Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,86 +1,92 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
|
4 |
-
# Adicionar o caminho da pasta ComfyUI ao sys.path
|
5 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
6 |
-
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
7 |
-
sys.path.append(comfyui_path)
|
8 |
-
|
9 |
import random
|
10 |
import torch
|
11 |
from pathlib import Path
|
12 |
from PIL import Image
|
13 |
import gradio as gr
|
14 |
from huggingface_hub import hf_hub_download
|
15 |
-
|
16 |
-
from
|
17 |
-
import folder_paths
|
18 |
|
|
|
|
|
|
|
19 |
print("CUDA disponível:", torch.cuda.is_available())
|
20 |
print("Quantidade de GPUs:", torch.cuda.device_count())
|
21 |
if torch.cuda.is_available():
|
22 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
26 |
output_dir = os.path.join(BASE_DIR, "output")
|
27 |
os.makedirs(output_dir, exist_ok=True)
|
28 |
folder_paths.set_output_directory(output_dir)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
80 |
-
]
|
81 |
-
model_management.load_models_gpu(valid_models)
|
82 |
-
|
83 |
-
# Função para importar nodes personalizados
|
84 |
def import_custom_nodes():
|
85 |
import asyncio
|
86 |
import execution
|
@@ -89,13 +95,13 @@ def import_custom_nodes():
|
|
89 |
|
90 |
loop = asyncio.new_event_loop()
|
91 |
asyncio.set_event_loop(loop)
|
92 |
-
|
93 |
server_instance = server.PromptServer(loop)
|
94 |
execution.PromptQueue(server_instance)
|
95 |
init_extra_nodes()
|
96 |
|
97 |
-
|
98 |
-
def generate_image(prompt, input_image, lora_weight,
|
|
|
99 |
import_custom_nodes()
|
100 |
try:
|
101 |
with torch.inference_mode():
|
@@ -103,7 +109,7 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
103 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
104 |
encoded_text = cliptextencode.encode(
|
105 |
text=prompt,
|
106 |
-
clip=dualcliploader_357
|
107 |
)
|
108 |
|
109 |
# Carregar LoRA
|
@@ -111,23 +117,24 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
111 |
lora_model = loraloadermodelonly.load_lora_model_only(
|
112 |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
113 |
strength_model=lora_weight,
|
114 |
-
model=stylemodelloader_441
|
115 |
)
|
116 |
|
117 |
-
# Processar imagem
|
118 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
119 |
loaded_image = loadimage.load_image(image=input_image)
|
120 |
|
121 |
-
# Decodificar
|
122 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
123 |
decoded = vaedecode.decode(
|
124 |
-
samples=lora_model
|
125 |
-
vae=vaeloader_359
|
126 |
)
|
127 |
|
|
|
128 |
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
129 |
temp_path = os.path.join(output_dir, temp_filename)
|
130 |
-
Image.fromarray((decoded
|
131 |
|
132 |
return temp_path
|
133 |
except Exception as e:
|
@@ -154,4 +161,7 @@ with gr.Blocks() as app:
|
|
154 |
)
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import random
|
4 |
import torch
|
5 |
from pathlib import Path
|
6 |
from PIL import Image
|
7 |
import gradio as gr
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
+
import spaces
|
10 |
+
from typing import Union, Sequence, Mapping, Any
|
|
|
11 |
|
12 |
+
# Configuração inicial e diagnóstico CUDA
|
13 |
+
print("Python version:", sys.version)
|
14 |
+
print("Torch version:", torch.__version__)
|
15 |
print("CUDA disponível:", torch.cuda.is_available())
|
16 |
print("Quantidade de GPUs:", torch.cuda.device_count())
|
17 |
if torch.cuda.is_available():
|
18 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
19 |
+
else:
|
20 |
+
print("CUDA não está disponível. Verificando por que:")
|
21 |
+
try:
|
22 |
+
torch.cuda.init()
|
23 |
+
except Exception as e:
|
24 |
+
print("Erro ao inicializar CUDA:", str(e))
|
25 |
|
26 |
+
# Adicionar o caminho da pasta ComfyUI ao sys.path
|
27 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
28 |
+
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
29 |
+
sys.path.append(comfyui_path)
|
30 |
+
|
31 |
+
from nodes import NODE_CLASS_MAPPINGS
|
32 |
+
from comfy import model_management
|
33 |
+
import folder_paths
|
34 |
+
|
35 |
+
# Configuração de diretórios
|
36 |
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
37 |
output_dir = os.path.join(BASE_DIR, "output")
|
38 |
os.makedirs(output_dir, exist_ok=True)
|
39 |
folder_paths.set_output_directory(output_dir)
|
40 |
|
41 |
+
# Helper function
|
42 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
43 |
+
try:
|
44 |
+
return obj[index]
|
45 |
+
except KeyError:
|
46 |
+
return obj["result"][index]
|
47 |
+
|
48 |
+
# Baixar modelos necessários
|
49 |
+
def download_models():
|
50 |
+
models = [
|
51 |
+
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "models/style_models"),
|
52 |
+
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "models/text_encoders"),
|
53 |
+
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "models/text_encoders"),
|
54 |
+
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "models/vae"),
|
55 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors.safetensors", "models/diffusion_models"),
|
56 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "models/clip_vision"),
|
57 |
+
("nftnik/NFTNIK-FLUX.1-dev-LoRA", "NFTNIK_FLUX.1[dev]_LoRA.safetensors", "models/lora")
|
58 |
+
]
|
59 |
+
|
60 |
+
for repo_id, filename, local_dir in models:
|
61 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=local_dir)
|
62 |
+
|
63 |
+
# Inicializar modelos
|
64 |
+
print("Inicializando modelos...")
