Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,17 +9,24 @@ from huggingface_hub import hf_hub_download
|
|
9 |
import spaces
|
10 |
from typing import Union, Sequence, Mapping, Any
|
11 |
|
12 |
-
#
|
13 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
14 |
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
15 |
sys.path.append(comfyui_path)
|
16 |
|
17 |
-
#
|
18 |
import folder_paths
|
19 |
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
|
20 |
-
import comfy.utils
|
21 |
|
22 |
-
# Configuração
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
print("Python version:", sys.version)
|
24 |
print("Torch version:", torch.__version__)
|
25 |
print("CUDA disponível:", torch.cuda.is_available())
|
@@ -27,70 +34,68 @@ print("Quantidade de GPUs:", torch.cuda.device_count())
|
|
27 |
if torch.cuda.is_available():
|
28 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
29 |
|
30 |
-
#
|
31 |
-
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
32 |
-
output_dir = os.path.join(BASE_DIR, "output")
|
33 |
-
os.makedirs(output_dir, exist_ok=True)
|
34 |
-
folder_paths.set_output_directory(output_dir)
|
35 |
-
|
36 |
-
# Inicializar nós extras
|
37 |
print("Inicializando ComfyUI...")
|
38 |
init_extra_nodes()
|
39 |
|
40 |
-
# Helper
|
41 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
42 |
try:
|
43 |
return obj[index]
|
44 |
except KeyError:
|
45 |
return obj["result"][index]
|
46 |
|
47 |
-
#
|
48 |
def download_models():
|
49 |
print("Baixando modelos...")
|
50 |
models = [
|
51 |
-
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "
|
52 |
-
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "
|
53 |
-
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "
|
54 |
-
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "
|
55 |
-
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "
|
56 |
-
("google/siglip-so400m-patch14-384", "model.safetensors", "
|
57 |
]
|
58 |
|
59 |
-
for repo_id, filename,
|
60 |
try:
|
61 |
-
os.
|
|
|
62 |
print(f"Baixando {filename} de {repo_id}...")
|
63 |
-
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=
|
|
|
|
|
64 |
except Exception as e:
|
65 |
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
|
66 |
continue
|
67 |
|
68 |
-
# Download
|
|
|
69 |
download_models()
|
70 |
|
71 |
-
# Inicializar modelos
|
72 |
print("Inicializando modelos...")
|
73 |
with torch.inference_mode():
|
74 |
# CLIP
|
75 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
76 |
dualcliploader_357 = dualcliploader.load_clip(
|
77 |
-
clip_name1="
|
78 |
-
clip_name2="
|
79 |
-
type="flux"
|
80 |
)
|
81 |
|
82 |
# Style Model
|
83 |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
84 |
stylemodelloader_441 = stylemodelloader.load_style_model(
|
85 |
-
style_model_name="
|
86 |
)
|
87 |
|
88 |
# VAE
|
89 |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
90 |
vaeloader_359 = vaeloader.load_vae(
|
91 |
-
vae_name="
|
92 |
)
|
93 |
|
|
|
94 |
@spaces.GPU
|
95 |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
|
96 |
try:
|
@@ -113,14 +118,6 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
113 |
conditioning=encoded_text[0]
|
114 |
)
|
115 |
|
116 |
-
# Carregar LoRA
|
117 |
-
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
118 |
-
lora_model = loraloadermodelonly.load_lora_model_only(
|
119 |
-
lora_name="models/lora/NFTNIK_FLUX.1[dev]_LoRA.safetensors",
|
120 |
-
strength_model=lora_weight,
|
121 |
-
model=stylemodelloader_441[0]
|
122 |
-
)
|
123 |
-
|
124 |
# Redux Advanced
|
125 |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
126 |
redux_result = reduxadvanced.apply_stylemodel(
|
@@ -150,7 +147,7 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
150 |
sampler_name="euler",
|
151 |
scheduler="simple",
|
152 |
denoise=1,
|
153 |
-
model=
|
154 |
positive=redux_result[0],
|
155 |
negative=flux_guidance[0],
|
156 |
latent_image=empty_latent[0]
|
@@ -173,7 +170,7 @@ def generate_image(prompt, input_image, lora_weight, guidance, downsampling_fact
|
|
173 |
print(f"Erro ao gerar imagem: {str(e)}")
|
174 |
return None
|
175 |
|
176 |
-
# Interface Gradio
|
177 |
with gr.Blocks() as app:
|
178 |
gr.Markdown("# FLUX Redux Image Generator")
|
179 |
|
@@ -249,7 +246,7 @@ with gr.Blocks() as app:
|
|
249 |
generate_btn = gr.Button("Generate Image")
|
250 |
|
251 |
with gr.Column():
|
252 |
-
output_image = gr.Image(label="Generated Image", type="
|
253 |
|
254 |
generate_btn.click(
|
255 |
fn=generate_image,
|
|
|
9 |
import spaces
|
10 |
from typing import Union, Sequence, Mapping, Any
|
11 |
|
12 |
+
# 1. Configuração de Caminhos e Imports
|
13 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
14 |
comfyui_path = os.path.join(current_dir, "ComfyUI")
|
15 |
sys.path.append(comfyui_path)
|
16 |
|
17 |
+
# 2. Imports do ComfyUI
|
18 |
import folder_paths
|
19 |
from nodes import NODE_CLASS_MAPPINGS, init_extra_nodes
|
|
|
20 |
|
21 |
+
# 3. Configuração de Diretórios
|
22 |
+
BASE_DIR = os.path.dirname(os.path.realpath(__file__))
|
23 |
+
output_dir = os.path.join(BASE_DIR, "output")
|
24 |
+
models_dir = os.path.join(BASE_DIR, "models")
|
25 |
+
os.makedirs(output_dir, exist_ok=True)
|
26 |
+
os.makedirs(models_dir, exist_ok=True)
|
27 |
+
folder_paths.set_output_directory(output_dir)
|
28 |
+
|
29 |
+
# 4. Diagnóstico CUDA
|
30 |
print("Python version:", sys.version)
|
31 |
print("Torch version:", torch.__version__)
|
32 |
print("CUDA disponível:", torch.cuda.is_available())
|
|
|
34 |
if torch.cuda.is_available():
|
35 |
print("GPU atual:", torch.cuda.get_device_name(0))
|
36 |
|
37 |
+
# 5. Inicialização do ComfyUI
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
print("Inicializando ComfyUI...")
