Spaces:
Sleeping
Sleeping
Commit
·
3ecf953
1
Parent(s):
7409f0d
Updated the main file
Browse files
app.py
CHANGED
@@ -13,6 +13,9 @@ def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
|
13 |
|
14 |
money = pd.read_csv("result_money.csv")
|
15 |
|
|
|
|
|
|
|
16 |
print(money)
|
17 |
print(money.values)
|
18 |
|
@@ -32,6 +35,9 @@ def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
|
|
32 |
# We also need to load the money values from the generated csv file
|
33 |
# df_gen(draft, league_money(captains, data_type), data_type)
|
34 |
|
|
|
|
|
|
|
35 |
return player_id
|
36 |
|
37 |
demo = gr.Interface(
|
@@ -44,16 +50,6 @@ demo = gr.Interface(
|
|
44 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
|
45 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
|
46 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
|
47 |
-
# gr.Image(type="filepath"),
|
48 |
-
# gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
|
49 |
-
# gr.Checkbox(label="Randomize inputs?"),
|
50 |
-
# gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
|
51 |
-
# gr.Slider(0, 1, value=0.5, label="Center X"),
|
52 |
-
# gr.Slider(0, 1, value=0.5, label="Center Y"),
|
53 |
-
# gr.Slider(0, 1, value=0.5, label="Strength"),
|
54 |
-
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
|
55 |
-
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
|
56 |
-
# gr.Checkbox(label="Reverse Gradient Direction"),
|
57 |
],
|
58 |
# examples=[
|
59 |
# [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
@@ -63,16 +59,6 @@ demo = gr.Interface(
|
|
63 |
# ],
|
64 |
outputs=[
|
65 |
"text"
|
66 |
-
# gr.Image(label="Transformed Image"),
|
67 |
-
# gr.Image(label="bulge_model Model Classification"),
|
68 |
-
# gr.Image(label="yolov8n Model Classification"),
|
69 |
-
# gr.Image(label="yolov8x Model Classification"),
|
70 |
-
# gr.Label(),
|
71 |
-
# gr.Label(),
|
72 |
-
# gr.Image(label="Gradient Vector Field"),
|
73 |
-
# gr.Image(label="Inverse Gradient"),
|
74 |
-
# gr.Image(label="Inverted Vector Field"),
|
75 |
-
# gr.Image(label="Fixed Image")
|
76 |
],
|
77 |
title="RD2L Pricing Prediction",
|
78 |
article="Uhhhhh this is the article",
|
|
|
13 |
|
14 |
money = pd.read_csv("result_money.csv")
|
15 |
|
16 |
+
print()
|
17 |
+
print(f"Reading player {player_id}. Starting now")
|
18 |
+
|
19 |
print(money)
|
20 |
print(money.values)
|
21 |
|
|
|
35 |
# We also need to load the money values from the generated csv file
|
36 |
# df_gen(draft, league_money(captains, data_type), data_type)
|
37 |
|
38 |
+
print(f"Done reading player {player_id}")
|
39 |
+
print()
|
40 |
+
|
41 |
return player_id
|
42 |
|
43 |
demo = gr.Interface(
|
|
|
50 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
|
51 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
|
52 |
gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
],
|
54 |
# examples=[
|
55 |
# [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
|
|
|
59 |
# ],
|
60 |
outputs=[
|
61 |
"text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
],
|
63 |
title="RD2L Pricing Prediction",
|
64 |
article="Uhhhhh this is the article",
|