nick-leland commited on
Commit
3ecf953
·
1 Parent(s): 7409f0d

Updated the main file

Browse files
Files changed (1) hide show
  1. app.py +6 -20
app.py CHANGED
@@ -13,6 +13,9 @@ def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
13
 
14
  money = pd.read_csv("result_money.csv")
15
 
 
 
 
16
  print(money)
17
  print(money.values)
18
 
@@ -32,6 +35,9 @@ def fetch_data(user_id, mmr, comf_1, comf_2, comf_3, comf_4, comf_5):
32
  # We also need to load the money values from the generated csv file
33
  # df_gen(draft, league_money(captains, data_type), data_type)
34
 
 
 
 
35
  return player_id
36
 
37
  demo = gr.Interface(
@@ -44,16 +50,6 @@ demo = gr.Interface(
44
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
45
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
46
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
47
- # gr.Image(type="filepath"),
48
- # gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
49
- # gr.Checkbox(label="Randomize inputs?"),
50
- # gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
51
- # gr.Slider(0, 1, value=0.5, label="Center X"),
52
- # gr.Slider(0, 1, value=0.5, label="Center Y"),
53
- # gr.Slider(0, 1, value=0.5, label="Strength"),
54
- # gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
55
- # gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
56
- # gr.Checkbox(label="Reverse Gradient Direction"),
57
  ],
58
  # examples=[
59
  # [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
@@ -63,16 +59,6 @@ demo = gr.Interface(
63
  # ],
64
  outputs=[
65
  "text"
66
- # gr.Image(label="Transformed Image"),
67
- # gr.Image(label="bulge_model Model Classification"),
68
- # gr.Image(label="yolov8n Model Classification"),
69
- # gr.Image(label="yolov8x Model Classification"),
70
- # gr.Label(),
71
- # gr.Label(),
72
- # gr.Image(label="Gradient Vector Field"),
73
- # gr.Image(label="Inverse Gradient"),
74
- # gr.Image(label="Inverted Vector Field"),
75
- # gr.Image(label="Fixed Image")
76
  ],
77
  title="RD2L Pricing Prediction",
78
  article="Uhhhhh this is the article",
 
13
 
14
  money = pd.read_csv("result_money.csv")
15
 
16
+ print()
17
+ print(f"Reading player {player_id}. Starting now")
18
+
19
  print(money)
20
  print(money.values)
21
 
 
35
  # We also need to load the money values from the generated csv file
36
  # df_gen(draft, league_money(captains, data_type), data_type)
37
 
38
+ print(f"Done reading player {player_id}")
39
+ print()
40
+
41
  return player_id
42
 
43
  demo = gr.Interface(
 
50
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 3)"),
51
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 4)"),
52
  gr.Slider(1, 5, value=1, step=1, label="Comfort (Pos 5)")
 
 
 
 
 
 
 
 
 
 
53
  ],
54
  # examples=[
55
  # [np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
 
59
  # ],
60
  outputs=[
61
  "text"
 
 
 
 
 
 
 
 
 
 
62
  ],
63
  title="RD2L Pricing Prediction",
64
  article="Uhhhhh this is the article",