nananie143's picture
Upload folder using huggingface_hub
dcb2a99 verified
raw
history blame
6.55 kB
"""Bayesian reasoning implementation."""
import logging
from typing import Dict, Any, List
import json
import re
from datetime import datetime
from .base import ReasoningStrategy
class BayesianReasoning(ReasoningStrategy):
"""Implements Bayesian reasoning for probabilistic analysis."""
def __init__(self, prior_weight: float = 0.3):
self.prior_weight = prior_weight
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
try:
# Generate hypotheses
hypotheses = await self._generate_hypotheses(query, context)
# Calculate prior probabilities
priors = await self._calculate_priors(hypotheses, context)
# Update with evidence
posteriors = await self._update_with_evidence(hypotheses, priors, context)
# Generate final analysis
analysis = await self._generate_analysis(posteriors, context)
return {
"success": True,
"answer": analysis["conclusion"],
"hypotheses": hypotheses,
"priors": priors,
"posteriors": posteriors,
"confidence": analysis["confidence"],
"reasoning_path": analysis["reasoning_path"]
}
except Exception as e:
return {"success": False, "error": str(e)}
async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
prompt = f"""
Generate 3-4 hypotheses for this problem:
Query: {query}
Context: {json.dumps(context)}
For each hypothesis:
1. [Statement]: Clear statement of the hypothesis
2. [Assumptions]: Key assumptions made
3. [Testability]: How it could be tested/verified
Format as:
[H1]
Statement: ...
Assumptions: ...
Testability: ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_hypotheses(response["answer"])
async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
prompt = f"""
Calculate prior probabilities for these hypotheses:
Context: {json.dumps(context)}
Hypotheses:
{json.dumps(hypotheses, indent=2)}
For each hypothesis, estimate its prior probability (0-1) based on:
1. Alignment with known principles
2. Historical precedent
3. Domain expertise
Format: [H1]: 0.XX, [H2]: 0.XX, ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_probabilities(response["answer"])
async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float],
context: Dict[str, Any]) -> Dict[str, float]:
prompt = f"""
Update probabilities with available evidence:
Context: {json.dumps(context)}
Hypotheses and Priors:
{json.dumps(list(zip(hypotheses, priors.values())), indent=2)}
Consider:
1. How well each hypothesis explains the evidence
2. Any new evidence from the context
3. Potential conflicts or support between hypotheses
Format: [H1]: 0.XX, [H2]: 0.XX, ...
"""
response = await context["groq_api"].predict(prompt)
return self._parse_probabilities(response["answer"])
async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]:
prompt = f"""
Generate final Bayesian analysis:
Context: {json.dumps(context)}
Posterior Probabilities:
{json.dumps(posteriors, indent=2)}
Provide:
1. Main conclusion based on highest probability hypotheses
2. Confidence level (0-1)
3. Key reasoning steps taken
"""
response = await context["groq_api"].predict(prompt)
return self._parse_analysis(response["answer"])
def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]:
"""Parse hypotheses from response."""
hypotheses = []
current = None
for line in response.split('\n'):
line = line.strip()
if not line:
continue
if line.startswith('[H'):
if current:
hypotheses.append(current)
current = {
"statement": "",
"assumptions": "",
"testability": ""
}
elif current:
if line.startswith('Statement:'):
current["statement"] = line[10:].strip()
elif line.startswith('Assumptions:'):
current["assumptions"] = line[12:].strip()
elif line.startswith('Testability:'):
current["testability"] = line[12:].strip()
if current:
hypotheses.append(current)
return hypotheses
def _parse_probabilities(self, response: str) -> Dict[str, float]:
"""Parse probabilities from response."""
probs = {}
pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
for match in re.finditer(pattern, response):
h_num = int(match.group(1))
prob = float(match.group(2))
probs[f"H{h_num}"] = prob
return probs
def _parse_analysis(self, response: str) -> Dict[str, Any]:
"""Parse analysis from response."""
lines = response.split('\n')
analysis = {
"conclusion": "",
"confidence": 0.0,
"reasoning_path": []
}
for line in lines:
line = line.strip()
if not line:
continue
if line.startswith('Conclusion:'):
analysis["conclusion"] = line[11:].strip()
elif line.startswith('Confidence:'):
try:
analysis["confidence"] = float(line[11:].strip())
except:
analysis["confidence"] = 0.5
elif line.startswith('- '):
analysis["reasoning_path"].append(line[2:].strip())
return analysis