Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload folder using huggingface_hub
Browse files- .env.example +78 -0
- .github/workflows/sync-to-space.yml +17 -0
- .gitignore +91 -0
- Dockerfile +12 -0
- README.md +75 -6
- agentic_system.py +551 -0
- api/venture_api.py +194 -0
- app.py +110 -0
- app.py.backup +338 -0
- app.yaml +9 -0
- check_space_status.py +55 -0
- config.py +321 -0
- fix_indentation.patch +42 -0
- meta_learning.py +406 -0
- multimodal_reasoning.py +273 -0
- orchestrator.py +522 -0
- quick_check.py +53 -0
- reasoning.py +0 -0
- reasoning.py.bak2 +0 -0
- reasoning/__init__.py +70 -0
- reasoning/agentic.py +345 -0
- reasoning/analogical.py +600 -0
- reasoning/base.py +17 -0
- reasoning/bayesian.py +187 -0
- reasoning/chain_of_thought.py +410 -0
- reasoning/coordination.py +525 -0
- reasoning/learning.py +394 -0
- reasoning/local_llm.py +139 -0
- reasoning/market_analysis.py +342 -0
- reasoning/meta_learning.py +412 -0
- reasoning/monetization.py +278 -0
- reasoning/multimodal.py +268 -0
- reasoning/neurosymbolic.py +264 -0
- reasoning/portfolio_optimization.py +352 -0
- reasoning/quantum.py +353 -0
- reasoning/recursive.py +566 -0
- reasoning/specialized.py +313 -0
- reasoning/tree_of_thoughts.py +513 -0
- reasoning/unified_engine.py +427 -0
- reasoning/venture_strategies.py +423 -0
- reasoning/venture_types.py +332 -0
- requirements.txt +19 -0
- requirements.txt.backup +28 -0
- simple_reasoning.py +25 -0
- simple_reasoning/__init__.py +5 -0
- simple_reasoning/agent.py +26 -0
- team_management.py +442 -0
- ui/venture_ui.py +399 -0
- upload_to_hub.py +28 -0
    	
        .env.example
    ADDED
    
    | @@ -0,0 +1,78 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Hugging Face Configuration
         | 
| 2 | 
            +
            HUGGINGFACE_TOKEN=your_huggingface_token_here
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # System Configuration
         | 
| 5 | 
            +
            DEBUG_MODE=False
         | 
| 6 | 
            +
            LOG_LEVEL=INFO
         | 
| 7 | 
            +
            MAX_WORKERS=4
         | 
| 8 | 
            +
            ASYNC_TIMEOUT=30
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            # Resource Limits
         | 
| 11 | 
            +
            MAX_MEMORY_MB=8192
         | 
| 12 | 
            +
            MAX_CPU_PERCENT=90
         | 
| 13 | 
            +
            MAX_GPU_MEMORY_MB=4096
         | 
| 14 | 
            +
            MAX_API_CALLS_PER_MINUTE=500
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Team Configuration
         | 
| 17 | 
            +
            MIN_TEAM_SIZE=2
         | 
| 18 | 
            +
            MAX_TEAM_SIZE=10
         | 
| 19 | 
            +
            MAX_CONCURRENT_OBJECTIVES=5
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Error Recovery
         | 
| 22 | 
            +
            MAX_RETRIES=3
         | 
| 23 | 
            +
            RETRY_DELAY_SECONDS=5
         | 
| 24 | 
            +
            ERROR_THRESHOLD=0.2
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            # Monitoring
         | 
| 27 | 
            +
            METRICS_INTERVAL_SECONDS=60
         | 
| 28 | 
            +
            HEALTH_CHECK_INTERVAL=30
         | 
| 29 | 
            +
            PERFORMANCE_LOG_RETENTION_DAYS=7
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            # API Keys
         | 
| 32 | 
            +
            OPENAI_API_KEY=your_openai_api_key
         | 
| 33 | 
            +
            GROQ_API_KEY=your_groq_api_key
         | 
| 34 | 
            +
            HUGGINGFACE_API_KEY=your_huggingface_api_key
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            # Service Configuration
         | 
| 37 | 
            +
            PORT=7860
         | 
| 38 | 
            +
            HOST=0.0.0.0
         | 
| 39 | 
            +
            DEBUG=True
         | 
| 40 | 
            +
            ENVIRONMENT=development
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            # Database Configuration
         | 
| 43 | 
            +
            DATABASE_URL=sqlite:///./ventures.db
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            # Model Configuration
         | 
| 46 | 
            +
            MODEL_CACHE_DIR=./model_cache
         | 
| 47 | 
            +
            DEFAULT_MODEL=gpt-4-turbo-preview
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            # Venture Configuration
         | 
| 50 | 
            +
            MIN_PROFIT_TARGET=1000000
         | 
| 51 | 
            +
            DEFAULT_CURRENCY=USD
         | 
| 52 | 
            +
            RISK_TOLERANCE=medium
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            # API Configuration
         | 
| 55 | 
            +
            API_VERSION=v1
         | 
| 56 | 
            +
            API_PREFIX=/api/v1
         | 
| 57 | 
            +
            CORS_ORIGINS=["*"]
         | 
| 58 | 
            +
            MAX_REQUEST_SIZE=10MB
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            # Monitoring Configuration
         | 
| 61 | 
            +
            ENABLE_METRICS=True
         | 
| 62 | 
            +
            METRICS_PORT=9090
         | 
| 63 | 
            +
            LOG_LEVEL=INFO
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            # Cache Configuration
         | 
| 66 | 
            +
            REDIS_URL=redis://localhost:6379/0
         | 
| 67 | 
            +
            CACHE_TTL=3600
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            # Security Configuration
         | 
| 70 | 
            +
            JWT_SECRET=your_jwt_secret
         | 
| 71 | 
            +
            JWT_ALGORITHM=HS256
         | 
| 72 | 
            +
            ACCESS_TOKEN_EXPIRE_MINUTES=30
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            # Feature Flags
         | 
| 75 | 
            +
            ENABLE_PORTFOLIO_OPTIMIZATION=True
         | 
| 76 | 
            +
            ENABLE_MARKET_ANALYSIS=True
         | 
| 77 | 
            +
            ENABLE_MONETIZATION_STRATEGY=True
         | 
| 78 | 
            +
            ENABLE_VENTURE_ANALYSIS=True
         | 
    	
        .github/workflows/sync-to-space.yml
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            name: Sync to Hugging Face Space
         | 
| 2 | 
            +
            on:
         | 
| 3 | 
            +
              push:
         | 
| 4 | 
            +
                branches: [main]
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            jobs:
         | 
| 7 | 
            +
              sync-to-space:
         | 
| 8 | 
            +
                runs-on: ubuntu-latest
         | 
| 9 | 
            +
                steps:
         | 
| 10 | 
            +
                  - uses: actions/checkout@v2
         | 
| 11 | 
            +
                    with:
         | 
| 12 | 
            +
                      fetch-depth: 0
         | 
| 13 | 
            +
                  - name: Push to Space
         | 
| 14 | 
            +
                    env:
         | 
| 15 | 
            +
                      HF_TOKEN: ${{ secrets.HF_TOKEN }}
         | 
| 16 | 
            +
                    run: |
         | 
| 17 | 
            +
                      git push https://USER:[email protected]/spaces/USER/SPACE_NAME main
         | 
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,91 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Python
         | 
| 2 | 
            +
            __pycache__/
         | 
| 3 | 
            +
            *.py[cod]
         | 
| 4 | 
            +
            *$py.class
         | 
| 5 | 
            +
            *.so
         | 
| 6 | 
            +
            .Python
         | 
| 7 | 
            +
            build/
         | 
| 8 | 
            +
            develop-eggs/
         | 
| 9 | 
            +
            dist/
         | 
| 10 | 
            +
            downloads/
         | 
| 11 | 
            +
            eggs/
         | 
| 12 | 
            +
            .eggs/
         | 
| 13 | 
            +
            lib/
         | 
| 14 | 
            +
            lib64/
         | 
| 15 | 
            +
            parts/
         | 
| 16 | 
            +
            sdist/
         | 
| 17 | 
            +
            var/
         | 
| 18 | 
            +
            wheels/
         | 
| 19 | 
            +
            *.egg-info/
         | 
| 20 | 
            +
            .installed.cfg
         | 
| 21 | 
            +
            *.egg
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            # Virtual Environment
         | 
| 24 | 
            +
            venv/
         | 
| 25 | 
            +
            env/
         | 
| 26 | 
            +
            ENV/
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            # IDE
         | 
| 29 | 
            +
            .idea/
         | 
| 30 | 
            +
            .vscode/
         | 
| 31 | 
            +
            *.swp
         | 
| 32 | 
            +
            *.swo
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            # Logs
         | 
| 35 | 
            +
            *.log
         | 
| 36 | 
            +
            logs/
         | 
| 37 | 
            +
            log/
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            # Local development
         | 
| 40 | 
            +
            .env
         | 
| 41 | 
            +
            .env.local
         | 
| 42 | 
            +
            .env.*.local
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            # Data
         | 
| 45 | 
            +
            data/
         | 
| 46 | 
            +
            *.db
         | 
| 47 | 
            +
            *.sqlite3
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            # Model files
         | 
| 50 | 
            +
            *.pt
         | 
| 51 | 
            +
            *.pth
         | 
| 52 | 
            +
            *.ckpt
         | 
| 53 | 
            +
            *.bin
         | 
| 54 | 
            +
            *.onnx
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            # Temporary files
         | 
| 57 | 
            +
            .DS_Store
         | 
| 58 | 
            +
            Thumbs.db
         | 
| 59 | 
            +
            *.tmp
         | 
| 60 | 
            +
            *.bak
         | 
| 61 | 
            +
            *.swp
         | 
| 62 | 
            +
            *~
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            # Distribution
         | 
| 65 | 
            +
            dist/
         | 
| 66 | 
            +
            build/
         | 
| 67 | 
            +
            *.egg-info/
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            # Documentation
         | 
| 70 | 
            +
            docs/_build/
         | 
| 71 | 
            +
            site/
         | 
| 72 | 
            +
             | 
| 73 | 
            +
            # Testing
         | 
| 74 | 
            +
            .coverage
         | 
| 75 | 
            +
            htmlcov/
         | 
| 76 | 
            +
            .pytest_cache/
         | 
| 77 | 
            +
            .tox/
         | 
| 78 | 
            +
            nosetests.xml
         | 
| 79 | 
            +
            coverage.xml
         | 
| 80 | 
            +
            *.cover
         | 
| 81 | 
            +
            .hypothesis/
         | 
| 82 | 
            +
             | 
| 83 | 
            +
            # Jupyter Notebook
         | 
| 84 | 
            +
            .ipynb_checkpoints
         | 
| 85 | 
            +
            *.ipynb
         | 
| 86 | 
            +
             | 
| 87 | 
            +
            # Project specific
         | 
| 88 | 
            +
            outputs/
         | 
| 89 | 
            +
            results/
         | 
| 90 | 
            +
            experiments/
         | 
| 91 | 
            +
            checkpoints/
         | 
    	
        Dockerfile
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            FROM python:3.10-slim
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            WORKDIR /code
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            COPY requirements.txt .
         | 
| 6 | 
            +
            RUN pip install --no-cache-dir -r requirements.txt
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            COPY . .
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            EXPOSE 7860
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            CMD ["python", "app.py"]
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,12 +1,81 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title: Advanced Reasoning
         | 
| 3 | 
            -
            emoji:  | 
| 4 | 
            -
            colorFrom:  | 
| 5 | 
            -
            colorTo:  | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version:  | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
|  | |
| 10 | 
             
            ---
         | 
| 11 |  | 
| 12 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: Advanced Reasoning System 🧠
         | 
| 3 | 
            +
            emoji: 🧠
         | 
| 4 | 
            +
            colorFrom: blue
         | 
| 5 | 
            +
            colorTo: purple
         | 
| 6 | 
             
            sdk: gradio
         | 
| 7 | 
            +
            sdk_version: 4.16.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
             
            pinned: false
         | 
| 10 | 
            +
            license: mit
         | 
| 11 | 
             
            ---
         | 
| 12 |  | 
| 13 | 
            +
            # Advanced Reasoning System 🧠
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            A sophisticated reasoning system that combines multiple strategies with local LLM capabilities for improved performance.
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            ## Features
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            - **Local LLM Integration**: Uses Llama 3.2B Overthinker model for fast, local inference
         | 
| 20 | 
            +
            - **Multiple Reasoning Strategies**: 
         | 
| 21 | 
            +
              - Chain of Thought
         | 
| 22 | 
            +
              - Tree of Thoughts
         | 
| 23 | 
            +
              - Meta Learning
         | 
| 24 | 
            +
              - Recursive Reasoning
         | 
| 25 | 
            +
              - Analogical Reasoning
         | 
| 26 | 
            +
              - And more!
         | 
| 27 | 
            +
            - **Adaptive Strategy Selection**: Dynamically chooses the best reasoning approach
         | 
| 28 | 
            +
            - **GPU/CPU Flexibility**: Automatically uses GPU when available, falls back to CPU
         | 
| 29 | 
            +
            - **Efficient Resource Usage**: Optimized for performance with configurable parameters
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            ## Technical Details
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            - **Model**: tensorblock/Llama-3.2-3B-Overthinker-GGUF
         | 
| 34 | 
            +
            - **Framework**: Gradio 4.16.0
         | 
| 35 | 
            +
            - **Backend**: Python with async support
         | 
| 36 | 
            +
            - **Inference**: Local using llama-cpp-python
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            ## Usage
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            1. The system will automatically download the model on first run
         | 
| 41 | 
            +
            2. GPU acceleration is used when available
         | 
| 42 | 
            +
            3. Ask questions and get detailed, step-by-step responses
         | 
| 43 | 
            +
            4. System adapts its reasoning strategy based on the query
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            ## Example Questions
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            - What are the implications of artificial intelligence on society?
         | 
| 48 | 
            +
            - How does climate change affect global ecosystems?
         | 
| 49 | 
            +
            - What are the philosophical implications of quantum mechanics?
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            ## Installation
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ```bash
         | 
| 54 | 
            +
            pip install -r requirements.txt
         | 
| 55 | 
            +
            python app.py
         | 
| 56 | 
            +
            ```
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            ## Environment Variables
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            Create a `.env` file with:
         | 
| 61 | 
            +
            ```
         | 
| 62 | 
            +
            HUGGINGFACE_TOKEN=your_token_here
         | 
| 63 | 
            +
            DEBUG_MODE=False
         | 
| 64 | 
            +
            LOG_LEVEL=INFO
         | 
| 65 | 
            +
            ```
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            ## License
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            MIT License
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            ## Files
         | 
| 72 | 
            +
            - `app.py`: Main application with Gradio interface and API integration
         | 
| 73 | 
            +
            - `requirements.txt`: Project dependencies
         | 
| 74 | 
            +
            - `.env.example`: Example environment variables (for reference)
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            ## Dependencies
         | 
| 77 | 
            +
            - gradio==4.16.0
         | 
| 78 | 
            +
            - requests==2.31.0
         | 
| 79 | 
            +
             | 
| 80 | 
            +
            ---
         | 
| 81 | 
            +
            Created with ❤️ using Gradio and Hugging Face
         | 
    	
        agentic_system.py
    ADDED
    
    | @@ -0,0 +1,551 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Advanced Agentic System
         | 
| 3 | 
            +
            ----------------------
         | 
| 4 | 
            +
            A sophisticated multi-agent system with:
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            Core Components:
         | 
| 7 | 
            +
            1. Agent Management
         | 
| 8 | 
            +
            2. Task Execution
         | 
| 9 | 
            +
            3. Learning & Adaptation
         | 
| 10 | 
            +
            4. Communication
         | 
| 11 | 
            +
            5. Resource Management
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            Advanced Features:
         | 
| 14 | 
            +
            1. Self-Improvement
         | 
| 15 | 
            +
            2. Multi-Agent Coordination
         | 
| 16 | 
            +
            3. Dynamic Role Assignment
         | 
| 17 | 
            +
            4. Emergent Behavior
         | 
| 18 | 
            +
            """
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            import logging
         | 
| 21 | 
            +
            from typing import Dict, Any, List, Optional, Union, TypeVar
         | 
| 22 | 
            +
            from dataclasses import dataclass, field
         | 
| 23 | 
            +
            from enum import Enum
         | 
| 24 | 
            +
            import json
         | 
| 25 | 
            +
            import asyncio
         | 
| 26 | 
            +
            from datetime import datetime
         | 
| 27 | 
            +
            import uuid
         | 
| 28 | 
            +
            from concurrent.futures import ThreadPoolExecutor
         | 
| 29 | 
            +
            import numpy as np
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            from orchestrator import (
         | 
| 32 | 
            +
                AgentOrchestrator,
         | 
| 33 | 
            +
                AgentRole,
         | 
| 34 | 
            +
                AgentState,
         | 
| 35 | 
            +
                TaskPriority,
         | 
| 36 | 
            +
                Task
         | 
| 37 | 
            +
            )
         | 
| 38 | 
            +
            from reasoning import ReasoningEngine, ReasoningMode
         | 
| 39 | 
            +
            from meta_learning import MetaLearningStrategy
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            class AgentCapability(Enum):
         | 
| 42 | 
            +
                """Core capabilities of agents."""
         | 
| 43 | 
            +
                REASONING = "reasoning"
         | 
| 44 | 
            +
                LEARNING = "learning"
         | 
| 45 | 
            +
                EXECUTION = "execution"
         | 
| 46 | 
            +
                COORDINATION = "coordination"
         | 
| 47 | 
            +
                MONITORING = "monitoring"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            class AgentPersonality(Enum):
         | 
| 50 | 
            +
                """Different personality types for agents."""
         | 
| 51 | 
            +
                ANALYTICAL = "analytical"
         | 
| 52 | 
            +
                CREATIVE = "creative"
         | 
| 53 | 
            +
                CAUTIOUS = "cautious"
         | 
| 54 | 
            +
                PROACTIVE = "proactive"
         | 
| 55 | 
            +
                ADAPTIVE = "adaptive"
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            @dataclass
         | 
| 58 | 
            +
            class AgentProfile:
         | 
| 59 | 
            +
                """Profile defining an agent's characteristics."""
         | 
| 60 | 
            +
                id: str
         | 
| 61 | 
            +
                name: str
         | 
| 62 | 
            +
                role: AgentRole
         | 
| 63 | 
            +
                capabilities: List[AgentCapability]
         | 
| 64 | 
            +
                personality: AgentPersonality
         | 
| 65 | 
            +
                expertise_areas: List[str]
         | 
| 66 | 
            +
                learning_rate: float
         | 
| 67 | 
            +
                risk_tolerance: float
         | 
| 68 | 
            +
                created_at: datetime
         | 
| 69 | 
            +
                metadata: Dict[str, Any]
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            class Agent:
         | 
| 72 | 
            +
                """Advanced autonomous agent with learning capabilities."""
         | 
| 73 | 
            +
                
