f"Processed data shape: {df.shape}")
|
74 |
+
print(f"Number of features: {len(df.columns)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
print(f"First few columns: {list(df.columns)[:5]}")
|
76 |
|
77 |
return df
|
|
|
92 |
|
93 |
if isinstance(processed_data, str): # Error occurred
|
94 |
return processed_data
|
95 |
+
|
|
|
|
|
|
|
|
|
96 |
# Make prediction
|
97 |
try:
|
98 |
input_name = MODEL.get_inputs()[0].name
|
|
|
143 |
- The predictor uses machine learning trained on historical RD2L draft data
|
144 |
- Player statistics are fetched from OpenDota API
|
145 |
- Position comfort levels range from 1 (least comfortable) to 5 (most comfortable)
|
146 |
+
- Predictions are based on both current stats and historical performance"""
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
|
|
|
|
|
|
|
149 |
if __name__ == "__main__":
|
150 |
+
print("===== Application Startup =====")
|
151 |
+
print(load_model())
|
152 |
+
demo.launch(server_name="0.0.0.0")
|