File size: 13,391 Bytes
6aa4d81
079b1b4
6aa4d81
5c1d384
 
6aa4d81
 
5c1d384
6aa4d81
5c1d384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97e7f7b
5c1d384
97e7f7b
 
 
 
 
5c1d384
 
 
60c5f6d
5c1d384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311abc
5c1d384
 
 
 
 
 
60c5f6d
5c1d384
 
 
97e7f7b
5c1d384
 
 
 
 
 
34b406c
5c1d384
 
 
 
 
 
 
 
 
 
 
 
34b406c
5c1d384
 
 
 
 
 
 
34b406c
5c1d384
 
 
 
 
 
 
 
 
 
 
 
 
 
34b406c
5c1d384
 
 
 
 
 
34b406c
5c1d384
 
 
 
 
34b406c
5c1d384
 
 
 
 
 
 
 
 
 
 
 
 
34b406c
5c1d384
 
34b406c
5c1d384
6aa4d81
 
 
 
5c1d384
 
 
 
6aa4d81
5c1d384
 
6aa4d81
 
34b406c
 
5c1d384
34b406c
 
 
5c1d384
34b406c
 
5c1d384
34b406c
 
 
 
 
 
 
5c1d384
34b406c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c1d384
34b406c
 
 
 
 
 
 
 
5c1d384
34b406c
 
 
 
5c1d384
34b406c
 
 
 
 
 
 
 
 
 
 
 
 
5c1d384
34b406c
5c1d384
6aa4d81
e736f7f
5c1d384
6aa4d81
 
34b406c
 
 
 
 
 
 
 
 
 
 
 
 
6aa4d81
 
 
 
5c1d384
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import os
import sys
import random
from typing import Sequence, Mapping, Any, Union

import torch
import gradio as gr
from PIL import Image
from huggingface_hub import hf_hub_download

import spaces  # Se estiver no Hugging Face Spaces. Se não, pode remover.

#####################################
# 1. Funções auxiliares de caminho e import
#####################################

def find_path(name: str, path: str = None) -> str:
    """Busca recursivamente por uma pasta/arquivo 'name' a partir de 'path'."""
    if path is None:
        path = os.getcwd()
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} encontrado em: {path_name}")
        return path_name
    parent_directory = os.path.dirname(path)
    if parent_directory == path:
        return None
    return find_path(name, parent_directory)

def add_comfyui_directory_to_sys_path() -> None:
    """Adiciona o diretório ComfyUI ao sys.path, caso encontrado."""
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"Diretório ComfyUI adicionado ao sys.path: {comfyui_path}")
    else:
        print("Não foi possível encontrar o diretório ComfyUI.")

def add_extra_model_paths() -> None:
    """
    Carrega configurações extras de caminhos de modelos, se existir 
    um arquivo 'extra_model_paths.yaml'.
    """
    try:
        from main import load_extra_path_config
    except ImportError:
        # Dependendo da versão do ComfyUI, pode estar em 'utils.extra_config'
        from utils.extra_config import load_extra_path_config

    extra_model_paths = find_path("extra_model_paths.yaml")
    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Arquivo extra_model_paths.yaml não foi encontrado.")

def import_custom_nodes() -> None:
    """
    Executa a inicialização de nós extras e o servidor do ComfyUI (caso necessário),
    similar ao que ocorre no segundo script.
    """
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)
    init_extra_nodes()

#####################################
# 2. Ajustando o ambiente ComfyUI
#####################################

add_comfyui_directory_to_sys_path()
add_extra_model_paths()
import_custom_nodes()

#####################################
# 3. Importando nós do ComfyUI
#####################################
from comfy import model_management
from nodes import (
    NODE_CLASS_MAPPINGS,
    DualCLIPLoader,
    CLIPVisionLoader,
    StyleModelLoader,
    VAELoader,
    CLIPTextEncode,
    LoadImage,
    EmptyLatentImage,
    VAEDecode
)

#####################################
# 4. Download de modelos (ajuste conforme sua necessidade)
#####################################