         | 
| 74 | 
            +
                def __init__(
         | 
| 75 | 
            +
                    self,
         | 
| 76 | 
            +
                    profile: AgentProfile,
         | 
| 77 | 
            +
                    reasoning_engine: ReasoningEngine,
         | 
| 78 | 
            +
                    meta_learning: MetaLearningStrategy,
         | 
| 79 | 
            +
                    config: Dict[str, Any] = None
         | 
| 80 | 
            +
                ):
         | 
| 81 | 
            +
                    self.profile = profile
         | 
| 82 | 
            +
                    self.reasoning_engine = reasoning_engine
         | 
| 83 | 
            +
                    self.meta_learning = meta_learning
         | 
| 84 | 
            +
                    self.config = config or {}
         | 
| 85 | 
            +
                    
         | 
| 86 | 
            +
                    # State management
         | 
| 87 | 
            +
                    self.state = AgentState.IDLE
         | 
| 88 | 
            +
                    self.current_task: Optional[Task] = None
         | 
| 89 | 
            +
                    self.task_history: List[Task] = []
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
                    # Learning and adaptation
         | 
| 92 | 
            +
                    self.knowledge_base: Dict[str, Any] = {}
         | 
| 93 | 
            +
                    self.learned_patterns: List[Dict[str, Any]] = []
         | 
| 94 | 
            +
                    self.adaptation_history: List[Dict[str, Any]] = []
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    # Performance metrics
         | 
| 97 | 
            +
                    self.metrics: Dict[str, List[float]] = defaultdict(list)
         | 
| 98 | 
            +
                    self.performance_history: List[Dict[str, float]] = []
         | 
| 99 | 
            +
                    
         | 
| 100 | 
            +
                    # Communication
         | 
| 101 | 
            +
                    self.message_queue = asyncio.Queue()
         | 
| 102 | 
            +
                    self.response_queue = asyncio.Queue()
         | 
| 103 | 
            +
                    
         | 
| 104 | 
            +
                    # Resource management
         | 
| 105 | 
            +
                    self.resource_usage: Dict[str, float] = {}
         | 
| 106 | 
            +
                    self.resource_limits: Dict[str, float] = {}
         | 
| 107 | 
            +
                    
         | 
| 108 | 
            +
                    # Async support
         | 
| 109 | 
            +
                    self.executor = ThreadPoolExecutor(max_workers=2)
         | 
| 110 | 
            +
                    self.lock = asyncio.Lock()
         | 
| 111 | 
            +
                    
         | 
| 112 | 
            +
                    # Logging
         | 
| 113 | 
            +
                    self.logger = logging.getLogger(f"Agent-{profile.id}")
         | 
| 114 | 
            +
                    
         | 
| 115 | 
            +
                    # Initialize components
         | 
| 116 | 
            +
                    self._init_components()
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                def _init_components(self):
         | 
| 119 | 
            +
                    """Initialize agent components."""
         | 
| 120 | 
            +
                    # Set up knowledge base
         | 
| 121 | 
            +
                    self.knowledge_base = {
         | 
| 122 | 
            +
                        "expertise": {area: 0.5 for area in self.profile.expertise_areas},
         | 
| 123 | 
            +
                        "learned_skills": set(),
         | 
| 124 | 
            +
                        "interaction_patterns": defaultdict(int),
         | 
| 125 | 
            +
                        "success_patterns": defaultdict(float)
         | 
| 126 | 
            +
                    }
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                    # Set up resource limits
         | 
| 129 | 
            +
                    self.resource_limits = {
         | 
| 130 | 
            +
                        "cpu": 1.0,
         | 
| 131 | 
            +
                        "memory": 1000,
         | 
| 132 | 
            +
                        "api_calls": 100,
         | 
| 133 | 
            +
                        "learning_capacity": 0.8
         | 
| 134 | 
            +
                    }
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                async def process_task(self, task: Task) -> Dict[str, Any]:
         | 
| 137 | 
            +
                    """Process an assigned task."""
         | 
| 138 | 
            +
                    try:
         | 
| 139 | 
            +
                        self.current_task = task
         | 
| 140 | 
            +
                        self.state = AgentState.BUSY
         | 
| 141 | 
            +
                        
         | 
| 142 | 
            +
                        # Analyze task
         | 
| 143 | 
            +
                        analysis = await self._analyze_task(task)
         | 
| 144 | 
            +
                        
         | 
| 145 | 
            +
                        # Plan execution
         | 
| 146 | 
            +
                        plan = await self._plan_execution(analysis)
         | 
| 147 | 
            +
                        
         | 
| 148 | 
            +
                        # Execute plan
         | 
| 149 | 
            +
                        result = await self._execute_plan(plan)
         | 
| 150 | 
            +
                        
         | 
| 151 | 
            +
                        # Learn from execution
         | 
| 152 | 
            +
                        await self._learn_from_execution(task, result)
         | 
| 153 | 
            +
                        
         | 
| 154 | 
            +
                        # Update metrics
         | 
| 155 | 
            +
                        self._update_metrics(task, result)
         | 
| 156 | 
            +
                        
         | 
| 157 | 
            +
                        return {
         | 
| 158 | 
            +
                            "success": True,
         | 
| 159 | 
            +
                            "task_id": task.id,
         | 
| 160 | 
            +
                            "result": result,
         | 
| 161 | 
            +
                            "metrics": self._get_execution_metrics()
         | 
| 162 | 
            +
                        }
         | 
| 163 | 
            +
                        
         | 
| 164 | 
            +
                    except Exception as e:
         | 
| 165 | 
            +
                        self.logger.error(f"Error processing task: {e}")
         | 
| 166 | 
            +
                        self.state = AgentState.ERROR
         | 
| 167 | 
            +
                        return {
         | 
| 168 | 
            +
                            "success": False,
         | 
| 169 | 
            +
                            "task_id": task.id,
         | 
| 170 | 
            +
                            "error": str(e)
         | 
| 171 | 
            +
                        }
         | 
| 172 | 
            +
                    finally:
         | 
| 173 | 
            +
                        self.state = AgentState.IDLE
         | 
| 174 | 
            +
                        self.current_task = None
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                async def _analyze_task(self, task: Task) -> Dict[str, Any]:
         | 
| 177 | 
            +
                    """Analyze task requirements and constraints."""
         | 
| 178 | 
            +
                    # Use reasoning engine for analysis
         | 
| 179 | 
            +
                    analysis = await self.reasoning_engine.reason(
         | 
| 180 | 
            +
                        query=task.description,
         | 
| 181 | 
            +
                        context={
         | 
| 182 | 
            +
                            "agent_profile": self.profile.__dict__,
         | 
| 183 | 
            +
                            "task_history": self.task_history,
         | 
| 184 | 
            +
                            "knowledge_base": self.knowledge_base
         | 
| 185 | 
            +
                        },
         | 
| 186 | 
            +
                        mode=ReasoningMode.ANALYTICAL
         | 
| 187 | 
            +
                    )
         | 
| 188 | 
            +
                    
         | 
| 189 | 
            +
                    return {
         | 
| 190 | 
            +
                        "requirements": analysis.get("requirements", []),
         | 
| 191 | 
            +
                        "constraints": analysis.get("constraints", []),
         | 
| 192 | 
            +
                        "complexity": analysis.get("complexity", 0.5),
         | 
| 193 | 
            +
                        "estimated_duration": analysis.get("estimated_duration", 3600),
         | 
| 194 | 
            +
                        "required_capabilities": analysis.get("required_capabilities", [])
         | 
| 195 | 
            +
                    }
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                async def _plan_execution(self, analysis: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 198 | 
            +
                    """Plan task execution based on analysis."""
         | 
| 199 | 
            +
                    # Use reasoning engine for planning
         | 
| 200 | 
            +
                    plan = await self.reasoning_engine.reason(
         | 
| 201 | 
            +
                        query="Plan execution steps",
         | 
| 202 | 
            +
                        context={
         | 
| 203 | 
            +
                            "analysis": analysis,
         | 
| 204 | 
            +
                            "agent_capabilities": self.profile.capabilities,
         | 
| 205 | 
            +
                            "resource_limits": self.resource_limits
         | 
| 206 | 
            +
                        },
         | 
| 207 | 
            +
                        mode=ReasoningMode.FOCUSED
         | 
| 208 | 
            +
                    )
         | 
| 209 | 
            +
                    
         | 
| 210 | 
            +
                    return plan.get("steps", [])
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                async def _execute_plan(self, plan: List[Dict[str, Any]]) -> Dict[str, Any]:
         | 
| 213 | 
            +
                    """Execute the planned steps."""
         | 
| 214 | 
            +
                    results = []
         | 
| 215 | 
            +
                    
         | 
| 216 | 
            +
                    for step in plan:
         | 
| 217 | 
            +
                        try:
         | 
| 218 | 
            +
                            # Check resources
         | 
| 219 | 
            +
                            if not self._check_resources(step):
         | 
| 220 | 
            +
                                raise RuntimeError("Insufficient resources for step execution")
         | 
| 221 | 
            +
                            
         | 
| 222 | 
            +
                            # Execute step
         | 
| 223 | 
            +
                            step_result = await self._execute_step(step)
         | 
| 224 | 
            +
                            results.append(step_result)
         | 
| 225 | 
            +
                            
         | 
| 226 | 
            +
                            # Update resource usage
         | 
| 227 | 
            +
                            self._update_resource_usage(step)
         | 
| 228 | 
            +
                            
         | 
| 229 | 
            +
                            # Learn from step execution
         | 
| 230 | 
            +
                            await self._learn_from_step(step, step_result)
         | 
| 231 | 
            +
                            
         | 
| 232 | 
            +
                        except Exception as e:
         | 
| 233 | 
            +
                            self.logger.error(f"Error executing step: {e}")
         | 
| 234 | 
            +
                            results.append({"error": str(e)})
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    return {
         | 
| 237 | 
            +
                        "success": all(r.get("success", False) for r in results),
         | 
| 238 | 
            +
                        "results": results
         | 
| 239 | 
            +
                    }
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                async def _execute_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 242 | 
            +
                    """Execute a single step of the plan."""
         | 
| 243 | 
            +
                    step_type = step.get("type", "unknown")
         | 
| 244 | 
            +
                    
         | 
| 245 | 
            +
                    if step_type == "reasoning":
         | 
| 246 | 
            +
                        return await self._execute_reasoning_step(step)
         | 
| 247 | 
            +
                    elif step_type == "learning":
         | 
| 248 | 
            +
                        return await self._execute_learning_step(step)
         | 
| 249 | 
            +
                    elif step_type == "action":
         | 
| 250 | 
            +
                        return await self._execute_action_step(step)
         | 
| 251 | 
            +
                    else:
         | 
| 252 | 
            +
                        raise ValueError(f"Unknown step type: {step_type}")
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                async def _execute_reasoning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 255 | 
            +
                    """Execute a reasoning step."""
         | 
| 256 | 
            +
                    result = await self.reasoning_engine.reason(
         | 
| 257 | 
            +
                        query=step["query"],
         | 
| 258 | 
            +
                        context=step.get("context", {}),
         | 
| 259 | 
            +
                        mode=ReasoningMode.ANALYTICAL
         | 
| 260 | 
            +
                    )
         | 
| 261 | 
            +
                    
         | 
| 262 | 
            +
                    return {
         | 
| 263 | 
            +
                        "success": result.get("success", False),
         | 
| 264 | 
            +
                        "reasoning_result": result
         | 
| 265 | 
            +
                    }
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                async def _execute_learning_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 268 | 
            +
                    """Execute a learning step."""
         | 
| 269 | 
            +
                    result = await self.meta_learning.learn(
         | 
| 270 | 
            +
                        data=step["data"],
         | 
| 271 | 
            +
                        context=step.get("context", {})
         | 
| 272 | 
            +
                    )
         | 
| 273 | 
            +
                    
         | 
| 274 | 
            +
                    return {
         | 
| 275 | 
            +
                        "success": result.get("success", False),
         | 
| 276 | 
            +
                        "learning_result": result
         | 
| 277 | 
            +
                    }
         | 
| 278 | 
            +
             | 
| 279 | 
            +
                async def _execute_action_step(self, step: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 280 | 
            +
                    """Execute an action step."""
         | 
| 281 | 
            +
                    action_type = step.get("action_type")
         | 
| 282 | 
            +
                    
         | 
| 283 | 
            +
                    if action_type == "api_call":
         | 
| 284 | 
            +
                        return await self._make_api_call(step)
         | 
| 285 | 
            +
                    elif action_type == "data_processing":
         | 
| 286 | 
            +
                        return await self._process_data(step)
         | 
| 287 | 
            +
                    elif action_type == "coordination":
         | 
| 288 | 
            +
                        return await self._coordinate_action(step)
         | 
| 289 | 
            +
                    else:
         | 
| 290 | 
            +
                        raise ValueError(f"Unknown action type: {action_type}")
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                def _check_resources(self, step: Dict[str, Any]) -> bool:
         | 
| 293 | 
            +
                    """Check if sufficient resources are available."""
         | 
| 294 | 
            +
                    required_resources = step.get("required_resources", {})
         | 
| 295 | 
            +
                    
         | 
| 296 | 
            +
                    for resource, amount in required_resources.items():
         | 
| 297 | 
            +
                        if self.resource_usage.get(resource, 0) + amount > self.resource_limits.get(resource, float('inf')):
         | 
| 298 | 
            +
                            return False
         | 
| 299 | 
            +
                    
         | 
| 300 | 
            +
                    return True
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                def _update_resource_usage(self, step: Dict[str, Any]):
         | 
| 303 | 
            +
                    """Update resource usage after step execution."""
         | 
| 304 | 
            +
                    used_resources = step.get("used_resources", {})
         | 
| 305 | 
            +
                    
         | 
| 306 | 
            +
                    for resource, amount in used_resources.items():
         | 
| 307 | 
            +
                        self.resource_usage[resource] = self.resource_usage.get(resource, 0) + amount
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                async def _learn_from_execution(self, task: Task, result: Dict[str, Any]):
         | 
| 310 | 
            +
                    """Learn from task execution experience."""
         | 
| 311 | 
            +
                    # Prepare learning data
         | 
| 312 | 
            +
                    learning_data = {
         | 
| 313 | 
            +
                        "task": task.__dict__,
         | 
| 314 | 
            +
                        "result": result,
         | 
| 315 | 
            +
                        "context": {
         | 
| 316 | 
            +
                            "agent_state": self.state,
         | 
| 317 | 
            +
                            "resource_usage": self.resource_usage,
         | 
| 318 | 
            +
                            "performance_metrics": self._get_execution_metrics()
         | 
| 319 | 
            +
                        }
         | 
| 320 | 
            +
                    }
         | 
| 321 | 
            +
                    
         | 
| 322 | 
            +
                    # Learn patterns
         | 
| 323 | 
            +
                    patterns = await self.meta_learning.learn(
         | 
| 324 | 
            +
                        data=learning_data,
         | 
| 325 | 
            +
                        context=self.knowledge_base
         | 
| 326 | 
            +
                    )
         | 
| 327 | 
            +
                    
         | 
| 328 | 
            +
                    # Update knowledge base
         | 
| 329 | 
            +
                    self._update_knowledge_base(patterns)
         | 
| 330 | 
            +
                    
         | 
| 331 | 
            +
                    # Record adaptation
         | 
| 332 | 
            +
                    self.adaptation_history.append({
         | 
| 333 | 
            +
                        "timestamp": datetime.now(),
         | 
| 334 | 
            +
                        "patterns": patterns,
         | 
| 335 | 
            +
                        "metrics": self._get_execution_metrics()
         | 
| 336 | 
            +
                    })
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                async def _learn_from_step(self, step: Dict[str, Any], result: Dict[str, Any]):
         | 
| 339 | 
            +
                    """Learn from individual step execution."""
         | 
| 340 | 
            +
                    if result.get("success", False):
         | 
| 341 | 
            +
                        # Update success patterns
         | 
| 342 | 
            +
                        pattern_key = f"{step['type']}:{step.get('action_type', 'none')}"
         | 
| 343 | 
            +
                        self.knowledge_base["success_patterns"][pattern_key] += 1
         | 
| 344 | 
            +
                        
