File size: 2,691 Bytes
53715b3
7409f0d
d804135
 
 
7409f0d
53715b3
 
2bcf9f3
 
7409f0d
 
 
 
 
 
 
3ecf953
 
 
7409f0d
 
 
 
 
 
 
 
 
 
 
 
 
 
d804135
 
 
7409f0d
53715b3
3ecf953
 
 
7409f0d
7e0df52
2a43935
7e0df52
2bcf9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a43935
53715b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import gradio as gr
import pandas as pd
import sys
sys.path.append("rd2l_pred")
from training_data_prep import list_format, modification, league_money, df_gen
from feature_engineering import heroes, hero_information




def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
    player_id = user_id.split("/")[-1]

    series = {"player_id" : player_id, "mmr" : mmr, "p1" : comf_1, "p2" : comf_2, "p3" : comf_3, "p4" : comf_4, "p5" : comf_5}

    money = pd.read_csv("result_money.csv")    

    print()
    print(f"Reading player {player_id}.  Starting now")

    print(money)
    print(money.values)

    for item in money.values:
        series.update({item[0] : float(item[1])})

    print("Corrected Series")
    print(series)
    
    d = pd.Series(series)
    print(d)

    # This the original section used to add the money section to the series.
    # d = d.assign(count=lambda x: money[player_season].loc['count'], mean=lambda x: money[player_season].loc['mean'], std=lambda x: money[player_season].loc['std'], min=lambda x: money[player_season].loc['min'], max=lambda x: money[player_season].loc['max'], sum=lambda x: money[player_season].loc['sum'])

    # We need to generate the inputs for the sheet using hugging face
    # We also need to load the money values from the generated csv file
    # df_gen(draft, league_money(captains, data_type), data_type)

    print(f"Done reading player {player_id}")
    print()

    return player_id

demo = gr.Interface.load("https://huggingface.co/nick-leland/RD2L_Random_Forest")

# demo = gr.Interface(
#     fn=fetch_data,
#     inputs=[
#         gr.Textbox(label="Player ID or Link to OpenDota/Dotabuff"),
#         gr.Textbox(label="MMR"),
#         gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 1)"),
#         gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 2)"),
#         gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
#         gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
#         gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
#     ],
#     # examples=[
#     #     [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
#     #     [np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
#     #     [np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
#     #     [np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
#     # ],
#     outputs=[
#         "text"
#     ],
#     title="RD2L Pricing Prediction",
#     article="Uhhhhh this is the article",
#     description="Uhhhhh this is the description"
# )
demo.launch()