# Exemplo de downloads (ajuste conforme seus modelos):
os.makedirs("models/text_encoders", exist_ok=True)
os.makedirs("models/style_models", exist_ok=True)
os.makedirs("models/diffusion_models", exist_ok=True)
os.makedirs("models/vae", exist_ok=True)
os.makedirs("models/clip_vision", exist_ok=True)

try:
    print("Baixando modelo Style (flux1-redux-dev.safetensors)...")
    hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", 
                    filename="flux1-redux-dev.safetensors",
                    local_dir="models/style_models")
    print("Baixando T5 (t5xxl_fp16.safetensors)...")
    hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", 
                    filename="t5xxl_fp16.safetensors",
                    local_dir="models/text_encoders")

    print("Baixando CLIP L (ViT-L-14) ...")
    hf_hub_download(repo_id="zer0int/CLIP-GmP-ViT-L-14",
                    filename="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
                    local_dir="models/text_encoders")
    print("Baixando VAE (ae.safetensors)...")
    hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
                    filename="ae.safetensors",
                    local_dir="models/vae")
    print("Baixando flux1-dev.safetensors (modelo difusão)...")
    hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev",
                    filename="flux1-dev.safetensors",
                    local_dir="models/diffusion_models")
    print("Baixando CLIP Vision (model.safetensors)...")
    hf_hub_download(repo_id="google/siglip-so400m-patch14-384",
                    filename="model.safetensors",
                    local_dir="models/clip_vision")
except Exception as e:
    print("Algum download falhou:", e)

#####################################
# 5. Carregar modelos via ComfyUI
#####################################

# Carregando CLIP (DualCLIPLoader)
dualcliploader = DualCLIPLoader()
clip_model = dualcliploader.load_clip(
    clip_name1="t5xxl_fp16.safetensors",
    clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
    type="flux"
)

# Carregando CLIP Vision
clipvisionloader = CLIPVisionLoader()
clip_vision_model = clipvisionloader.load_clip(
    clip_name="model.safetensors"
)

# Carregando Style Model
stylemodelloader = StyleModelLoader()
style_model = stylemodelloader.load_style_model(
    style_model_name="flux1-redux-dev.safetensors"
)

# Carregando VAE
vaeloader = VAELoader()
vae_model = vaeloader.load_vae(
    vae_name="ae.safetensors"
)

# (Opcional) Se tiver um model UNet, faça UNETLoader, etc.

# Opcional: Carregar para GPU
model_management.load_models_gpu([
    loader[0] for loader in [clip_model, clip_vision_model, style_model, vae_model]
])

#####################################
# 6. Funções auxiliares e placeholders
#####################################

def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Retorna o 'index' de um objeto que pode ser um dict ou lista."""
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]

#####################################
# 7. Definir workflow simplificado
#####################################

@spaces.GPU  # Se estiver no Hugging Face Spaces. Senão, remova.
def generate_image(
    prompt: str,
    input_image_path: str,
    lora_weight: float,
    guidance: float,
    downsampling_factor: float,
    weight: float,
    seed: int,
    width: int,
    height: int,
    batch_size: int,
    steps: int,
    progress=gr.Progress(track_tqdm=True)
):
    """
    Gera imagem usando um fluxo simplificado, similar ao primeiro script.
    """
    try:
        # Garantindo repetibilidade do seed
        torch.manual_seed(seed)
        random.seed(seed)

        # 1) Encode Texto
        cliptextencode = CLIPTextEncode()
        encoded_text = cliptextencode.encode(
            text=prompt,
            clip=get_value_at_index(clip_model, 0)
        )

        # 2) Carregar imagem de entrada
        loadimage = LoadImage()
        loaded_image = loadimage.load_image(image=input_image_path)

        # 3) Flux Guidance (se existir)
        fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
        flux_guided = fluxguidance.append(
            guidance=guidance,
            conditioning=get_value_at_index(encoded_text, 0)
        )

        # 4) Redux Advanced (aplicar style model)
        reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
        redux_result = reduxadvanced.apply_stylemodel(
            downsampling_factor=downsampling_factor,
            downsampling_function="area",
            mode="keep aspect ratio",
            weight=weight,
            conditioning=get_value_at_index(flux_guided, 0),
            style_model=get_value_at_index(style_model, 0),
            clip_vision=get_value_at_index(clip_vision_model, 0),
            image=get_value_at_index(loaded_image, 0)
        )

        # 5) Empty Latent
        emptylatent = EmptyLatentImage()
        empty_latent = emptylatent.generate(
            width=width,
            height=height,
            batch_size=batch_size
        )