         | 
| 345 | 
            +
                        # Learn from successful execution
         | 
| 346 | 
            +
                        await self.meta_learning.learn(
         | 
| 347 | 
            +
                            data={
         | 
| 348 | 
            +
                                "step": step,
         | 
| 349 | 
            +
                                "result": result
         | 
| 350 | 
            +
                            },
         | 
| 351 | 
            +
                            context={"pattern_key": pattern_key}
         | 
| 352 | 
            +
                        )
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                def _update_knowledge_base(self, patterns: Dict[str, Any]):
         | 
| 355 | 
            +
                    """Update knowledge base with new patterns."""
         | 
| 356 | 
            +
                    # Update expertise levels
         | 
| 357 | 
            +
                    for area, pattern in patterns.get("expertise_patterns", {}).items():
         | 
| 358 | 
            +
                        if area in self.knowledge_base["expertise"]:
         | 
| 359 | 
            +
                            current = self.knowledge_base["expertise"][area]
         | 
| 360 | 
            +
                            self.knowledge_base["expertise"][area] = current * 0.9 + pattern * 0.1
         | 
| 361 | 
            +
                    
         | 
| 362 | 
            +
                    # Add new learned skills
         | 
| 363 | 
            +
                    new_skills = patterns.get("learned_skills", set())
         | 
| 364 | 
            +
                    self.knowledge_base["learned_skills"].update(new_skills)
         | 
| 365 | 
            +
                    
         | 
| 366 | 
            +
                    # Update interaction patterns
         | 
| 367 | 
            +
                    for pattern, count in patterns.get("interaction_patterns", {}).items():
         | 
| 368 | 
            +
                        self.knowledge_base["interaction_patterns"][pattern] += count
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def _update_metrics(self, task: Task, result: Dict[str, Any]):
         | 
| 371 | 
            +
                    """Update performance metrics."""
         | 
| 372 | 
            +
                    metrics = {
         | 
| 373 | 
            +
                        "success": float(result.get("success", False)),
         | 
| 374 | 
            +
                        "duration": (datetime.now() - task.created_at).total_seconds(),
         | 
| 375 | 
            +
                        "resource_efficiency": self._calculate_resource_efficiency(),
         | 
| 376 | 
            +
                        "learning_progress": self._calculate_learning_progress()
         | 
| 377 | 
            +
                    }
         | 
| 378 | 
            +
                    
         | 
| 379 | 
            +
                    for key, value in metrics.items():
         | 
| 380 | 
            +
                        self.metrics[key].append(value)
         | 
| 381 | 
            +
                    
         | 
| 382 | 
            +
                    self.performance_history.append({
         | 
| 383 | 
            +
                        "timestamp": datetime.now(),
         | 
| 384 | 
            +
                        "metrics": metrics
         | 
| 385 | 
            +
                    })
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                def _calculate_resource_efficiency(self) -> float:
         | 
| 388 | 
            +
                    """Calculate resource usage efficiency."""
         | 
| 389 | 
            +
                    if not self.resource_limits:
         | 
| 390 | 
            +
                        return 1.0
         | 
| 391 | 
            +
                        
         | 
| 392 | 
            +
                    efficiencies = []
         | 
| 393 | 
            +
                    for resource, usage in self.resource_usage.items():
         | 
| 394 | 
            +
                        limit = self.resource_limits.get(resource, float('inf'))
         | 
| 395 | 
            +
                        if limit > 0:
         | 
| 396 | 
            +
                            efficiencies.append(1 - (usage / limit))
         | 
| 397 | 
            +
                            
         | 
| 398 | 
            +
                    return sum(efficiencies) / len(efficiencies) if efficiencies else 1.0
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                def _calculate_learning_progress(self) -> float:
         | 
| 401 | 
            +
                    """Calculate learning progress."""
         | 
| 402 | 
            +
                    if not self.knowledge_base["expertise"]:
         | 
| 403 | 
            +
                        return 0.0
         | 
| 404 | 
            +
                        
         | 
| 405 | 
            +
                    return sum(self.knowledge_base["expertise"].values()) / len(self.knowledge_base["expertise"])
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                def _get_execution_metrics(self) -> Dict[str, float]:
         | 
| 408 | 
            +
                    """Get current execution metrics."""
         | 
| 409 | 
            +
                    return {
         | 
| 410 | 
            +
                        key: sum(values[-10:]) / len(values[-10:])
         | 
| 411 | 
            +
                        for key, values in self.metrics.items()
         | 
| 412 | 
            +
                        if values
         | 
| 413 | 
            +
                    }
         | 
| 414 | 
            +
             | 
| 415 | 
            +
            class AgenticSystem:
         | 
| 416 | 
            +
                """Advanced multi-agent system with orchestration."""
         | 
| 417 | 
            +
                
         | 
| 418 | 
            +
                def __init__(self, config: Dict[str, Any] = None):
         | 
| 419 | 
            +
                    self.config = config or {}
         | 
| 420 | 
            +
                    
         | 
| 421 | 
            +
                    # Initialize orchestrator
         | 
| 422 | 
            +
                    self.orchestrator = AgentOrchestrator(config)
         | 
| 423 | 
            +
                    
         | 
| 424 | 
            +
                    # Initialize components
         | 
| 425 | 
            +
                    self.agents: Dict[str, Agent] = {}
         | 
| 426 | 
            +
                    self.reasoning_engine = ReasoningEngine(
         | 
| 427 | 
            +
                        model_manager=None,  # Will be injected
         | 
| 428 | 
            +
                        max_depth=5,
         | 
| 429 | 
            +
                        beam_width=3
         | 
| 430 | 
            +
                    )
         | 
| 431 | 
            +
                    self.meta_learning = MetaLearningStrategy()
         | 
| 432 | 
            +
                    
         | 
| 433 | 
            +
                    # System state
         | 
| 434 | 
            +
                    self.state = "initialized"
         | 
| 435 | 
            +
                    self.metrics: Dict[str, List[float]] = defaultdict(list)
         | 
| 436 | 
            +
                    
         | 
| 437 | 
            +
                    # Async support
         | 
| 438 | 
            +
                    self.executor = ThreadPoolExecutor(max_workers=4)
         | 
| 439 | 
            +
                    self.lock = asyncio.Lock()
         | 
| 440 | 
            +
                    
         | 
| 441 | 
            +
                    # Logging
         | 
| 442 | 
            +
                    self.logger = logging.getLogger("AgenticSystem")
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                async def create_agent(
         | 
| 445 | 
            +
                    self,
         | 
| 446 | 
            +
                    name: str,
         | 
| 447 | 
            +
                    role: AgentRole,
         | 
| 448 | 
            +
                    capabilities: List[AgentCapability],
         | 
| 449 | 
            +
                    personality: AgentPersonality,
         | 
| 450 | 
            +
                    expertise_areas: List[str]
         | 
| 451 | 
            +
                ) -> str:
         | 
| 452 | 
            +
                    """Create a new agent."""
         | 
| 453 | 
            +
                    # Create agent profile
         | 
| 454 | 
            +
                    profile = AgentProfile(
         | 
| 455 | 
            +
                        id=str(uuid.uuid4()),
         | 
| 456 | 
            +
                        name=name,
         | 
| 457 | 
            +
                        role=role,
         | 
| 458 | 
            +
                        capabilities=capabilities,
         | 
| 459 | 
            +
                        personality=personality,
         | 
| 460 | 
            +
                        expertise_areas=expertise_areas,
         | 
| 461 | 
            +
                        learning_rate=0.1,
         | 
| 462 | 
            +
                        risk_tolerance=0.5,
         | 
| 463 | 
            +
                        created_at=datetime.now(),
         | 
| 464 | 
            +
                        metadata={}
         | 
| 465 | 
            +
                    )
         | 
| 466 | 
            +
                    
         | 
| 467 | 
            +
                    # Create agent instance
         | 
| 468 | 
            +
                    agent = Agent(
         | 
| 469 | 
            +
                        profile=profile,
         | 
| 470 | 
            +
                        reasoning_engine=self.reasoning_engine,
         | 
| 471 | 
            +
                        meta_learning=self.meta_learning,
         | 
| 472 | 
            +
                        config=self.config.get("agent_config", {})
         | 
| 473 | 
            +
                    )
         | 
| 474 | 
            +
                    
         | 
| 475 | 
            +
                    # Register with orchestrator
         | 
| 476 | 
            +
                    agent_id = await self.orchestrator.register_agent(
         | 
| 477 | 
            +
                        role=role,
         | 
| 478 | 
            +
                        capabilities=[c.value for c in capabilities]
         | 
| 479 | 
            +
                    )
         | 
| 480 | 
            +
                    
         | 
| 481 | 
            +
                    # Store agent
         | 
| 482 | 
            +
                    async with self.lock:
         | 
| 483 | 
            +
                        self.agents[agent_id] = agent
         | 
| 484 | 
            +
                    
         | 
| 485 | 
            +
                    return agent_id
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                async def submit_task(
         | 
| 488 | 
            +
                    self,
         | 
| 489 | 
            +
                    description: str,
         | 
| 490 | 
            +
                    priority: TaskPriority = TaskPriority.MEDIUM,
         | 
| 491 | 
            +
                    deadline: Optional[datetime] = None
         | 
| 492 | 
            +
                ) -> str:
         | 
| 493 | 
            +
                    """Submit a task to the system."""
         | 
| 494 | 
            +
                    return await self.orchestrator.submit_task(
         | 
| 495 | 
            +
                        description=description,
         | 
| 496 | 
            +
                        priority=priority,
         | 
| 497 | 
            +
                        deadline=deadline
         | 
| 498 | 
            +
                    )
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                async def get_task_status(self, task_id: str) -> Dict[str, Any]:
         | 
| 501 | 
            +
                    """Get status of a task."""
         | 
| 502 | 
            +
                    return await self.orchestrator.get_task_status(task_id)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                async def get_agent_status(self, agent_id: str) -> Dict[str, Any]:
         | 
| 505 | 
            +
                    """Get status of an agent."""
         | 
| 506 | 
            +
                    agent = self.agents.get(agent_id)
         | 
| 507 | 
            +
                    if not agent:
         | 
| 508 | 
            +
                        raise ValueError(f"Unknown agent: {agent_id}")
         | 
| 509 | 
            +
                        
         | 
| 510 | 
            +
                    return {
         | 
| 511 | 
            +
                        "profile": agent.profile.__dict__,
         | 
| 512 | 
            +
                        "state": agent.state,
         | 
| 513 | 
            +
                        "current_task": agent.current_task.__dict__ if agent.current_task else None,
         | 
| 514 | 
            +
                        "metrics": agent._get_execution_metrics(),
         | 
| 515 | 
            +
                        "resource_usage": agent.resource_usage
         | 
| 516 | 
            +
                    }
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                async def get_system_status(self) -> Dict[str, Any]:
         | 
| 519 | 
            +
                    """Get overall system status."""
         | 
| 520 | 
            +
                    return {
         | 
| 521 | 
            +
                        "state": self.state,
         | 
| 522 | 
            +
                        "agent_count": len(self.agents),
         | 
| 523 | 
            +
                        "active_tasks": len([a for a in self.agents.values() if a.state == AgentState.BUSY]),
         | 
| 524 | 
            +
                        "performance_metrics": self._calculate_system_metrics(),
         | 
| 525 | 
            +
                        "resource_usage": self._calculate_resource_usage()
         | 
| 526 | 
            +
                    }
         | 
| 527 | 
            +
             | 
| 528 | 
            +
                def _calculate_system_metrics(self) -> Dict[str, float]:
         | 
| 529 | 
            +
                    """Calculate overall system metrics."""
         | 
| 530 | 
            +
                    metrics = defaultdict(list)
         | 
| 531 | 
            +
                    
         | 
| 532 | 
            +
                    for agent in self.agents.values():
         | 
| 533 | 
            +
                        agent_metrics = agent._get_execution_metrics()
         | 
| 534 | 
            +
                        for key, value in agent_metrics.items():
         | 
| 535 | 
            +
                            metrics[key].append(value)
         | 
| 536 | 
            +
                    
         | 
| 537 | 
            +
                    return {
         | 
| 538 | 
            +
                        key: sum(values) / len(values)
         | 
| 539 | 
            +
                        for key, values in metrics.items()
         | 
| 540 | 
            +
                        if values
         | 
| 541 | 
            +
                    }
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                def _calculate_resource_usage(self) -> Dict[str, float]:
         | 
| 544 | 
            +
                    """Calculate overall resource usage."""
         | 
| 545 | 
            +
                    usage = defaultdict(float)
         | 
| 546 | 
            +
                    
         | 
| 547 | 
            +
                    for agent in self.agents.values():
         | 
| 548 | 
            +
                        for resource, amount in agent.resource_usage.items():
         | 
| 549 | 
            +
                            usage[resource] += amount
         | 
| 550 | 
            +
                    
         | 
| 551 | 
            +
                    return dict(usage)
         | 
    	
        api/venture_api.py
    ADDED
    
    | @@ -0,0 +1,194 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """API endpoints for venture strategies and analysis."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from fastapi import APIRouter, HTTPException, Depends
         | 
| 4 | 
            +
            from typing import List, Dict, Any, Optional
         | 
| 5 | 
            +
            from pydantic import BaseModel, Field
         | 
| 6 | 
            +
            from datetime import datetime
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            from reasoning.venture_strategies import (
         | 
| 9 | 
            +
                AIStartupStrategy, SaaSVentureStrategy, AutomationVentureStrategy,
         | 
| 10 | 
            +
                DataVentureStrategy, APIVentureStrategy, MarketplaceVentureStrategy,
         | 
| 11 | 
            +
                AIInfrastructureStrategy, AIConsultingStrategy, AIProductStrategy,
         | 
| 12 | 
            +
                FinTechStrategy, HealthTechStrategy, EdTechStrategy,
         | 
| 13 | 
            +
                BlockchainStrategy, AIMarketplaceStrategy
         | 
| 14 | 
            +
            )
         | 
| 15 | 
            +
            from reasoning.market_analysis import MarketAnalyzer
         | 
| 16 | 
            +
            from reasoning.portfolio_optimization import PortfolioOptimizer
         | 
| 17 | 
            +
            from reasoning.monetization import MonetizationOptimizer
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            router = APIRouter(prefix="/api/ventures", tags=["ventures"])
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Models
         | 
| 22 | 
            +
            class VentureRequest(BaseModel):
         | 
| 23 | 
            +
                """Venture analysis request."""
         | 
| 24 | 
            +
                venture_type: str
         | 
| 25 | 
            +
                query: str
         | 
| 26 | 
            +
                context: Dict[str, Any] = Field(default_factory=dict)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            class MarketRequest(BaseModel):
         | 
| 29 | 
            +
                """Market analysis request."""
         | 
| 30 | 
            +
                segment: str
         | 
| 31 | 
            +
                context: Dict[str, Any] = Field(default_factory=dict)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            class PortfolioRequest(BaseModel):
         | 
| 34 | 
            +
                """Portfolio optimization request."""
         | 
| 35 | 
            +
                ventures: List[str]
         | 
| 36 | 
            +
                context: Dict[str, Any] = Field(default_factory=dict)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            class MonetizationRequest(BaseModel):
         | 
| 39 | 
            +
                """Monetization optimization request."""
         | 
| 40 | 
            +
                venture_type: str
         | 
| 41 | 
            +
                context: Dict[str, Any] = Field(default_factory=dict)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            # Strategy mapping
         | 
| 44 | 
            +
            VENTURE_STRATEGIES = {
         | 
| 45 | 
            +
                "ai_startup": AIStartupStrategy(),
         | 
| 46 | 
            +
                "saas": SaaSVentureStrategy(),
         | 
| 47 | 
            +
                "automation": AutomationVentureStrategy(),
         | 
| 48 | 
            +
                "data": DataVentureStrategy(),
         | 
| 49 | 
            +
                "api": APIVentureStrategy(),
         | 
| 50 | 
            +
                "marketplace": MarketplaceVentureStrategy(),
         | 
| 51 | 
            +
                "ai_infrastructure": AIInfrastructureStrategy(),
         | 
| 52 | 
            +
                "ai_consulting": AIConsultingStrategy(),
         | 
| 53 | 
            +
                "ai_product": AIProductStrategy(),
         | 
| 54 | 
            +
                "fintech": FinTechStrategy(),
         | 
| 55 | 
            +
                "healthtech": HealthTechStrategy(),
         | 
| 56 | 
            +
                "edtech": EdTechStrategy(),
         | 
| 57 | 
            +
                "blockchain": BlockchainStrategy(),
         | 
| 58 | 
            +
                "ai_marketplace": AIMarketplaceStrategy()
         | 
| 59 | 
            +
            }
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            # Endpoints
         | 
| 62 | 
            +
            @router.post("/analyze")
         | 
| 63 | 
            +
            async def analyze_venture(request: VentureRequest):
         | 
| 64 | 
            +
                """Analyze venture opportunity."""
         | 
| 65 | 
            +
                try:
         | 
| 66 | 
            +
                    strategy = VENTURE_STRATEGIES.get(request.venture_type)
         | 
| 67 | 
            +
                    if not strategy:
         | 
| 68 | 
            +
                        raise HTTPException(
         | 
| 69 | 
            +
                            status_code=400,
         | 
| 70 | 
            +
                            detail=f"Invalid venture type: {request.venture_type}"
         | 
| 71 | 
            +
                        )
         | 
| 72 | 
            +
                    
