Spaces:
Runtime error
Runtime error
"""Bayesian reasoning implementation.""" | |
import logging | |
from typing import Dict, Any, List | |
import json | |
import re | |
from datetime import datetime | |
from .base import ReasoningStrategy | |
class BayesianReasoning(ReasoningStrategy): | |
"""Implements Bayesian reasoning for probabilistic analysis.""" | |
def __init__(self, prior_weight: float = 0.3): | |
self.prior_weight = prior_weight | |
async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: | |
try: | |
# Generate hypotheses | |
hypotheses = await self._generate_hypotheses(query, context) | |
# Calculate prior probabilities | |
priors = await self._calculate_priors(hypotheses, context) | |
# Update with evidence | |
posteriors = await self._update_with_evidence(hypotheses, priors, context) | |
# Generate final analysis | |
analysis = await self._generate_analysis(posteriors, context) | |
return { | |
"success": True, | |
"answer": analysis["conclusion"], | |
"hypotheses": hypotheses, | |
"priors": priors, | |
"posteriors": posteriors, | |
"confidence": analysis["confidence"], | |
"reasoning_path": analysis["reasoning_path"] | |
} | |
except Exception as e: | |
return {"success": False, "error": str(e)} | |
async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: | |
prompt = f""" | |
Generate 3-4 hypotheses for this problem: | |
Query: {query} | |
Context: {json.dumps(context)} | |
For each hypothesis: | |
1. [Statement]: Clear statement of the hypothesis | |
2. [Assumptions]: Key assumptions made | |
3. [Testability]: How it could be tested/verified | |
Format as: | |
[H1] | |
Statement: ... | |
Assumptions: ... | |
Testability: ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_hypotheses(response["answer"]) | |
async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: | |
prompt = f""" | |
Calculate prior probabilities for these hypotheses: | |
Context: {json.dumps(context)} | |
Hypotheses: | |
{json.dumps(hypotheses, indent=2)} | |
For each hypothesis, estimate its prior probability (0-1) based on: | |
1. Alignment with known principles | |
2. Historical precedent | |
3. Domain expertise | |
Format: [H1]: 0.XX, [H2]: 0.XX, ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_probabilities(response["answer"]) | |
async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], | |
context: Dict[str, Any]) -> Dict[str, float]: | |
prompt = f""" | |
Update probabilities with available evidence: | |
Context: {json.dumps(context)} | |
Hypotheses and Priors: | |
{json.dumps(list(zip(hypotheses, priors.values())), indent=2)} | |
Consider: | |
1. How well each hypothesis explains the evidence | |
2. Any new evidence from the context | |
3. Potential conflicts or support between hypotheses | |
Format: [H1]: 0.XX, [H2]: 0.XX, ... | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_probabilities(response["answer"]) | |
async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: | |
prompt = f""" | |
Generate final Bayesian analysis: | |
Context: {json.dumps(context)} | |
Posterior Probabilities: | |
{json.dumps(posteriors, indent=2)} | |
Provide: | |
1. Main conclusion based on highest probability hypotheses | |
2. Confidence level (0-1) | |
3. Key reasoning steps taken | |
""" | |
response = await context["groq_api"].predict(prompt) | |
return self._parse_analysis(response["answer"]) | |
def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: | |
"""Parse hypotheses from response.""" | |
hypotheses = [] | |
current = None | |
for line in response.split('\n'): | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('[H'): | |
if current: | |
hypotheses.append(current) | |
current = { | |
"statement": "", | |
"assumptions": "", | |
"testability": "" | |
} | |
elif current: | |
if line.startswith('Statement:'): | |
current["statement"] = line[10:].strip() | |
elif line.startswith('Assumptions:'): | |
current["assumptions"] = line[12:].strip() | |
elif line.startswith('Testability:'): | |
current["testability"] = line[12:].strip() | |
if current: | |
hypotheses.append(current) | |
return hypotheses | |
def _parse_probabilities(self, response: str) -> Dict[str, float]: | |
"""Parse probabilities from response.""" | |
probs = {} | |
pattern = r'\[H(\d+)\]:\s*(0\.\d+)' | |
for match in re.finditer(pattern, response): | |
h_num = int(match.group(1)) | |
prob = float(match.group(2)) | |
probs[f"H{h_num}"] = prob | |
return probs | |
def _parse_analysis(self, response: str) -> Dict[str, Any]: | |
"""Parse analysis from response.""" | |
lines = response.split('\n') | |
analysis = { | |
"conclusion": "", | |
"confidence": 0.0, | |
"reasoning_path": [] | |
} | |
for line in lines: | |
line = line.strip() | |
if not line: | |
continue | |
if line.startswith('Conclusion:'): | |
analysis["conclusion"] = line[11:].strip() | |
elif line.startswith('Confidence:'): | |
try: | |
analysis["confidence"] = float(line[11:].strip()) | |
except: | |
analysis["confidence"] = 0.5 | |
elif line.startswith('- '): | |
analysis["reasoning_path"].append(line[2:].strip()) | |
return analysis | |