        # 6) KSampler (no ComfyUI atual, há "KSamplerSelect" ou "KSampler")
        ksampler = NODE_CLASS_MAPPINGS["KSampler"]()
        sampled = ksampler.sample(
            seed=seed,
            steps=steps,
            cfg=1,  # Exemplo de CFG = 1
            sampler_name="euler",
            scheduler="simple",
            denoise=1,
            model=get_value_at_index(style_model, 0),     # Usa o style model como UNet? (depende da config)
            positive=get_value_at_index(redux_result, 0),
            negative=get_value_at_index(flux_guided, 0),
            latent_image=get_value_at_index(empty_latent, 0)
        )

        # 7) Decodificar VAE
        vaedecode = VAEDecode()
        decoded = vaedecode.decode(
            samples=get_value_at_index(sampled, 0),
            vae=get_value_at_index(vae_model, 0)
        )

        # 8) Salvar imagem
        output_dir = "output"
        os.makedirs(output_dir, exist_ok=True)
        temp_filename = f"Flux_{random.randint(0, 99999)}.png"
        temp_path = os.path.join(output_dir, temp_filename)

        # No ComfyUI, 'decoded[0]' pode ser um tensor [C,H,W] normalizado
        # ou algo no formato [N,C,H,W]. Precisamos converter para PIL:
        # Se for um batch, pegue o primeiro item. Ajuste se quiser batch maior.
        image_data = get_value_at_index(decoded, 0)
        # Normalmente, se for "float [0,1]" em C,H,W:
        # Precisamos mover pro CPU e converter em numpy
        if isinstance(image_data, torch.Tensor):
            image_data = image_data.cpu().numpy()

        # Se a imagem estiver em [C,H,W], transpor para [H,W,C] e escalar 0..255
        if len(image_data.shape) == 3:
            image_data = image_data.transpose(1, 2, 0)
        image_data = (image_data * 255).clip(0, 255).astype("uint8")

        pil_image = Image.fromarray(image_data)
        pil_image.save(temp_path)

        return temp_path
    except Exception as e:
        print(f"Erro ao gerar imagem: {str(e)}")
        return None

#####################################
# 8. Interface Gradio (similar ao primeiro snippet)
#####################################

with gr.Blocks() as app:
    gr.Markdown("# FLUX Redux Image Generator (Simplificado)")

    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Prompt",
                placeholder="Escreva seu prompt...",
                lines=5
            )
            input_image = gr.Image(
                label="Imagem de Entrada",
                type="filepath"
            )

            with gr.Row():
                with gr.Column():
                    lora_weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=0.6,
                        label="LoRA Weight (não usado nesse fluxo)"
                    )
                    guidance = gr.Slider(
                        minimum=0,
                        maximum=20,
                        step=0.1,
                        value=3.5,
                        label="Guidance"
                    )
                    downsampling_factor = gr.Slider(
                        minimum=1,
                        maximum=8,
                        step=1,
                        value=3,
                        label="Downsampling Factor"
                    )
                    weight = gr.Slider(
                        minimum=0,
                        maximum=2,
                        step=0.1,
                        value=1.0,
                        label="Redux Model Weight"
                    )
                with gr.Column():
                    seed = gr.Number(
                        value=random.randint(1, 2**64),
                        label="Seed",
                        precision=0
                    )
                    width = gr.Number(
                        value=512,
                        label="Width",
                        precision=0
                    )
                    height = gr.Number(
                        value=512,
                        label="Height",
                        precision=0
                    )
                    batch_size = gr.Number(
                        value=1,
                        label="Batch Size",
                        precision=0
                    )
                    steps = gr.Number(
                        value=20,
                        label="Steps",
                        precision=0
                    )

            generate_btn = gr.Button("Generate Image")

        with gr.Column():
            output_image = gr.Image(label="Generated Image", type="filepath")

    generate_btn.click(
        fn=generate_image,
        inputs=[
            prompt_input,
            input_image,
            lora_weight,
            guidance,
            downsampling_factor,
            weight,
            seed,
            width,
            height,
            batch_size,
            steps
        ],
        outputs=[output_image]
    )

if __name__ == "__main__":
    # Você pode usar app.launch(share=True) se quiser compartilhar via link.
    app.launch()