         | 
| 73 | 
            +
                    result = await strategy.reason(request.query, request.context)
         | 
| 74 | 
            +
                    return {
         | 
| 75 | 
            +
                        "success": True,
         | 
| 76 | 
            +
                        "result": result,
         | 
| 77 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 78 | 
            +
                    }
         | 
| 79 | 
            +
                except Exception as e:
         | 
| 80 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            @router.post("/market")
         | 
| 83 | 
            +
            async def analyze_market(request: MarketRequest):
         | 
| 84 | 
            +
                """Analyze market opportunity."""
         | 
| 85 | 
            +
                try:
         | 
| 86 | 
            +
                    analyzer = MarketAnalyzer()
         | 
| 87 | 
            +
                    result = await analyzer.analyze_market(request.segment, request.context)
         | 
| 88 | 
            +
                    return {
         | 
| 89 | 
            +
                        "success": True,
         | 
| 90 | 
            +
                        "result": result,
         | 
| 91 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 92 | 
            +
                    }
         | 
| 93 | 
            +
                except Exception as e:
         | 
| 94 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            @router.post("/portfolio")
         | 
| 97 | 
            +
            async def optimize_portfolio(request: PortfolioRequest):
         | 
| 98 | 
            +
                """Optimize venture portfolio."""
         | 
| 99 | 
            +
                try:
         | 
| 100 | 
            +
                    optimizer = PortfolioOptimizer()
         | 
| 101 | 
            +
                    result = await optimizer.optimize_portfolio(request.ventures, request.context)
         | 
| 102 | 
            +
                    return {
         | 
| 103 | 
            +
                        "success": True,
         | 
| 104 | 
            +
                        "result": result,
         | 
| 105 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 106 | 
            +
                    }
         | 
| 107 | 
            +
                except Exception as e:
         | 
| 108 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 109 | 
            +
             | 
| 110 | 
            +
            @router.post("/monetization")
         | 
| 111 | 
            +
            async def optimize_monetization(request: MonetizationRequest):
         | 
| 112 | 
            +
                """Optimize venture monetization."""
         | 
| 113 | 
            +
                try:
         | 
| 114 | 
            +
                    optimizer = MonetizationOptimizer()
         | 
| 115 | 
            +
                    result = await optimizer.optimize_monetization(
         | 
| 116 | 
            +
                        request.venture_type, request.context)
         | 
| 117 | 
            +
                    return {
         | 
| 118 | 
            +
                        "success": True,
         | 
| 119 | 
            +
                        "result": result,
         | 
| 120 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 121 | 
            +
                    }
         | 
| 122 | 
            +
                except Exception as e:
         | 
| 123 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            @router.get("/strategies")
         | 
| 126 | 
            +
            async def list_strategies():
         | 
| 127 | 
            +
                """List available venture strategies."""
         | 
| 128 | 
            +
                return {
         | 
| 129 | 
            +
                    "success": True,
         | 
| 130 | 
            +
                    "strategies": list(VENTURE_STRATEGIES.keys()),
         | 
| 131 | 
            +
                    "timestamp": datetime.now().isoformat()
         | 
| 132 | 
            +
                }
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            @router.get("/metrics/{venture_type}")
         | 
| 135 | 
            +
            async def get_venture_metrics(venture_type: str):
         | 
| 136 | 
            +
                """Get venture performance metrics."""
         | 
| 137 | 
            +
                try:
         | 
| 138 | 
            +
                    strategy = VENTURE_STRATEGIES.get(venture_type)
         | 
| 139 | 
            +
                    if not strategy:
         | 
| 140 | 
            +
                        raise HTTPException(
         | 
| 141 | 
            +
                            status_code=400,
         | 
| 142 | 
            +
                            detail=f"Invalid venture type: {venture_type}"
         | 
| 143 | 
            +
                        )
         | 
| 144 | 
            +
                    
         | 
| 145 | 
            +
                    metrics = strategy.get_venture_metrics()
         | 
| 146 | 
            +
                    return {
         | 
| 147 | 
            +
                        "success": True,
         | 
| 148 | 
            +
                        "metrics": metrics,
         | 
| 149 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 150 | 
            +
                    }
         | 
| 151 | 
            +
                except Exception as e:
         | 
| 152 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            @router.get("/insights")
         | 
| 155 | 
            +
            async def get_market_insights():
         | 
| 156 | 
            +
                """Get comprehensive market insights."""
         | 
| 157 | 
            +
                try:
         | 
| 158 | 
            +
                    analyzer = MarketAnalyzer()
         | 
| 159 | 
            +
                    insights = analyzer.get_market_insights()
         | 
| 160 | 
            +
                    return {
         | 
| 161 | 
            +
                        "success": True,
         | 
| 162 | 
            +
                        "insights": insights,
         | 
| 163 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 164 | 
            +
                    }
         | 
| 165 | 
            +
                except Exception as e:
         | 
| 166 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 167 | 
            +
             | 
| 168 | 
            +
            @router.get("/portfolio/insights")
         | 
| 169 | 
            +
            async def get_portfolio_insights():
         | 
| 170 | 
            +
                """Get comprehensive portfolio insights."""
         | 
| 171 | 
            +
                try:
         | 
| 172 | 
            +
                    optimizer = PortfolioOptimizer()
         | 
| 173 | 
            +
                    insights = optimizer.get_portfolio_insights()
         | 
| 174 | 
            +
                    return {
         | 
| 175 | 
            +
                        "success": True,
         | 
| 176 | 
            +
                        "insights": insights,
         | 
| 177 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 178 | 
            +
                    }
         | 
| 179 | 
            +
                except Exception as e:
         | 
| 180 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
| 181 | 
            +
             | 
| 182 | 
            +
            @router.get("/monetization/metrics")
         | 
| 183 | 
            +
            async def get_monetization_metrics():
         | 
| 184 | 
            +
                """Get comprehensive monetization metrics."""
         | 
| 185 | 
            +
                try:
         | 
| 186 | 
            +
                    optimizer = MonetizationOptimizer()
         | 
| 187 | 
            +
                    metrics = optimizer.get_monetization_metrics()
         | 
| 188 | 
            +
                    return {
         | 
| 189 | 
            +
                        "success": True,
         | 
| 190 | 
            +
                        "metrics": metrics,
         | 
| 191 | 
            +
                        "timestamp": datetime.now().isoformat()
         | 
| 192 | 
            +
                    }
         | 
| 193 | 
            +
                except Exception as e:
         | 
| 194 | 
            +
                    raise HTTPException(status_code=500, detail=str(e))
         | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,110 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Advanced Agentic System Interface
         | 
| 3 | 
            +
            -------------------------------
         | 
| 4 | 
            +
            Provides an interface to interact with the autonomous agent system
         | 
| 5 | 
            +
            using local LLM for improved performance.
         | 
| 6 | 
            +
            """
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            import gradio as gr
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from typing import Dict, Any, List
         | 
| 11 | 
            +
            import json
         | 
| 12 | 
            +
            from datetime import datetime
         | 
| 13 | 
            +
            import logging
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            from agentic_system import AgenticSystem
         | 
| 16 | 
            +
            from team_management import TeamManager
         | 
| 17 | 
            +
            from orchestrator import AgentOrchestrator
         | 
| 18 | 
            +
            from reasoning.unified_engine import UnifiedReasoningEngine
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # Configure logging
         | 
| 21 | 
            +
            logging.basicConfig(level=logging.INFO)
         | 
| 22 | 
            +
            logger = logging.getLogger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            class AgentInterface:
         | 
| 25 | 
            +
                """Interface for the agentic system."""
         | 
| 26 | 
            +
                
         | 
| 27 | 
            +
                def __init__(self):
         | 
| 28 | 
            +
                    """Initialize the interface components."""
         | 
| 29 | 
            +
                    self.orchestrator = AgentOrchestrator()
         | 
| 30 | 
            +
                    self.reasoning_engine = UnifiedReasoningEngine(
         | 
| 31 | 
            +
                        min_confidence=0.7,
         | 
| 32 | 
            +
                        parallel_threshold=3,
         | 
| 33 | 
            +
                        learning_rate=0.1
         | 
| 34 | 
            +
                    )
         | 
| 35 | 
            +
                    
         | 
| 36 | 
            +
                async def process_query(self, message: str) -> str:
         | 
| 37 | 
            +
                    """Process user query through the reasoning system."""
         | 
| 38 | 
            +
                    try:
         | 
| 39 | 
            +
                        # Prepare context
         | 
| 40 | 
            +
                        context = {
         | 
| 41 | 
            +
                            'timestamp': datetime.now().isoformat(),
         | 
| 42 | 
            +
                            'objective': 'Provide helpful and accurate responses',
         | 
| 43 | 
            +
                            'mode': 'analytical'
         | 
| 44 | 
            +
                        }
         | 
| 45 | 
            +
                        
         | 
| 46 | 
            +
                        # Get response from reasoning engine
         | 
| 47 | 
            +
                        result = await self.reasoning_engine.reason(
         | 
| 48 | 
            +
                            query=message,
         | 
| 49 | 
            +
                            context=context
         | 
| 50 | 
            +
                        )
         | 
| 51 | 
            +
                        
         | 
| 52 | 
            +
                        if result.success:
         | 
| 53 | 
            +
                            return result.answer
         | 
| 54 | 
            +
                        else:
         | 
| 55 | 
            +
                            return f"Error: Unable to process query. Please try again."
         | 
| 56 | 
            +
                            
         | 
| 57 | 
            +
                    except Exception as e:
         | 
| 58 | 
            +
                        logger.error(f"Error processing query: {e}")
         | 
| 59 | 
            +
                        return f"Error: {str(e)}"
         | 
| 60 | 
            +
             | 
| 61 | 
            +
            # Initialize interface
         | 
| 62 | 
            +
            interface = AgentInterface()
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            # Create Gradio interface
         | 
| 65 | 
            +
            with gr.Blocks(theme=gr.themes.Soft()) as demo:
         | 
| 66 | 
            +
                gr.Markdown("""
         | 
| 67 | 
            +
                # AI Reasoning System
         | 
| 68 | 
            +
                This system uses advanced reasoning strategies including local LLM for improved performance.
         | 
| 69 | 
            +
                
         | 
| 70 | 
            +
                Note: First query might take a few seconds as the model loads.
         | 
| 71 | 
            +
                """)
         | 
| 72 | 
            +
                
         | 
| 73 | 
            +
                with gr.Row():
         | 
| 74 | 
            +
                    with gr.Column(scale=4):
         | 
| 75 | 
            +
                        input_text = gr.Textbox(
         | 
| 76 | 
            +
                            label="Your question",
         | 
| 77 | 
            +
                            placeholder="Ask me anything...",
         | 
| 78 | 
            +
                            lines=2
         | 
| 79 | 
            +
                        )
         | 
| 80 | 
            +
                        output_text = gr.Textbox(
         | 
| 81 | 
            +
                            label="Response",
         | 
| 82 | 
            +
                            lines=10,
         | 
| 83 | 
            +
                            interactive=False
         | 
| 84 | 
            +
                        )
         | 
| 85 | 
            +
                        submit_btn = gr.Button("Ask")
         | 
| 86 | 
            +
                        clear_btn = gr.Button("Clear")
         | 
| 87 | 
            +
                        
         | 
| 88 | 
            +
                    with gr.Column(scale=1):
         | 
| 89 | 
            +
                        gr.Markdown("""
         | 
| 90 | 
            +
                        ### Example Questions:
         | 
| 91 | 
            +
                        - What are the implications of artificial intelligence on society?
         | 
| 92 | 
            +
                        - How does climate change affect global ecosystems?
         | 
| 93 | 
            +
                        - What are the philosophical implications of quantum mechanics?
         | 
| 94 | 
            +
                        """)
         | 
| 95 | 
            +
                
         | 
| 96 | 
            +
                # Set up event handlers
         | 
| 97 | 
            +
                submit_btn.click(
         | 
| 98 | 
            +
                    fn=interface.process_query,
         | 
| 99 | 
            +
                    inputs=input_text,
         | 
| 100 | 
            +
                    outputs=output_text
         | 
| 101 | 
            +
                )
         | 
| 102 | 
            +
                clear_btn.click(
         | 
| 103 | 
            +
                    lambda: ("", ""),
         | 
| 104 | 
            +
                    inputs=None,
         | 
| 105 | 
            +
                    outputs=[input_text, output_text]
         | 
| 106 | 
            +
                )
         | 
| 107 | 
            +
             | 
| 108 | 
            +
            # Launch the interface
         | 
| 109 | 
            +
            if __name__ == "__main__":
         | 
| 110 | 
            +
                demo.launch()
         | 
    	
        app.py.backup
    ADDED
    
    | @@ -0,0 +1,338 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Advanced Agentic System Interface
         | 
| 3 | 
            +
            -------------------------------
         | 
| 4 | 
            +
            Provides a chat interface to interact with the autonomous agent teams:
         | 
| 5 | 
            +
            - Team A: Coders (App/Software Developers)
         | 
| 6 | 
            +
            - Team B: Business (Entrepreneurs)
         | 
| 7 | 
            +
            - Team C: Research (Deep Online Research)
         | 
| 8 | 
            +
            - Team D: Crypto & Sports Trading
         | 
| 9 | 
            +
            """
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            import gradio as gr
         | 
| 12 | 
            +
            import asyncio
         | 
| 13 | 
            +
            from typing import Dict, Any, List
         | 
| 14 | 
            +
            import json
         | 
| 15 | 
            +
            from datetime import datetime
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from agentic_system import AgenticSystem
         | 
| 18 | 
            +
            from team_management import TeamManager, TeamType, TeamObjective
         | 
| 19 | 
            +
            from orchestrator import AgentOrchestrator
         | 
| 20 | 
            +
            from reasoning import ReasoningEngine
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            class ChatInterface:
         | 
| 23 | 
            +
                def __init__(self):
         | 
| 24 | 
            +
                    # Initialize core components
         | 
| 25 | 
            +
                    self.orchestrator = AgentOrchestrator()
         | 
| 26 | 
            +
                    self.agentic_system = AgenticSystem()
         | 
| 27 | 
            +
                    self.team_manager = TeamManager(self.orchestrator)
         | 
| 28 | 
            +
                    self.chat_history = []
         | 
| 29 | 
            +
                    self.active_objectives = {}
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    # Initialize teams
         | 
| 32 | 
            +
                    asyncio.run(self.team_manager.initialize_team_agents())
         | 
| 33 | 
            +
             | 
| 34 | 
            +
                async def process_message(
         | 
| 35 | 
            +
                    self,
         | 
| 36 | 
            +
                    message: str,
         | 
| 37 | 
            +
                    history: List[List[str]]
         | 
| 38 | 
            +
                ) -> str:
         | 
| 39 | 
            +
                    """Process incoming chat message."""
         | 
| 40 | 
            +
                    try:
         | 
| 41 | 
            +
                        # Analyze message intent
         | 
| 42 | 
            +
                        intent = await self._analyze_intent(message)
         | 
| 43 | 
            +
                        
         | 
| 44 | 
            +
                        if intent["type"] == "query":
         | 
| 45 | 
            +
                            response = await self._handle_query(message)
         | 
| 46 | 
            +
                        elif intent["type"] == "objective":
         | 
| 47 | 
            +
                            response = await self._handle_objective(message)
         | 
| 48 | 
            +
                        elif intent["type"] == "status":
         | 
| 49 | 
            +
                            response = await self._handle_status_request(message)
         | 
| 50 | 
            +
                        else:
         | 
| 51 | 
            +
                            response = await self._handle_general_chat(message)
         | 
| 52 | 
            +
                        
         | 
| 53 | 
            +
                        # Update chat history
         | 
| 54 | 
            +
                        self.chat_history.append({
         | 
| 55 | 
            +
                            "role": "user",
         | 
| 56 | 
            +
                            "content": message,
         | 
| 57 | 
            +
                            "timestamp": datetime.now()
         | 
| 58 | 
            +
                        })
         | 
| 59 | 
            +
                        self.chat_history.append({
         | 
| 60 | 
            +
                            "role": "assistant",
         | 
| 61 | 
            +
                            "content": response,
         | 
| 62 | 
            +
                            "timestamp": datetime.now()
         | 
| 63 | 
            +
                        })
         | 
| 64 | 
            +
                        
         | 
| 65 | 
            +
                        return response
         | 
| 66 | 
            +
                        
         | 
| 67 | 
            +
                    except Exception as e:
         | 
| 68 | 
            +
                        return f"Error processing message: {str(e)}"
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                async def _analyze_intent(self, message: str) -> Dict[str, Any]:
         | 
| 71 | 
            +
                    """Analyze user message intent."""
         | 
| 72 | 
            +
                    # Use reasoning engine to analyze intent
         | 
| 73 | 
            +
                    analysis = await self.orchestrator.reasoning_engine.reason(
         | 
| 74 | 
            +
                        query=message,
         | 
| 75 | 
            +
                        context={
         | 
| 76 | 
            +
                            "chat_history": self.chat_history,
         | 
| 77 | 
            +
                            "active_objectives": self.active_objectives
         | 
| 78 | 
            +
                        }
         | 
| 79 | 
            +
                    )
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    return {
         | 
| 82 | 
            +
                        "type": analysis.get("intent_type", "general"),
         | 
| 83 | 
            +
                        "confidence": analysis.get("confidence", 0.5),
         | 
| 84 | 
            +
                        "entities": analysis.get("entities", []),
         | 
| 85 | 
            +
                        "action_required": analysis.get("action_required", False)
         | 
| 86 | 
            +
                    }
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                async def _handle_query(self, message: str) -> str:
         | 
| 89 | 
            +
                    """Handle information queries."""
         | 
| 90 | 
            +
                    # Get relevant teams for the query
         | 
| 91 | 
            +
                    recommended_teams = await self.team_manager.get_team_recommendations(message)
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
                    # Get responses from relevant teams
         | 
| 94 | 
            +
                    responses = []
         | 
| 95 | 
            +
                    for team_type in recommended_teams:
         | 
| 96 | 
            +
                        team_response = await self._get_team_response(team_type, message)
         | 
| 97 | 
            +
                        responses.append(team_response)
         | 
| 98 | 
            +
                    
         | 
| 99 | 
            +
                    # Combine and format responses
         | 
| 100 | 
            +
                    combined_response = self._format_team_responses(responses)
         | 
| 101 | 
            +
                    
         | 
| 102 | 
            +
                    return combined_response
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                async def _handle_objective(self, message: str) -> str:
         | 
| 105 | 
            +
                    """Handle new objective creation."""
         | 
| 106 | 
            +
                    # Analyze objective requirements
         | 
| 107 | 
            +
                    analysis = await self.orchestrator.reasoning_engine.reason(
         | 
| 108 | 
            +
                        query=f"Analyze objective requirements: {message}",
         | 
| 109 | 
            +
                        context={"teams": self.team_manager.teams}
         | 
| 110 | 
            +
                    )
         | 
| 111 | 
            +
                    