|
65 |
+
with torch.inference_mode():
|
66 |
+
# Initialize nodes
|
67 |
+
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
|
68 |
+
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
69 |
+
dualcliploader_357 = dualcliploader.load_clip(
|
70 |
+
clip_name1="models/text_encoders/t5xxl_fp16.safetensors",
|
71 |
+
clip_name2="models/text_encoders/ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
72 |
+
type="flux",
|
73 |
+
)
|
74 |
+
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
75 |
+
stylemodelloader_441 = stylemodelloader.load_style_model(
|
76 |
+
style_model_name="models/style_models/flux1-redux-dev.safetensors"
|
77 |
+
)
|
78 |
+
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
79 |
+
vaeloader_359 = vaeloader.load_vae(vae_name="models/vae/ae.safetensors")
|
80 |
+
|
81 |
+
# Carregar modelos na GPU
|
82 |
+
model_loaders = [dualcliploader_357, vaeloader_359, stylemodelloader_441]
|
83 |
+
valid_models = [
|
84 |
+
getattr(loader[0], 'patcher', loader[0])
|
85 |
+
for loader in model_loaders
|
86 |
+
if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
|
87 |
+
]
|
88 |
+
model_management.load_models_gpu(valid_models)
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
90 |
def import_custom_nodes():
|
91 |
import asyncio
|
92 |
import execution
|
|
|
95 |
|
96 |
loop = asyncio.new_event_loop()
|
97 |
asyncio.set_event_loop(loop)
|
|
|
98 |
server_instance = server.PromptServer(loop)
|
99 |
execution.PromptQueue(server_instance)
|
100 |
init_extra_nodes()
|
101 |
|
102 |
+
@spaces.GPU
|
103 |
+
def generate_image(prompt, input_image, lora_weight, progress=gr.Progress(track_tqdm=True)):
|
104 |
+
"""Função principal de geração com monitoramento de progresso"""
|
105 |
import_custom_nodes()
|
106 |
try:
|
107 |
with torch.inference_mode():
|
|
|
109 |
cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
110 |
encoded_text = cliptextencode.encode(
|
111 |
text=prompt,
|
112 |
+
clip=get_value_at_index(dualcliploader_357, 0)
|
113 |
)
|
114 |
|
115 |
# Carregar LoRA
|
|
|
117 |
lora_model = loraloadermodelonly.load_lora_model_only(
|
118 |
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
119 |
strength_model=lora_weight,
|
120 |
+
model=get_value_at_index(stylemodelloader_441, 0)
|
121 |
)
|
122 |
|
123 |
+
# Processar imagem
|
124 |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
|
125 |
loaded_image = loadimage.load_image(image=input_image)
|
126 |
|
127 |
+
# Decodificar
|
128 |
vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
129 |
decoded = vaedecode.decode(
|
130 |
+
samples=get_value_at_index(lora_model, 0),
|
131 |
+
vae=get_value_at_index(vaeloader_359, 0)
|
132 |
)
|
133 |
|
134 |
+
# Salvar imagem
|
135 |
temp_filename = f"Flux_{random.randint(0, 99999)}.png"
|
136 |
temp_path = os.path.join(output_dir, temp_filename)
|
137 |
+
Image.fromarray((get_value_at_index(decoded, 0) * 255).astype("uint8")).save(temp_path)
|
138 |
|
139 |
return temp_path
|
140 |
except Exception as e:
|
|
|
161 |
)
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
+
# Download models at startup
|
165 |
+
download_models()
|
166 |
+
# Launch the app
|
167 |
+
app.launch()
|