|
39 |
init_extra_nodes()
|
40 |
|
41 |
+
# 6. Helper Functions
|
42 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
43 |
try:
|
44 |
return obj[index]
|
45 |
except KeyError:
|
46 |
return obj["result"][index]
|
47 |
|
48 |
+
# 7. Download de Modelos
|
49 |
def download_models():
|
50 |
print("Baixando modelos...")
|
51 |
models = [
|
52 |
+
("black-forest-labs/FLUX.1-Redux-dev", "flux1-redux-dev.safetensors", "style_models"),
|
53 |
+
("comfyanonymous/flux_text_encoders", "t5xxl_fp16.safetensors", "text_encoders"),
|
54 |
+
("zer0int/CLIP-GmP-ViT-L-14", "ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors", "text_encoders"),
|
55 |
+
("black-forest-labs/FLUX.1-dev", "ae.safetensors", "vae"),
|
56 |
+
("black-forest-labs/FLUX.1-dev", "flux1-dev.safetensors", "diffusion_models"),
|
57 |
+
("google/siglip-so400m-patch14-384", "model.safetensors", "clip_vision")
|
58 |
]
|
59 |
|
60 |
+
for repo_id, filename, model_type in models:
|
61 |
try:
|
62 |
+
model_dir = os.path.join(models_dir, model_type)
|
63 |
+
os.makedirs(model_dir, exist_ok=True)
|
64 |
print(f"Baixando {filename} de {repo_id}...")
|
65 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=model_dir)
|
66 |
+
# Adicionar o diretório ao folder_paths
|
67 |
+
folder_paths.add_model_folder_path(model_type, model_dir)
|
68 |
except Exception as e:
|
69 |
print(f"Erro ao baixar {filename} de {repo_id}: {str(e)}")
|
70 |
continue
|
71 |
|
72 |
+
# 8. Download e Inicialização dos Modelos
|
73 |
+
print("Baixando modelos...")
|
74 |
download_models()
|
75 |
|
|
|
76 |
print("Inicializando modelos...")
|
77 |
with torch.inference_mode():
|
78 |
# CLIP
|
79 |
dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]()
|
80 |
dualcliploader_357 = dualcliploader.load_clip(
|
81 |
+
clip_name1="t5xxl_fp16.safetensors",
|
82 |
+
clip_name2="ViT-L-14-TEXT-detail-improved-hiT-GmP-HF.safetensors",
|
83 |
+
type="flux"
|
84 |
)
|
85 |
|
86 |
# Style Model
|
87 |
stylemodelloader = NODE_CLASS_MAPPINGS["StyleModelLoader"]()
|
88 |
stylemodelloader_441 = stylemodelloader.load_style_model(
|
89 |
+
style_model_name="flux1-redux-dev.safetensors"
|
90 |
)
|
91 |
|
92 |
# VAE
|
93 |
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
94 |
vaeloader_359 = vaeloader.load_vae(
|
95 |
+
vae_name="ae.safetensors"
|
96 |
)
|
97 |
|
98 |
+
# 9. Função de Geração
|
99 |
@spaces.GPU
|
100 |
def generate_image(prompt, input_image, lora_weight, guidance, downsampling_factor, weight, seed, width, height, batch_size, steps, progress=gr.Progress(track_tqdm=True)):
|
101 |
try:
|
|
|
118 |
conditioning=encoded_text[0]
|
119 |
)
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
# Redux Advanced
|
122 |
reduxadvanced = NODE_CLASS_MAPPINGS["ReduxAdvanced"]()
|
123 |
redux_result = reduxadvanced.apply_stylemodel(
|
|
|
147 |
sampler_name="euler",
|
148 |
scheduler="simple",
|
149 |
denoise=1,
|
150 |
+
model=stylemodelloader_441[0],
|
151 |
positive=redux_result[0],
|
152 |
negative=flux_guidance[0],
|
153 |
latent_image=empty_latent[0]
|
|
|
170 |
print(f"Erro ao gerar imagem: {str(e)}")
|
171 |
return None
|
172 |
|
173 |
+
# 10. Interface Gradio
|
174 |
with gr.Blocks() as app:
|
175 |
gr.Markdown("# FLUX Redux Image Generator")
|
176 |
|
|
|
246 |
generate_btn = gr.Button("Generate Image")
|
247 |
|
248 |
with gr.Column():
|
249 |
+
output_image = gr.Image(label="Generated Image", type="filepath")
|
250 |
|
251 |
generate_btn.click(
|
252 |
fn=generate_image,
|