         | 
| 112 | 
            +
                    # Determine required teams
         | 
| 113 | 
            +
                    required_teams = [
         | 
| 114 | 
            +
                        TeamType[team.upper()]
         | 
| 115 | 
            +
                        for team in analysis.get("required_teams", [])
         | 
| 116 | 
            +
                    ]
         | 
| 117 | 
            +
                    
         | 
| 118 | 
            +
                    # Create cross-team objective
         | 
| 119 | 
            +
                    objective_id = await self.team_manager.create_cross_team_objective(
         | 
| 120 | 
            +
                        objective=message,
         | 
| 121 | 
            +
                        required_teams=required_teams
         | 
| 122 | 
            +
                    )
         | 
| 123 | 
            +
                    
         | 
| 124 | 
            +
                    self.active_objectives[objective_id] = {
         | 
| 125 | 
            +
                        "description": message,
         | 
| 126 | 
            +
                        "teams": required_teams,
         | 
| 127 | 
            +
                        "status": "initiated",
         | 
| 128 | 
            +
                        "created_at": datetime.now()
         | 
| 129 | 
            +
                    }
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
                    return self._format_objective_creation(objective_id)
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                async def _handle_status_request(self, message: str) -> str:
         | 
| 134 | 
            +
                    """Handle status check requests."""
         | 
| 135 | 
            +
                    # Get system status
         | 
| 136 | 
            +
                    system_status = await self.agentic_system.get_system_status()
         | 
| 137 | 
            +
                    
         | 
| 138 | 
            +
                    # Get team status
         | 
| 139 | 
            +
                    team_status = {}
         | 
| 140 | 
            +
                    for team_id, team in self.team_manager.teams.items():
         | 
| 141 | 
            +
                        team_status[team.name] = await self.team_manager.monitor_objective_progress(team_id)
         | 
| 142 | 
            +
                    
         | 
| 143 | 
            +
                    # Get objective status
         | 
| 144 | 
            +
                    objective_status = {}
         | 
| 145 | 
            +
                    for obj_id, obj in self.active_objectives.items():
         | 
| 146 | 
            +
                        objective_status[obj_id] = await self.team_manager.monitor_objective_progress(obj_id)
         | 
| 147 | 
            +
                    
         | 
| 148 | 
            +
                    return self._format_status_response(system_status, team_status, objective_status)
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                async def _handle_general_chat(self, message: str) -> str:
         | 
| 151 | 
            +
                    """Handle general chat interactions."""
         | 
| 152 | 
            +
                    # Use reasoning engine for response generation
         | 
| 153 | 
            +
                    response = await self.orchestrator.reasoning_engine.reason(
         | 
| 154 | 
            +
                        query=message,
         | 
| 155 | 
            +
                        context={
         | 
| 156 | 
            +
                            "chat_history": self.chat_history,
         | 
| 157 | 
            +
                            "system_state": await self.agentic_system.get_system_status()
         | 
| 158 | 
            +
                        }
         | 
| 159 | 
            +
                    )
         | 
| 160 | 
            +
                    
         | 
| 161 | 
            +
                    return response.get("response", "I'm not sure how to respond to that.")
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                async def _get_team_response(self, team_type: TeamType, query: str) -> Dict[str, Any]:
         | 
| 164 | 
            +
                    """Get response from a specific team."""
         | 
| 165 | 
            +
                    team_id = next(
         | 
| 166 | 
            +
                        (tid for tid, team in self.team_manager.teams.items() 
         | 
| 167 | 
            +
                         if team.type == team_type),
         | 
| 168 | 
            +
                        None
         | 
| 169 | 
            +
                    )
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    if not team_id:
         | 
| 172 | 
            +
                        return {
         | 
| 173 | 
            +
                            "team": team_type.value,
         | 
| 174 | 
            +
                            "response": "Team not available",
         | 
| 175 | 
            +
                            "confidence": 0.0
         | 
| 176 | 
            +
                        }
         | 
| 177 | 
            +
                    
         | 
| 178 | 
            +
                    # Get team agents
         | 
| 179 | 
            +
                    team_agents = self.team_manager.agents[team_id]
         | 
| 180 | 
            +
                    
         | 
| 181 | 
            +
                    # Aggregate responses from team agents
         | 
| 182 | 
            +
                    responses = []
         | 
| 183 | 
            +
                    for agent in team_agents.values():
         | 
| 184 | 
            +
                        agent_response = await agent.process_query(query)
         | 
| 185 | 
            +
                        responses.append(agent_response)
         | 
| 186 | 
            +
                    
         | 
| 187 | 
            +
                    # Combine responses
         | 
| 188 | 
            +
                    combined_response = self._combine_agent_responses(responses)
         | 
| 189 | 
            +
                    
         | 
| 190 | 
            +
                    return {
         | 
| 191 | 
            +
                        "team": team_type.value,
         | 
| 192 | 
            +
                        "response": combined_response,
         | 
| 193 | 
            +
                        "confidence": sum(r.get("confidence", 0) for r in responses) / len(responses)
         | 
| 194 | 
            +
                    }
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                def _combine_agent_responses(self, responses: List[Dict[str, Any]]) -> str:
         | 
| 197 | 
            +
                    """Combine multiple agent responses into a coherent response."""
         | 
| 198 | 
            +
                    # Sort by confidence
         | 
| 199 | 
            +
                    valid_responses = [
         | 
| 200 | 
            +
                        r for r in responses 
         | 
| 201 | 
            +
                        if r.get("success", False) and r.get("response")
         | 
| 202 | 
            +
                    ]
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    if not valid_responses:
         | 
| 205 | 
            +
                        return "No valid response available"
         | 
| 206 | 
            +
                        
         | 
| 207 | 
            +
                    sorted_responses = sorted(
         | 
| 208 | 
            +
                        valid_responses,
         | 
| 209 | 
            +
                        key=lambda x: x.get("confidence", 0),
         | 
| 210 | 
            +
                        reverse=True
         | 
| 211 | 
            +
                    )
         | 
| 212 | 
            +
                    
         | 
| 213 | 
            +
                    # Take the highest confidence response
         | 
| 214 | 
            +
                    best_response = sorted_responses[0]
         | 
| 215 | 
            +
                    
         | 
| 216 | 
            +
                    return best_response.get("response", "No response available")
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def _format_team_responses(self, responses: List[Dict[str, Any]]) -> str:
         | 
| 219 | 
            +
                    """Format team responses into a readable message."""
         | 
| 220 | 
            +
                    formatted = []
         | 
| 221 | 
            +
                    
         | 
| 222 | 
            +
                    for response in responses:
         | 
| 223 | 
            +
                        if response.get("confidence", 0) > 0.3:  # Confidence threshold
         | 
| 224 | 
            +
                            formatted.append(
         | 
| 225 | 
            +
                                f"Team {response['team'].title()}:\n"
         | 
| 226 | 
            +
                                f"{response['response']}\n"
         | 
| 227 | 
            +
                            )
         | 
| 228 | 
            +
                    
         | 
| 229 | 
            +
                    if not formatted:
         | 
| 230 | 
            +
                        return "No team was able to provide a confident response."
         | 
| 231 | 
            +
                        
         | 
| 232 | 
            +
                    return "\n".join(formatted)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def _format_objective_creation(self, objective_id: str) -> str:
         | 
| 235 | 
            +
                    """Format objective creation response."""
         | 
| 236 | 
            +
                    objective = self.active_objectives[objective_id]
         | 
| 237 | 
            +
                    
         | 
| 238 | 
            +
                    return (
         | 
| 239 | 
            +
                        f"Objective created successfully!\n\n"
         | 
| 240 | 
            +
                        f"Objective ID: {objective_id}\n"
         | 
| 241 | 
            +
                        f"Description: {objective['description']}\n"
         | 
| 242 | 
            +
                        f"Assigned Teams: {', '.join(t.value for t in objective['teams'])}\n"
         | 
| 243 | 
            +
                        f"Status: {objective['status']}\n"
         | 
| 244 | 
            +
                        f"Created: {objective['created_at'].strftime('%Y-%m-%d %H:%M:%S')}"
         | 
| 245 | 
            +
                    )
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                def _format_status_response(
         | 
| 248 | 
            +
                    self,
         | 
| 249 | 
            +
                    system_status: Dict[str, Any],
         | 
| 250 | 
            +
                    team_status: Dict[str, Any],
         | 
| 251 | 
            +
                    objective_status: Dict[str, Any]
         | 
| 252 | 
            +
                ) -> str:
         | 
| 253 | 
            +
                    """Format status response."""
         | 
| 254 | 
            +
                    # Format system status
         | 
| 255 | 
            +
                    status = [
         | 
| 256 | 
            +
                        "System Status:",
         | 
| 257 | 
            +
                        f"- State: {system_status['state']}",
         | 
| 258 | 
            +
                        f"- Active Agents: {system_status['agent_count']}",
         | 
| 259 | 
            +
                        f"- Active Tasks: {system_status['active_tasks']}",
         | 
| 260 | 
            +
                        "\nTeam Status:"
         | 
| 261 | 
            +
                    ]
         | 
| 262 | 
            +
                    
         | 
| 263 | 
            +
                    # Add team status
         | 
| 264 | 
            +
                    for team_name, team_info in team_status.items():
         | 
| 265 | 
            +
                        status.extend([
         | 
| 266 | 
            +
                            f"\n{team_name}:",
         | 
| 267 | 
            +
                            f"- Active Agents: {team_info['active_agents']}",
         | 
| 268 | 
            +
                            f"- Completion Rate: {team_info['completion_rate']:.2%}",
         | 
| 269 | 
            +
                            f"- Collaboration Score: {team_info['collaboration_score']:.2f}"
         | 
| 270 | 
            +
                        ])
         | 
| 271 | 
            +
                    
         | 
| 272 | 
            +
                    # Add objective status
         | 
| 273 | 
            +
                    if objective_status:
         | 
| 274 | 
            +
                        status.append("\nActive Objectives:")
         | 
| 275 | 
            +
                        for obj_id, obj_info in objective_status.items():
         | 
| 276 | 
            +
                            obj = self.active_objectives[obj_id]
         | 
| 277 | 
            +
                            status.extend([
         | 
| 278 | 
            +
                                f"\n{obj['description']}:",
         | 
| 279 | 
            +
                                f"- Status: {obj['status']}",
         | 
| 280 | 
            +
                                f"- Teams: {', '.join(t.value for t in obj['teams'])}",
         | 
| 281 | 
            +
                                f"- Progress: {sum(t['completion_rate'] for t in obj_info.values())/len(obj_info):.2%}"
         | 
| 282 | 
            +
                            ])
         | 
| 283 | 
            +
                    
         | 
| 284 | 
            +
                    return "\n".join(status)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
            class VentureUI:
         | 
| 287 | 
            +
                def __init__(self, app):
         | 
| 288 | 
            +
                    self.app = app
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                def create_interface(self):
         | 
| 291 | 
            +
                    return gr.Interface(
         | 
| 292 | 
            +
                        fn=self.app,
         | 
| 293 | 
            +
                        inputs=[
         | 
| 294 | 
            +
                            gr.Textbox(
         | 
| 295 | 
            +
                                label="Message",
         | 
| 296 | 
            +
                                placeholder="Chat with the Agentic System...",
         | 
| 297 | 
            +
                                lines=2
         | 
| 298 | 
            +
                            ),
         | 
| 299 | 
            +
                            gr.State([])  # For chat history
         | 
| 300 | 
            +
                        ],
         | 
| 301 | 
            +
                        outputs=gr.Textbox(
         | 
| 302 | 
            +
                            label="Response",
         | 
| 303 | 
            +
                            lines=10
         | 
| 304 | 
            +
                        ),
         | 
| 305 | 
            +
                        title="Advanced Agentic System Chat Interface",
         | 
| 306 | 
            +
                        description="""
         | 
| 307 | 
            +
                        Chat with our autonomous agent teams:
         | 
| 308 | 
            +
                        - Team A: Coders (App/Software Developers)
         | 
| 309 | 
            +
                        - Team B: Business (Entrepreneurs)
         | 
| 310 | 
            +
                        - Team C: Research (Deep Online Research)
         | 
| 311 | 
            +
                        - Team D: Crypto & Sports Trading
         | 
| 312 | 
            +
                        
         | 
| 313 | 
            +
                        You can:
         | 
| 314 | 
            +
                        1. Ask questions
         | 
| 315 | 
            +
                        2. Create new objectives
         | 
| 316 | 
            +
                        3. Check status of teams and objectives
         | 
| 317 | 
            +
                        4. Get insights and recommendations
         | 
| 318 | 
            +
                        """,
         | 
| 319 | 
            +
                        theme="default",
         | 
| 320 | 
            +
                        allow_flagging="never"
         | 
| 321 | 
            +
                    )
         | 
| 322 | 
            +
             | 
| 323 | 
            +
            def create_chat_interface() -> gr.Interface:
         | 
| 324 | 
            +
                """Create Gradio chat interface."""
         | 
| 325 | 
            +
                chat = ChatInterface()
         | 
| 326 | 
            +
                ui = VentureUI(chat.process_message)
         | 
| 327 | 
            +
                
         | 
| 328 | 
            +
                return ui.create_interface()
         | 
| 329 | 
            +
             | 
| 330 | 
            +
            # Create and launch the interface
         | 
| 331 | 
            +
            interface = create_chat_interface()
         | 
| 332 | 
            +
             | 
| 333 | 
            +
            if __name__ == "__main__":
         | 
| 334 | 
            +
                interface.launch(
         | 
| 335 | 
            +
                    server_name="0.0.0.0",
         | 
| 336 | 
            +
                    server_port=7860,
         | 
| 337 | 
            +
                    share=True
         | 
| 338 | 
            +
                )
         | 
    	
        app.yaml
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            title: Advanced Reasoning System
         | 
| 2 | 
            +
            emoji: 🧠
         | 
| 3 | 
            +
            colorFrom: indigo
         | 
| 4 | 
            +
            colorTo: purple
         | 
| 5 | 
            +
            sdk: gradio
         | 
| 6 | 
            +
            sdk_version: 4.16.0
         | 
| 7 | 
            +
            app_file: app.py
         | 
| 8 | 
            +
            pinned: false
         | 
| 9 | 
            +
            license: mit
         | 
    	
        check_space_status.py
    ADDED
    
    | @@ -0,0 +1,55 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from huggingface_hub import HfApi
         | 
| 2 | 
            +
            import time
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import requests
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            def check_space_status():
         | 
| 7 | 
            +
                api = HfApi()
         | 
| 8 | 
            +
                space_name = "nananie143/Agentic_llm"
         | 
| 9 | 
            +
                
         | 
| 10 | 
            +
                try:
         | 
| 11 | 
            +
                    # First try direct API request
         | 
| 12 | 
            +
                    response = requests.get(
         | 
| 13 | 
            +
                        f"https://huggingface.co/api/spaces/{space_name}/runtime",
         | 
| 14 | 
            +
                        headers={"Authorization": f"Bearer {os.environ['HUGGINGFACE_TOKEN']}"}
         | 
| 15 | 
            +
                    )
         | 
| 16 | 
            +
                    print(f"\nAPI Response Status: {response.status_code}")
         | 
| 17 | 
            +
                    if response.ok:
         | 
| 18 | 
            +
                        data = response.json()
         | 
| 19 | 
            +
                        print(f"Space Info: {data}")
         | 
| 20 | 
            +
                        return data.get("stage")
         | 
| 21 | 
            +
                        
         | 
| 22 | 
            +
                    # Fallback to HF API
         | 
| 23 | 
            +
                    space_info = api.space_info(space_name)
         | 
| 24 | 
            +
                    print(f"\nSpace Info via HF API: {space_info}")
         | 
| 25 | 
            +
                    
         | 
| 26 | 
            +
                    if hasattr(space_info, 'runtime'):
         | 
| 27 | 
            +
                        status = space_info.runtime.stage
         | 
| 28 | 
            +
                        print(f"Status: {status}")
         | 
| 29 | 
            +
                        return status
         | 
| 30 | 
            +
                    
         | 
| 31 | 
            +
                    print("No status information available")
         | 
| 32 | 
            +
                    return None
         | 
| 33 | 
            +
                    
         | 
| 34 | 
            +
                except Exception as e:
         | 
| 35 | 
            +
                    print(f"Error checking status: {e}")
         | 
| 36 | 
            +
                    return None
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            print("Starting Space status check...")
         | 
| 39 | 
            +
            print("Will check every 30 seconds until the Space is running...")
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            while True:
         | 
| 42 | 
            +
                status = check_space_status()
         | 
| 43 | 
            +
                print(f"Current status: {status}")
         | 
| 44 | 
            +
                
         | 
| 45 | 
            +
                if status == "RUNNING":
         | 
| 46 | 
            +
                    print("\nSpace is now running! ")
         | 
| 47 | 
            +
                    print(f"Access your Space at: https://huggingface.co/spaces/nananie143/Agentic_llm")
         | 
| 48 | 
            +
                    break
         | 
| 49 | 
            +
                elif status == "FAILED":
         | 
| 50 | 
            +
                    print("\nSpace build failed! Please check the logs for details.")
         | 
| 51 | 
            +
                    break
         | 
| 52 | 
            +
                elif status is None:
         | 
| 53 | 
            +
                    print("\nCouldn't determine status. Will try again...")
         | 
| 54 | 
            +
                
         | 
| 55 | 
            +
                time.sleep(30)
         | 
    	
        config.py
    ADDED
    
    | @@ -0,0 +1,321 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            System Configuration
         | 
| 3 | 
            +
            ------------------
         | 
| 4 | 
            +
            Central configuration for the Agentic System including:
         | 
| 5 | 
            +
            1. Local Model Settings
         | 
| 6 | 
            +
            2. Team Settings
         | 
| 7 | 
            +
            3. System Parameters
         | 
| 8 | 
            +
            4. Resource Limits
         | 
| 9 | 
            +
            5. Free API Configurations
         | 
| 10 | 
            +
            """
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            import os
         | 
| 13 | 
            +
            from typing import Dict, Any
         | 
| 14 | 
            +
            from pathlib import Path
         | 
| 15 | 
            +
            from dotenv import load_dotenv
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # Load environment variables
         | 
| 18 | 
            +
            load_dotenv()
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            class SystemConfig:
         | 
| 21 | 
            +
                """System-wide configuration."""
         | 
| 22 | 
            +
                
         | 
| 23 | 
            +
                # Base Paths
         | 
| 24 | 
            +
                BASE_DIR = Path(__file__).parent.absolute()
         | 
| 25 | 
            +
                CACHE_DIR = BASE_DIR / "cache"
         | 
| 26 | 
            +
                LOG_DIR = BASE_DIR / "logs"
         | 
| 27 | 
            +
                DATA_DIR = BASE_DIR / "data"
         | 
| 28 | 
            +
                MODEL_DIR = BASE_DIR / "models"
         | 
| 29 | 
            +
                
         | 
| 30 | 
            +
                # System Parameters
         | 
| 31 | 
            +
                DEBUG_MODE = os.getenv("DEBUG_MODE", "False").lower() == "true"
         | 
| 32 | 
            +
                LOG_LEVEL = os.getenv("LOG_LEVEL", "INFO")
         | 
| 33 | 
            +
                MAX_WORKERS = int(os.getenv("MAX_WORKERS", "4"))
         | 
| 34 | 
            +
                ASYNC_TIMEOUT = int(os.getenv("ASYNC_TIMEOUT", "30"))
         | 
| 35 | 
            +
                
         | 
| 36 | 
            +
                # Local Model Configurations
         | 
| 37 | 
            +
                MODEL_CONFIG = {
         | 
| 38 | 
            +
                    "quick_coder": {
         | 
| 39 | 
            +
                        "name": "tugstugi/Qwen2.5-Coder-0.5B-QwQ-draft",
         | 
| 40 | 
            +
                        "type": "transformers",
         | 
| 41 | 
            +
                        "description": "Fast code completion and simple tasks",
         | 
| 42 | 
            +
                        "temperature": 0.2,
         | 
| 43 | 
            +
                        "max_tokens": 1000,
         | 
| 44 | 
            +
                        "timeout": 30
         | 
| 45 | 
            +
                    },
         | 
| 46 | 
            +
                    "deep_coder": {
         | 
| 47 | 
            +
                        "name": "YorkieOH10/deepseek-coder-6.7B-kexer-Q8_0-GGUF",
         | 
| 48 | 
            +
                        "type": "gguf",
         | 
| 49 | 
            +
                        "description": "Complex code generation and refactoring",
         | 
| 50 | 
            +
                        "temperature": 0.3,
         | 
| 51 | 
            +
                        "max_tokens": 2000,
         | 
| 52 | 
            +
                        "timeout": 45
         | 
| 53 | 
            +
                    },
         | 
| 54 | 
            +
                    "text_gen": {
         | 
| 55 | 
            +
                        "name": "Orenguteng/Llama-3-8B-Lexi-Uncensored",
         | 
| 56 | 
            +
                        "type": "transformers",
         | 
| 57 | 
            +
                        "description": "General text generation and reasoning",
         | 
| 58 | 
            +
                        "temperature": 0.7,
         | 
| 59 | 
            +
                        "max_tokens": 1500,
         | 
| 60 | 
            +
                        "timeout": 40
         | 
| 61 | 
            +
                    },
         | 
| 62 | 
            +
                    "workflow": {
         | 
| 63 | 
            +
                        "name": "deepseek-ai/JanusFlow-1.3B",
         | 
| 64 | 
            +
                        "type": "transformers",
         | 
| 65 | 
            +
                        "description": "Task planning and workflow management",
         | 
| 66 | 
            +
                        "temperature": 0.5,
         | 
| 67 | 
            +
                        "max_tokens": 1000,
         | 
| 68 | 
            +
                        "timeout": 30
         | 
| 69 | 
            +
                    }
         | 
| 70 | 
            +
                }
         | 
| 71 | 
            +
                
         | 
| 72 | 
            +
                # Team Configurations
         | 
| 73 | 
            +
                TEAM_CONFIG = {
         | 
| 74 | 
            +
                    "coders": {
         | 
| 75 | 
            +
                        "min_agents": 3,
         | 
| 76 | 
            +
                        "max_agents": 7,
         | 
| 77 | 
            +
                        "capabilities": [
         | 
| 78 | 
            +
                            "full_stack_development",
         | 
| 79 | 
            +
                            "cloud_architecture",
         | 
| 80 | 
            +
                            "ai_ml",
         | 
| 81 | 
            +
                            "blockchain",
         | 
| 82 | 
            +
                            "mobile_development"
         | 
| 83 | 
            +
                        ],
         | 
| 84 | 
            +
                        "resource_limits": {
         | 
| 85 | 
            +
                            "cpu_percent": 80,
         | 
| 86 | 
            +
                            "memory_mb": 4096,
         | 
| 87 | 
            +
                            "gpu_memory_mb": 2048
         | 
| 88 | 
            +
                        }
         | 
| 89 | 
            +
                    },
         | 
| 90 | 
            +
                    "business": {
         | 
| 91 | 
            +
                        "min_agents": 2,
         | 
| 92 | 
            +
                        "max_agents": 5,
         | 
| 93 | 
            +
                        "capabilities": [
         | 
| 94 | 
            +
                            "market_analysis",
         | 
| 95 | 
            +
                            "business_strategy",
         | 
| 96 | 
            +
                            "digital_transformation",
         | 
| 97 | 
            +
                            "startup_innovation",
         | 
| 98 | 
            +
                            "product_management"
         | 
| 99 | 
            +
                        ],
         | 
| 100 | 
            +
                        "resource_limits": {
         | 
| 101 | 
            +
                            "cpu_percent": 60,
         | 
| 102 | 
            +
                            "memory_mb": 2048,
         | 
| 103 | 
            +
                            "api_calls_per_minute": 100
         | 
| 104 | 
            +
                        }
         | 
| 105 | 
            +
                    },
         | 
| 106 | 
            +
                    "research": {
         | 
| 107 | 
            +
                        "min_agents": 2,
         | 
| 108 | 
            +
                        "max_agents": 6,
         | 
| 109 | 
            +
                        "capabilities": [
         | 
| 110 | 
            +
                            "deep_research",
         | 
| 111 | 
            +
                            "data_analysis",
         | 
| 112 | 
            +
                            "trend_forecasting",
         | 
| 113 | 
            +
                            "competitive_analysis",
         | 
| 114 | 
            +
                            "technology_assessment"
         | 
| 115 | 
            +
                        ],
         | 
| 116 | 
            +
                        "resource_limits": {
         | 
| 117 | 
            +
                            "cpu_percent": 70,
         | 
| 118 | 
            +
                            "memory_mb": 3072,
         | 
| 119 | 
            +
                            "api_calls_per_minute": 150
         | 
| 120 | 
            +
                        }
         | 
| 121 | 
            +
                    },
         | 
| 122 | 
            +
                    "traders": {
         | 
| 123 | 
            +
                        "min_agents": 2,
         | 
| 124 | 
            +
                        "max_agents": 5,
         | 
| 125 | 
            +
                        "capabilities": [
         | 
| 126 | 
            +
                            "crypto_trading",
         | 
| 127 | 
            +
                            "sports_betting",
         | 
| 128 | 
            +
                            "risk_management",
         | 
| 129 | 
            +
                            "market_timing",
         | 
| 130 | 
            +
                            "portfolio_optimization"
         | 
| 131 | 
            +
                        ],
         | 
| 132 | 
            +
                        "resource_limits": {
         | 
| 133 | 
            +
                            "cpu_percent": 60,
         | 
| 134 | 
            +
                            "memory_mb": 2048,
         | 
| 135 | 
            +
                            "api_calls_per_minute": 200
         | 
| 136 | 
            +
                        }
         | 
| 137 | 
            +
                    }
         | 
| 138 | 
            +
                }
         | 
| 139 | 
            +
                
         | 
| 140 | 
            +
                # Resource Management
         | 
| 141 | 
            +
                RESOURCE_LIMITS = {
         | 
| 142 | 
            +
                    "total_cpu_percent": 90,
         | 
| 143 | 
            +
                    "total_memory_mb": 8192,
         | 
| 144 | 
            +
                    "total_gpu_memory_mb": 4096,
         | 
| 145 | 
            +
                    "max_api_calls_per_minute": 500,
         | 
| 146 | 
            +
                    "max_concurrent_tasks": 20
         | 
| 147 | 
            +
                }
         | 
| 148 | 
            +
                
         | 
| 149 | 
            +
                # Collaboration Settings
         | 
| 150 | 
            +
                COLLABORATION_CONFIG = {
         | 
| 151 | 
            +
                    "min_confidence_threshold": 0.6,
         | 
| 152 | 
            +
                    "max_team_size": 10,
         | 
| 153 | 
            +
                    "max_concurrent_objectives": 5,
         | 
| 154 | 
            +
                    "objective_timeout_minutes": 60,
         | 
| 155 | 
            +
                    "team_sync_interval_seconds": 30
         | 
| 156 | 
            +
                }
         | 
| 157 | 
            +
                
         | 
| 158 | 
            +
                # Error Recovery
         | 
| 159 | 
            +
                ERROR_RECOVERY = {
         | 
| 160 | 
            +
                    "max_retries": 3,
         | 
| 161 | 
            +
                    "retry_delay_seconds": 5,
         | 
| 162 | 
            +
                    "error_threshold": 0.2,
         | 
| 163 | 
            +
                    "recovery_timeout": 300
         | 
| 164 | 
            +
                }
         | 
| 165 | 
            +
                
         | 
| 166 | 
            +
                # Monitoring
         | 
| 167 | 
            +
                MONITORING = {
         | 
| 168 | 
            +
                    "metrics_interval_seconds": 60,
         | 
| 169 | 
            +
                    "health_check_interval": 30,
         | 
| 170 | 
            +
                    "performance_log_retention_days": 7,
         | 
| 171 | 
            +
                    "alert_threshold": {
         | 
| 172 | 
            +
                        "cpu": 85,
         | 
| 173 | 
            +
                        "memory": 90,
         | 
| 174 | 
            +
                        "error_rate": 0.1
         | 
| 175 | 
            +
                    }
         | 
| 176 | 
            +
                }
         | 
| 177 | 
            +
                
         | 
| 178 | 
            +
                # Free API Configurations (No API Keys Required)
         | 
| 179 | 
            +
                API_CONFIG = {
         | 
| 180 | 
            +
                    "search": {
         | 
| 181 | 
            +
                        "duckduckgo": {
         | 
| 182 | 
            +
                            "base_url": "https://api.duckduckgo.com",
         | 
| 183 | 
            +
                            "rate_limit": 100,
         | 
| 184 | 
            +
                            "requires_auth": False,
         | 
| 185 | 
            +
                            "method": "GET"
         | 
| 186 | 
            +
                        },
         | 
| 187 | 
            +
                        "wikipedia": {
         | 
| 188 | 
            +
                            "base_url": "https://en.wikipedia.org/w/api.php",
         | 
| 189 | 
            +
                            "rate_limit": 200,
         | 
| 190 | 
            +
                            "requires_auth": False,
         | 
| 191 | 
            +
                            "method": "GET"
         | 
| 192 | 
            +
                        },
         | 
| 193 | 
            +
                        "arxiv": {
         | 
| 194 | 
            +
                            "base_url": "http://export.arxiv.org/api/query",
         | 
| 195 | 
            +
                            "rate_limit": 60,
         | 
| 196 | 
            +
                            "requires_auth": False,
         | 
| 197 | 
            +
                            "method": "GET"
         | 
| 198 | 
            +
                        },
         | 
| 199 | 
            +
                        "crossref": {
         | 
| 200 | 
            +
                            "base_url": "https://api.crossref.org/works",
         | 
| 201 | 
            +
                            "rate_limit": 50,
         | 
| 202 | 
            +
                            "requires_auth": False,
         | 
| 203 | 
            +
                            "method": "GET"
         | 
| 204 | 
            +
                        },
         | 
| 205 | 
            +
                        "unpaywall": {
         | 
| 206 | 
            +
                            "base_url": "https://api.unpaywall.org/v2",
         | 
| 207 | 
            +
                            "rate_limit": 100,
         | 
| 208 | 
            +
                            "requires_auth": False,
         | 
| 209 | 
            +
                            "method": "GET"
         | 
| 210 | 
            +
                        }
         | 
| 211 | 
            +
                    },
         | 
| 212 | 
            +
                    "crypto": {
         | 
| 213 | 
            +
                        "coincap": {
         | 
| 214 | 
            +
                            "base_url": "https://api.coincap.io/v2",
         | 
| 215 | 
            +
                            "rate_limit": 200,
         | 
| 216 | 
            +
                            "requires_auth": False,
         | 
| 217 | 
            +
                            "method": "GET",
         | 
| 218 | 
            +
                            "endpoints": {
         | 
| 219 | 
            +
                                "assets": "/assets",
         | 
| 220 | 
            +
                                "rates": "/rates",
         | 
| 221 | 
            +
                                "markets": "/markets"
         | 
| 222 | 
            +
                            }
         | 
| 223 | 
            +
                        },
         | 
| 224 | 
            +
                        "blockchair": {
         | 
| 225 | 
            +
                            "base_url": "https://api.blockchair.com",
         | 
| 226 | 
            +
                            "rate_limit": 30,
         | 
| 227 | 
            +
                            "requires_auth": False,
         | 
| 228 | 
            +
                            "method": "GET"
         | 
| 229 | 
            +
                        }
         | 
| 230 | 
            +
                    },
         | 
| 231 | 
            +
                    "news": {
         | 
| 232 | 
            +
                        "wikinews": {
         | 
| 233 | 
            +
                            "base_url": "https://en.wikinews.org/w/api.php",
         | 
| 234 | 
            +
                            "rate_limit": 200,
         | 
| 235 | 
            +
                            "requires_auth": False,
         | 
| 236 | 
            +
                            "method": "GET"
         | 
| 237 | 
            +
                        },
         | 
| 238 | 
            +
                        "reddit": {
         | 
| 239 | 
            +
                            "base_url": "https://www.reddit.com/r/news/.json",
         | 
| 240 | 
            +
                            "rate_limit": 60,
         | 
| 241 | 
            +
                            "requires_auth": False,
         | 
| 242 | 
            +
                            "method": "GET"
         | 
| 243 | 
            +
                        },
         | 
| 244 | 
            +
                        "hackernews": {
         | 
| 245 | 
            +
                            "base_url": "https://hacker-news.firebaseio.com/v0",
         | 
| 246 | 
            +
                            "rate_limit": 100,
         | 
| 247 | 
            +
                            "requires_auth": False,
         | 
| 248 | 
            +
                            "method": "GET"
         | 
| 249 | 
            +
                        }
         | 
| 250 | 
            +
                    },
         | 
| 251 | 
            +
                    "market_data": {
         | 
| 252 | 
            +
                        "yahoo_finance": {
         | 
| 253 | 
            +
                            "base_url": "https://query1.finance.yahoo.com/v8/finance",
         | 
| 254 | 
            +
                            "rate_limit": 100,
         | 
| 255 | 
            +
                            "requires_auth": False,
         | 
| 256 | 
            +
                            "method": "GET"
         | 
| 257 | 
            +
                        },
         | 
| 258 | 
            +
                        "marketstack_free": {
         | 
| 259 | 
            +
                            "base_url": "https://api.marketstack.com/v1",
         | 
| 260 | 
            +
                            "rate_limit": 100,
         | 
| 261 | 
            +
                            "requires_auth": False,
         | 
| 262 | 
            +
                            "method": "GET"
         | 
| 263 | 
            +
                        }
         | 
| 264 | 
            +
                    },
         | 
| 265 | 
            +
                    "sports": {
         | 
| 266 | 
            +
                        "football_data": {
         | 
| 267 | 
            +
                            "base_url": "https://www.football-data.org/v4",
         | 
| 268 | 
            +
                            "rate_limit": 10,
         | 
| 269 | 
            +
                            "requires_auth": False,
         | 
| 270 | 
            +
                            "method": "GET",
         | 
| 271 | 
            +
                            "free_endpoints": [
         | 
| 272 | 
            +
                                "/competitions",
         | 
| 273 | 
            +
                                "/matches"
         | 
| 274 | 
            +
                            ]
         | 
| 275 | 
            +
                        },
         | 
| 276 | 
            +
                        "nhl": {
         | 
| 277 | 
            +
                            "base_url": "https://statsapi.web.nhl.com/api/v1",
         | 
| 278 | 
            +
                            "rate_limit": 50,
         | 
| 279 | 
            +
                            "requires_auth": False,
         | 
| 280 | 
            +
                            "method": "GET"
         | 
| 281 | 
            +
                        },
         | 
| 282 | 
            +
                        "mlb": {
         | 
| 283 | 
            +
                            "base_url": "https://statsapi.mlb.com/api/v1",
         | 
| 284 | 
            +
                            "rate_limit": 50,
         | 
| 285 | 
            +
                            "requires_auth": False,
         | 
| 286 | 
            +
                            "method": "GET"
         | 
| 287 | 
            +
                        }
         | 
| 288 | 
            +
                    },
         | 
| 289 | 
            +
                    "web_scraping": {
         | 
| 290 | 
            +
                        "web_archive": {
         | 
| 291 | 
            +
                            "base_url": "https://archive.org/wayback/available",
         | 
| 292 | 
            +
                            "rate_limit": 40,
         | 
| 293 | 
            +
                            "requires_auth": False,
         | 
| 294 | 
            +
                            "method": "GET"
         | 
| 295 | 
            +
                        },
         | 
| 296 | 
            +
                        "metahtml": {
         | 
| 297 | 
            +
                            "base_url": "https://html.spec.whatwg.org/multipage",
         | 
| 298 | 
            +
                            "rate_limit": 30,
         | 
| 299 | 
            +
                            "requires_auth": False,
         | 
| 300 | 
            +
                            "method": "GET"
         | 
| 301 | 
            +
                        }
         | 
| 302 | 
            +
                    }
         | 
| 303 | 
            +
                }
         | 
| 304 | 
            +
             | 
| 305 | 
            +
                @classmethod
         | 
| 306 | 
            +
                def get_team_config(cls, team_name: str) -> Dict[str, Any]:
         | 
| 307 | 
            +
                    """Get configuration for a specific team."""
         | 
| 308 | 
            +
                    return cls.TEAM_CONFIG.get(team_name, {})
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                @classmethod
         | 
| 311 | 
            +
                def get_model_config(cls, model_type: str) -> Dict[str, Any]:
         | 
| 312 | 
            +
                    """Get configuration for a specific model type."""
         | 
| 313 | 
            +
                    return cls.MODEL_CONFIG.get(model_type, {})
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                @classmethod
         | 
| 316 | 
            +
                def get_api_config(cls, api_name: str) -> Dict[str, Any]:
         | 
| 317 | 
            +
                    """Get configuration for a specific API."""
         | 
| 318 | 
            +
                    for category in cls.API_CONFIG.values():
         | 
| 319 | 
            +
                        if api_name in category:
         | 
| 320 | 
            +
                            return category[api_name]
         | 
| 321 | 
            +
                    return {}
         | 
    	
        fix_indentation.patch
    ADDED
    
    | @@ -0,0 +1,42 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            --- reasoning.py
         | 
| 2 | 
            +
            +++ reasoning.py
         | 
| 3 | 
            +
            @@ -2796,297 +2796,297 @@
         | 
| 4 | 
            +
                 async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 5 | 
            +
                     """Align information across different modalities."""
         | 
| 6 | 
            +
                     try:
         | 
| 7 | 
            +
                         # Extract modality types
         | 
| 8 | 
            +
                         modal_types = list(modalities.keys())
         | 
| 9 | 
            +
                         
         | 
| 10 | 
            +
                         # Initialize alignment results
         | 
| 11 | 
            +
                         alignments = []
         | 
| 12 | 
            +
                         
         | 
| 13 | 
            +
                         # Process each modality pair
         | 
| 14 | 
            +
                         for i in range(len(modal_types)):
         | 
| 15 | 
            +
                             for j in range(i + 1, len(modal_types)):
         | 
| 16 | 
            +
                                 type1, type2 = modal_types[i], modal_types[j]
         | 
| 17 | 
            +
                                 
         | 
| 18 | 
            +
                                 # Get items from each modality
         | 
| 19 | 
            +
                                 items1 = modalities[type1]
         | 
| 20 | 
            +
                                 items2 = modalities[type2]
         | 
| 21 | 
            +
                                 
         | 
| 22 | 
            +
                                 # Find alignments between items
         | 
| 23 | 
            +
                                 for item1 in items1:
         | 
| 24 | 
            +
                                     for item2 in items2:
         | 
| 25 | 
            +
                                         similarity = self._calculate_similarity(item1, item2)
         | 
| 26 | 
            +
                                         if similarity > 0.5:  # Threshold for alignment
         | 
| 27 | 
            +
                                             alignments.append({
         | 
| 28 | 
            +
                                                 "type1": type1,
         | 
| 29 | 
            +
                                                 "type2": type2,
         | 
| 30 | 
            +
                                                 "item1": item1,
         | 
| 31 | 
            +
                                                 "item2": item2,
         | 
| 32 | 
            +
                                                 "similarity": similarity
         | 
| 33 | 
            +
                                             })
         | 
| 34 | 
            +
                         
         | 
| 35 | 
            +
                         # Sort alignments by similarity
         | 
| 36 | 
            +
                         alignments.sort(key=lambda x: x["similarity"], reverse=True)
         | 
| 37 | 
            +
                         
         | 
| 38 | 
            +
                         return alignments
         | 
| 39 | 
            +
                         
         | 
| 40 | 
            +
                     except Exception as e:
         | 
| 41 | 
            +
                         logging.error(f"Error in cross-modal alignment: {str(e)}")
         | 
| 42 | 
            +
                         return []
         | 
    	
        meta_learning.py
    ADDED
    
    | @@ -0,0 +1,406 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Meta-Learning System
         | 
| 3 | 
            +
            ------------------
         | 
| 4 | 
            +
            Implements meta-learning capabilities for improved learning and adaptation.
         | 
| 5 | 
            +
            """
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from typing import Dict, Any, List, Optional, Tuple
         | 
| 8 | 
            +
            import numpy as np
         | 
| 9 | 
            +
            from dataclasses import dataclass, field
         | 
| 10 | 
            +
            import logging
         | 
| 11 | 
            +
            from datetime import datetime
         | 
| 12 | 
            +
            from enum import Enum
         | 
| 13 | 
            +
            import json
         | 
| 14 | 
            +
            from .quantum_learning import QuantumLearningSystem, Pattern, PatternType
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            class LearningStrategy(Enum):
         | 
| 17 | 
            +
                GRADIENT_BASED = "gradient_based"
         | 
| 18 | 
            +
                MEMORY_BASED = "memory_based"
         | 
| 19 | 
            +
                EVOLUTIONARY = "evolutionary"
         | 
| 20 | 
            +
                REINFORCEMENT = "reinforcement"
         | 
| 21 | 
            +
                QUANTUM = "quantum"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            @dataclass
         | 
| 24 | 
            +
            class MetaParameters:
         | 
| 25 | 
            +
                """Meta-parameters for learning strategies"""
         | 
| 26 | 
            +
                learning_rate: float = 0.01
         | 
| 27 | 
            +
                memory_size: int = 1000
         | 
| 28 | 
            +
                evolution_rate: float = 0.1
         | 
| 29 | 
            +
                exploration_rate: float = 0.2
         | 
| 30 | 
            +
                quantum_interference: float = 0.5
         | 
| 31 | 
            +
                adaptation_threshold: float = 0.7
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            @dataclass
         | 
| 34 | 
            +
            class LearningMetrics:
         | 
| 35 | 
            +
                """Metrics for learning performance"""
         | 
| 36 | 
            +
                accuracy: float
         | 
| 37 | 
            +
                convergence_rate: float
         | 
| 38 | 
            +
                adaptation_speed: float
         | 
| 39 | 
            +
                resource_usage: float
         | 
| 40 | 
            +
                timestamp: str = field(default_factory=lambda: datetime.now().isoformat())
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            class MetaLearningSystem:
         | 
| 43 | 
            +
                """Meta-learning system for optimizing learning strategies"""
         | 
| 44 | 
            +
                
         | 
| 45 | 
            +
                def __init__(self):
         | 
| 46 | 
            +
                    self.logger = logging.getLogger(__name__)
         | 
| 47 | 
            +
                    self.quantum_system = QuantumLearningSystem()
         | 
| 48 | 
            +
                    self.strategies = {}
         | 
| 49 | 
            +
                    self.performance_history = []
         | 
| 50 | 
            +
                    self.meta_parameters = MetaParameters()
         | 
| 51 | 
            +
                    
         | 
| 52 | 
            +
                async def optimize_learning(
         | 
| 53 | 
            +
                    self,
         | 
| 54 | 
            +
                    observation: Dict[str, Any],
         | 
| 55 | 
            +
                    current_strategy: LearningStrategy
         | 
| 56 | 
            +
                ) -> Tuple[Dict[str, Any], LearningMetrics]:
         | 
| 57 | 
            +
                    """Optimize learning strategy based on observation"""
         | 
| 58 | 
            +
                    try:
         | 
| 59 | 
            +
                        # Process with quantum system
         | 
| 60 | 
            +
                        quantum_result = await self.quantum_system.process_observation(observation)
         | 
| 61 | 
            +
                        
         | 
| 62 | 
            +
                        # Evaluate current strategy
         | 
| 63 | 
            +
                        current_metrics = self._evaluate_strategy(
         | 
| 64 | 
            +
                            current_strategy,
         | 
| 65 | 
            +
                            observation,
         | 
| 66 | 
            +
                            quantum_result
         | 
| 67 | 
            +
                        )
         | 
| 68 | 
            +
                        
         | 
| 69 | 
            +
                        # Update performance history
         | 
| 70 | 
            +
                        self._update_performance_history(current_metrics)
         | 
| 71 | 
            +
                        
         | 
| 72 | 
            +
                        # Adapt meta-parameters
         | 
| 73 | 
            +
                        self._adapt_meta_parameters(current_metrics)
         | 
| 74 | 
            +
                        
         | 
| 75 | 
            +
                        # Select optimal strategy
         | 
| 76 | 
            +
                        optimal_strategy = self._select_optimal_strategy(
         | 
| 77 | 
            +
                            observation,
         | 
| 78 | 
            +
                            current_metrics
         | 
| 79 | 
            +
                        )
         | 
| 80 | 
            +
                        
         | 
| 81 | 
            +
                        # Apply selected strategy
         | 
| 82 | 
            +
                        result = await self._apply_strategy(
         | 
| 83 | 
            +
                            optimal_strategy,
         | 
| 84 | 
            +
                            observation,
         | 
| 85 | 
            +
                            quantum_result
         | 
| 86 | 
            +
                        )
         | 
| 87 | 
            +
                        
         | 
| 88 | 
            +
                        return result, current_metrics
         | 
| 89 | 
            +
                        
         | 
| 90 | 
            +
                    except Exception as e:
         | 
| 91 | 
            +
                        self.logger.error(f"Failed to optimize learning: {str(e)}")
         | 
| 92 | 
            +
                        raise
         | 
| 93 | 
            +
                        
         | 
| 94 | 
            +
                def _evaluate_strategy(
         | 
| 95 | 
            +
                    self,
         | 
| 96 | 
            +
                    strategy: LearningStrategy,
         | 
| 97 | 
            +
                    observation: Dict[str, Any],
         | 
| 98 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 99 | 
            +
                ) -> LearningMetrics:
         | 
| 100 | 
            +
                    """Evaluate performance of current learning strategy"""
         | 
| 101 | 
            +
                    # Calculate accuracy
         | 
| 102 | 
            +
                    accuracy = self._calculate_accuracy(
         | 
| 103 | 
            +
                        strategy,
         | 
| 104 | 
            +
                        observation,
         | 
| 105 | 
            +
                        quantum_result
         | 
| 106 | 
            +
                    )
         | 
| 107 | 
            +
                    
         | 
| 108 | 
            +
                    # Calculate convergence rate
         | 
| 109 | 
            +
                    convergence_rate = self._calculate_convergence_rate(
         | 
| 110 | 
            +
                        strategy,
         | 
| 111 | 
            +
                        self.performance_history
         | 
| 112 | 
            +
                    )
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                    # Calculate adaptation speed
         | 
| 115 | 
            +
                    adaptation_speed = self._calculate_adaptation_speed(
         | 
| 116 | 
            +
                        strategy,
         | 
| 117 | 
            +
                        observation
         | 
| 118 | 
            +
                    )
         | 
| 119 | 
            +
                    
         | 
| 120 | 
            +
                    # Calculate resource usage
         | 
| 121 | 
            +
                    resource_usage = self._calculate_resource_usage(strategy)
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    return LearningMetrics(
         | 
| 124 | 
            +
                        accuracy=accuracy,
         | 
| 125 | 
            +
                        convergence_rate=convergence_rate,
         | 
| 126 | 
            +
                        adaptation_speed=adaptation_speed,
         | 
| 127 | 
            +
                        resource_usage=resource_usage
         | 
| 128 | 
            +
                    )
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                def _update_performance_history(
         | 
| 131 | 
            +
                    self,
         | 
| 132 | 
            +
                    metrics: LearningMetrics
         | 
| 133 | 
            +
                ) -> None:
         | 
| 134 | 
            +
                    """Update performance history with new metrics"""
         | 
| 135 | 
            +
                    self.performance_history.append(metrics)
         | 
| 136 | 
            +
                    
         | 
| 137 | 
            +
                    # Maintain history size
         | 
| 138 | 
            +
                    if len(self.performance_history) > self.meta_parameters.memory_size:
         | 
| 139 | 
            +
                        self.performance_history.pop(0)
         | 
| 140 | 
            +
                        
         | 
| 141 | 
            +
                def _adapt_meta_parameters(
         | 
| 142 | 
            +
                    self,
         | 
| 143 | 
            +
                    metrics: LearningMetrics
         | 
| 144 | 
            +
                ) -> None:
         | 
| 145 | 
            +
                    """Adapt meta-parameters based on performance metrics"""
         | 
| 146 | 
            +
                    # Adjust learning rate
         | 
| 147 | 
            +
                    if metrics.convergence_rate < self.meta_parameters.adaptation_threshold:
         | 
| 148 | 
            +
                        self.meta_parameters.learning_rate *= 0.9
         | 
| 149 | 
            +
                    else:
         | 
| 150 | 
            +
                        self.meta_parameters.learning_rate *= 1.1
         | 
| 151 | 
            +
                        
         | 
| 152 | 
            +
                    # Adjust memory size
         | 
| 153 | 
            +
                    if metrics.resource_usage > 0.8:
         | 
| 154 | 
            +
                        self.meta_parameters.memory_size = int(
         | 
| 155 | 
            +
                            self.meta_parameters.memory_size * 0.9
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
                    elif metrics.resource_usage < 0.2:
         | 
| 158 | 
            +
                        self.meta_parameters.memory_size = int(
         | 
| 159 | 
            +
                            self.meta_parameters.memory_size * 1.1
         | 
| 160 | 
            +
                        )
         | 
| 161 | 
            +
                        
         | 
| 162 | 
            +
                    # Adjust evolution rate
         | 
| 163 | 
            +
                    if metrics.adaptation_speed < self.meta_parameters.adaptation_threshold:
         | 
| 164 | 
            +
                        self.meta_parameters.evolution_rate *= 1.1
         | 
| 165 | 
            +
                    else:
         | 
| 166 | 
            +
                        self.meta_parameters.evolution_rate *= 0.9
         | 
| 167 | 
            +
                        
         | 
| 168 | 
            +
                    # Adjust exploration rate
         | 
| 169 | 
            +
                    if metrics.accuracy < self.meta_parameters.adaptation_threshold:
         | 
| 170 | 
            +
                        self.meta_parameters.exploration_rate *= 1.1
         | 
| 171 | 
            +
                    else:
         | 
| 172 | 
            +
                        self.meta_parameters.exploration_rate *= 0.9
         | 
| 173 | 
            +
                        
         | 
| 174 | 
            +
                    # Adjust quantum interference
         | 
| 175 | 
            +
                    if metrics.accuracy > 0.8:
         | 
| 176 | 
            +
                        self.meta_parameters.quantum_interference *= 1.1
         | 
| 177 | 
            +
                    else:
         | 
| 178 | 
            +
                        self.meta_parameters.quantum_interference *= 0.9
         | 
| 179 | 
            +
                        
         | 
| 180 | 
            +
                    # Ensure parameters stay within reasonable bounds
         | 
| 181 | 
            +
                    self._normalize_parameters()
         | 
| 182 | 
            +
                    
         | 
| 183 | 
            +
                def _normalize_parameters(self) -> None:
         | 
| 184 | 
            +
                    """Normalize meta-parameters to stay within bounds"""
         | 
| 185 | 
            +
                    self.meta_parameters.learning_rate = np.clip(
         | 
| 186 | 
            +
                        self.meta_parameters.learning_rate,
         | 
| 187 | 
            +
                        0.001,
         | 
| 188 | 
            +
                        0.1
         | 
| 189 | 
            +
                    )
         | 
| 190 | 
            +
                    self.meta_parameters.memory_size = np.clip(
         | 
| 191 | 
            +
                        self.meta_parameters.memory_size,
         | 
| 192 | 
            +
                        100,
         | 
| 193 | 
            +
                        10000
         | 
| 194 | 
            +
                    )
         | 
| 195 | 
            +
                    self.meta_parameters.evolution_rate = np.clip(
         | 
| 196 | 
            +
                        self.meta_parameters.evolution_rate,
         | 
| 197 | 
            +
                        0.01,
         | 
| 198 | 
            +
                        0.5
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
                    self.meta_parameters.exploration_rate = np.clip(
         | 
| 201 | 
            +
                        self.meta_parameters.exploration_rate,
         | 
| 202 | 
            +
                        0.1,
         | 
| 203 | 
            +
                        0.9
         | 
| 204 | 
            +
                    )
         | 
| 205 | 
            +
                    self.meta_parameters.quantum_interference = np.clip(
         | 
| 206 | 
            +
                        self.meta_parameters.quantum_interference,
         | 
| 207 | 
            +
                        0.1,
         | 
| 208 | 
            +
                        0.9
         | 
| 209 | 
            +
                    )
         | 
| 210 | 
            +
                    
         | 
| 211 | 
            +
                def _select_optimal_strategy(
         | 
| 212 | 
            +
                    self,
         | 
| 213 | 
            +
                    observation: Dict[str, Any],
         | 
| 214 | 
            +
                    metrics: LearningMetrics
         | 
| 215 | 
            +
                ) -> LearningStrategy:
         | 
| 216 | 
            +
                    """Select optimal learning strategy"""
         | 
| 217 | 
            +
                    strategies = list(LearningStrategy)
         | 
| 218 | 
            +
                    scores = []
         | 
| 219 | 
            +
                    
         | 
| 220 | 
            +
                    for strategy in strategies:
         | 
| 221 | 
            +
                        # Calculate strategy score
         | 
| 222 | 
            +
                        score = self._calculate_strategy_score(
         | 
| 223 | 
            +
                            strategy,
         | 
| 224 | 
            +
                            observation,
         | 
| 225 | 
            +
                            metrics
         | 
| 226 | 
            +
                        )
         | 
| 227 | 
            +
                        scores.append((strategy, score))
         | 
| 228 | 
            +
                        
         | 
| 229 | 
            +
                    # Select strategy with highest score
         | 
| 230 | 
            +
                    optimal_strategy = max(scores, key=lambda x: x[1])[0]
         | 
| 231 | 
            +
                    
         | 
| 232 | 
            +
                    return optimal_strategy
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                async def _apply_strategy(
         | 
| 235 | 
            +
                    self,
         | 
| 236 | 
            +
                    strategy: LearningStrategy,
         | 
| 237 | 
            +
                    observation: Dict[str, Any],
         | 
| 238 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 239 | 
            +
                ) -> Dict[str, Any]:
         | 
| 240 | 
            +
                    """Apply selected learning strategy"""
         | 
| 241 | 
            +
                    if strategy == LearningStrategy.GRADIENT_BASED:
         | 
| 242 | 
            +
                        return await self._apply_gradient_strategy(
         | 
| 243 | 
            +
                            observation,
         | 
| 244 | 
            +
                            quantum_result
         | 
| 245 | 
            +
                        )
         | 
| 246 | 
            +
                    elif strategy == LearningStrategy.MEMORY_BASED:
         | 
| 247 | 
            +
                        return await self._apply_memory_strategy(
         | 
| 248 | 
            +
                            observation,
         | 
| 249 | 
            +
                            quantum_result
         | 
| 250 | 
            +
                        )
         | 
| 251 | 
            +
                    elif strategy == LearningStrategy.EVOLUTIONARY:
         | 
| 252 | 
            +
                        return await self._apply_evolutionary_strategy(
         | 
| 253 | 
            +
                            observation,
         | 
| 254 | 
            +
                            quantum_result
         | 
| 255 | 
            +
                        )
         | 
| 256 | 
            +
                    elif strategy == LearningStrategy.REINFORCEMENT:
         | 
| 257 | 
            +
                        return await self._apply_reinforcement_strategy(
         | 
| 258 | 
            +
                            observation,
         | 
| 259 | 
            +
                            quantum_result
         | 
| 260 | 
            +
                        )
         | 
| 261 | 
            +
                    else:  # QUANTUM
         | 
| 262 | 
            +
                        return quantum_result
         | 
| 263 | 
            +
                        
         | 
| 264 | 
            +
                def _calculate_accuracy(
         | 
| 265 | 
            +
                    self,
         | 
| 266 | 
            +
                    strategy: LearningStrategy,
         | 
| 267 | 
            +
                    observation: Dict[str, Any],
         | 
| 268 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 269 | 
            +
                ) -> float:
         | 
| 270 | 
            +
                    """Calculate accuracy of learning strategy"""
         | 
| 271 | 
            +
                    if "patterns" not in quantum_result:
         | 
| 272 | 
            +
                        return 0.0
         | 
| 273 | 
            +
                        
         | 
| 274 | 
            +
                    patterns = quantum_result["patterns"]
         | 
| 275 | 
            +
                    if not patterns:
         | 
| 276 | 
            +
                        return 0.0
         | 
| 277 | 
            +
                        
         | 
| 278 | 
            +
                    # Calculate pattern confidence
         | 
| 279 | 
            +
                    confidence_sum = sum(pattern.confidence for pattern in patterns)
         | 
| 280 | 
            +
                    return confidence_sum / len(patterns)
         | 
| 281 | 
            +
                    
         | 
| 282 | 
            +
                def _calculate_convergence_rate(
         | 
| 283 | 
            +
                    self,
         | 
| 284 | 
            +
                    strategy: LearningStrategy,
         | 
| 285 | 
            +
                    history: List[LearningMetrics]
         | 
| 286 | 
            +
                ) -> float:
         | 
| 287 | 
            +
                    """Calculate convergence rate of learning strategy"""
         | 
| 288 | 
            +
                    if not history:
         | 
| 289 | 
            +
                        return 0.0
         | 
| 290 | 
            +
                        
         | 
| 291 | 
            +
                    # Calculate rate of improvement
         | 
| 292 | 
            +
                    accuracies = [metrics.accuracy for metrics in history[-10:]]
         | 
| 293 | 
            +
                    if len(accuracies) < 2:
         | 
| 294 | 
            +
                        return 0.0
         | 
| 295 | 
            +
                        
         | 
| 296 | 
            +
                    differences = np.diff(accuracies)
         | 
| 297 | 
            +
                    return float(np.mean(differences > 0))
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                def _calculate_adaptation_speed(
         | 
| 300 | 
            +
                    self,
         | 
| 301 | 
            +
                    strategy: LearningStrategy,
         | 
| 302 | 
            +
                    observation: Dict[str, Any]
         | 
| 303 | 
            +
                ) -> float:
         | 
| 304 | 
            +
                    """Calculate adaptation speed of learning strategy"""
         | 
| 305 | 
            +
                    if not self.performance_history:
         | 
| 306 | 
            +
                        return 0.0
         | 
| 307 | 
            +
                        
         | 
| 308 | 
            +
                    # Calculate time to reach adaptation threshold
         | 
| 309 | 
            +
                    threshold = self.meta_parameters.adaptation_threshold
         | 
| 310 | 
            +
                    for i, metrics in enumerate(self.performance_history):
         | 
| 311 | 
            +
                        if metrics.accuracy >= threshold:
         | 
| 312 | 
            +
                            return 1.0 / (i + 1)
         | 
| 313 | 
            +
                            
         | 
| 314 | 
            +
                    return 0.0
         | 
| 315 | 
            +
                    
         | 
| 316 | 
            +
                def _calculate_resource_usage(
         | 
| 317 | 
            +
                    self,
         | 
| 318 | 
            +
                    strategy: LearningStrategy
         | 
| 319 | 
            +
                ) -> float:
         | 
| 320 | 
            +
                    """Calculate resource usage of learning strategy"""
         | 
| 321 | 
            +
                    # Simulate resource usage based on strategy
         | 
| 322 | 
            +
                    base_usage = {
         | 
| 323 | 
            +
                        LearningStrategy.GRADIENT_BASED: 0.4,
         | 
| 324 | 
            +
                        LearningStrategy.MEMORY_BASED: 0.6,
         | 
| 325 | 
            +
                        LearningStrategy.EVOLUTIONARY: 0.7,
         | 
| 326 | 
            +
                        LearningStrategy.REINFORCEMENT: 0.5,
         | 
| 327 | 
            +
                        LearningStrategy.QUANTUM: 0.8
         | 
| 328 | 
            +
                    }
         | 
| 329 | 
            +
                    
         | 
| 330 | 
            +
                    return base_usage[strategy]
         | 
| 331 | 
            +
                    
         | 
| 332 | 
            +
                def _calculate_strategy_score(
         | 
| 333 | 
            +
                    self,
         | 
| 334 | 
            +
                    strategy: LearningStrategy,
         | 
| 335 | 
            +
                    observation: Dict[str, Any],
         | 
| 336 | 
            +
                    metrics: LearningMetrics
         | 
| 337 | 
            +
                ) -> float:
         | 
| 338 | 
            +
                    """Calculate score for learning strategy"""
         | 
| 339 | 
            +
                    # Weight different factors
         | 
| 340 | 
            +
                    weights = {
         | 
| 341 | 
            +
                        "accuracy": 0.4,
         | 
| 342 | 
            +
                        "convergence": 0.2,
         | 
| 343 | 
            +
                        "adaptation": 0.2,
         | 
| 344 | 
            +
                        "resources": 0.2
         | 
| 345 | 
            +
                    }
         | 
| 346 | 
            +
                    
         | 
| 347 | 
            +
                    score = (
         | 
| 348 | 
            +
                        weights["accuracy"] * metrics.accuracy +
         | 
| 349 | 
            +
                        weights["convergence"] * metrics.convergence_rate +
         | 
| 350 | 
            +
                        weights["adaptation"] * metrics.adaptation_speed +
         | 
| 351 | 
            +
                        weights["resources"] * (1 - metrics.resource_usage)
         | 
| 352 | 
            +
                    )
         | 
| 353 | 
            +
                    
         | 
| 354 | 
            +
                    # Add exploration bonus
         | 
| 355 | 
            +
                    if np.random.random() < self.meta_parameters.exploration_rate:
         | 
| 356 | 
            +
                        score += 0.1
         | 
| 357 | 
            +
                        
         | 
| 358 | 
            +
                    return score
         | 
| 359 | 
            +
                    
         | 
| 360 | 
            +
                async def _apply_gradient_strategy(
         | 
| 361 | 
            +
                    self,
         | 
| 362 | 
            +
                    observation: Dict[str, Any],
         | 
| 363 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 364 | 
            +
                ) -> Dict[str, Any]:
         | 
| 365 | 
            +
                    """Apply gradient-based learning strategy"""
         | 
| 366 | 
            +
                    return {
         | 
| 367 | 
            +
                        "result": "gradient_optimization",
         | 
| 368 | 
            +
                        "quantum_enhanced": quantum_result,
         | 
| 369 | 
            +
                        "meta_parameters": self.meta_parameters.__dict__
         | 
| 370 | 
            +
                    }
         | 
| 371 | 
            +
                    
         | 
| 372 | 
            +
                async def _apply_memory_strategy(
         | 
| 373 | 
            +
                    self,
         | 
| 374 | 
            +
                    observation: Dict[str, Any],
         | 
| 375 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 376 | 
            +
                ) -> Dict[str, Any]:
         | 
| 377 | 
            +
                    """Apply memory-based learning strategy"""
         | 
| 378 | 
            +
                    return {
         | 
| 379 | 
            +
                        "result": "memory_optimization",
         | 
| 380 | 
            +
                        "quantum_enhanced": quantum_result,
         | 
| 381 | 
            +
                        "meta_parameters": self.meta_parameters.__dict__
         | 
| 382 | 
            +
                    }
         | 
| 383 | 
            +
                    
         | 
| 384 | 
            +
                async def _apply_evolutionary_strategy(
         | 
| 385 | 
            +
                    self,
         | 
| 386 | 
            +
                    observation: Dict[str, Any],
         | 
| 387 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 388 | 
            +
                ) -> Dict[str, Any]:
         | 
| 389 | 
            +
                    """Apply evolutionary learning strategy"""
         | 
| 390 | 
            +
                    return {
         | 
| 391 | 
            +
                        "result": "evolutionary_optimization",
         | 
| 392 | 
            +
                        "quantum_enhanced": quantum_result,
         | 
| 393 | 
            +
                        "meta_parameters": self.meta_parameters.__dict__
         | 
| 394 | 
            +
                    }
         | 
| 395 | 
            +
                    
         | 
| 396 | 
            +
                async def _apply_reinforcement_strategy(
         | 
| 397 | 
            +
                    self,
         | 
| 398 | 
            +
                    observation: Dict[str, Any],
         | 
| 399 | 
            +
                    quantum_result: Dict[str, Any]
         | 
| 400 | 
            +
                ) -> Dict[str, Any]:
         | 
| 401 | 
            +
                    """Apply reinforcement learning strategy"""
         | 
| 402 | 
            +
                    return {
         | 
| 403 | 
            +
                        "result": "reinforcement_optimization",
         | 
| 404 | 
            +
                        "quantum_enhanced": quantum_result,
         | 
| 405 | 
            +
                        "meta_parameters": self.meta_parameters.__dict__
         | 
| 406 | 
            +
                    }
         | 
    	
        multimodal_reasoning.py
    ADDED
    
    | @@ -0,0 +1,273 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Multi-Modal Reasoning Implementation
         | 
| 3 | 
            +
            ----------------------------------
         | 
| 4 | 
            +
            Implements reasoning across different types of information.
         | 
| 5 | 
            +
            """
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            import logging
         | 
| 8 | 
            +
            from typing import Dict, Any, List
         | 
| 9 | 
            +
            from datetime import datetime
         | 
| 10 | 
            +
            import json
         | 
| 11 | 
            +
            import numpy as np
         | 
| 12 | 
            +
            from .reasoning import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class MultiModalReasoning(ReasoningStrategy):
         | 
| 15 | 
            +
                """Implements multi-modal reasoning across different types of information."""
         | 
| 16 | 
            +
                
         | 
| 17 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 18 | 
            +
                    try:
         | 
| 19 | 
            +
                        # Process different modalities
         | 
| 20 | 
            +
                        modalities = await self._process_modalities(query, context)
         | 
| 21 | 
            +
                        
         | 
| 22 | 
            +
                        # Align across modalities
         | 
| 23 | 
            +
                        alignment = await self._cross_modal_alignment(modalities, context)
         | 
| 24 | 
            +
                        
         | 
| 25 | 
            +
                        # Integrated analysis
         | 
| 26 | 
            +
                        integration = await self._integrated_analysis(alignment, context)
         | 
| 27 | 
            +
                        
         | 
| 28 | 
            +
                        # Generate final response
         | 
| 29 | 
            +
                        response = await self._generate_response(integration, context)
         | 
| 30 | 
            +
                        
         | 
| 31 | 
            +
                        return {
         | 
| 32 | 
            +
                            "success": True,
         | 
| 33 | 
            +
                            "answer": response["conclusion"],
         | 
| 34 | 
            +
                            "modalities": modalities,
         | 
| 35 | 
            +
                            "alignment": alignment,
         | 
| 36 | 
            +
                            "integration": integration,
         | 
| 37 | 
            +
                            "confidence": response["confidence"]
         | 
| 38 | 
            +
                        }
         | 
| 39 | 
            +
                    except Exception as e:
         | 
| 40 | 
            +
                        logging.error(f"Error in multi-modal reasoning: {str(e)}")
         | 
| 41 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
         | 
| 44 | 
            +
                    """Process query across different modalities."""
         | 
| 45 | 
            +
                    prompt = f"""
         | 
| 46 | 
            +
                    Process query across modalities:
         | 
| 47 | 
            +
                    Query: {query}
         | 
| 48 | 
            +
                    Context: {json.dumps(context)}
         | 
| 49 | 
            +
                    
         | 
| 50 | 
            +
                    For each modality extract:
         | 
| 51 | 
            +
                    1. [Type]: Modality type
         | 
| 52 | 
            +
                    2. [Content]: Relevant content
         | 
| 53 | 
            +
                    3. [Features]: Key features
         | 
| 54 | 
            +
                    4. [Quality]: Content quality
         | 
| 55 | 
            +
                    
         | 
| 56 | 
            +
                    Format as:
         | 
| 57 | 
            +
                    [M1]
         | 
| 58 | 
            +
                    Type: ...
         | 
| 59 | 
            +
                    Content: ...
         | 
| 60 | 
            +
                    Features: ...
         | 
| 61 | 
            +
                    Quality: ...
         | 
| 62 | 
            +
                    """
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 65 | 
            +
                    return self._parse_modalities(response["answer"])
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 68 | 
            +
                    """Align information across different modalities."""
         | 
| 69 | 
            +
                    try:
         | 
| 70 | 
            +
                        # Extract modality types
         | 
| 71 | 
            +
                        modal_types = list(modalities.keys())
         | 
| 72 | 
            +
                        
         | 
| 73 | 
            +
                        # Initialize alignment results
         | 
| 74 | 
            +
                        alignments = []
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        # Process each modality pair
         | 
| 77 | 
            +
                        for i in range(len(modal_types)):
         | 
| 78 | 
            +
                            for j in range(i + 1, len(modal_types)):
         | 
| 79 | 
            +
                                type1, type2 = modal_types[i], modal_types[j]
         | 
| 80 | 
            +
                                
         | 
| 81 | 
            +
                                # Get items from each modality
         | 
| 82 | 
            +
                                items1 = modalities[type1]
         | 
| 83 | 
            +
                                items2 = modalities[type2]
         | 
| 84 | 
            +
                                
         | 
| 85 | 
            +
                                # Find alignments between items
         | 
| 86 | 
            +
                                for item1 in items1:
         | 
| 87 | 
            +
                                    for item2 in items2:
         | 
| 88 | 
            +
                                        similarity = self._calculate_similarity(item1, item2)
         | 
| 89 | 
            +
                                        if similarity > 0.5:  # Threshold for alignment
         | 
| 90 | 
            +
                                            alignments.append({
         | 
| 91 | 
            +
                                                "type1": type1,
         | 
| 92 | 
            +
                                                "type2": type2,
         | 
| 93 | 
            +
                                                "item1": item1,
         | 
| 94 | 
            +
                                                "item2": item2,
         | 
| 95 | 
            +
                                                "similarity": similarity
         | 
| 96 | 
            +
                                            })
         | 
| 97 | 
            +
                        
         | 
| 98 | 
            +
                        # Sort alignments by similarity
         | 
| 99 | 
            +
                        alignments.sort(key=lambda x: x["similarity"], reverse=True)
         | 
| 100 | 
            +
                        
         | 
| 101 | 
            +
                        return alignments
         | 
| 102 | 
            +
                        
         | 
| 103 | 
            +
                    except Exception as e:
         | 
| 104 | 
            +
                        logging.error(f"Error in cross-modal alignment: {str(e)}")
         | 
| 105 | 
            +
                        return []
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
         | 
| 108 | 
            +
                    """Calculate similarity between two items from different modalities."""
         | 
| 109 | 
            +
                    try:
         | 
| 110 | 
            +
                        # Extract content from items
         | 
| 111 | 
            +
                        content1 = str(item1.get("content", ""))
         | 
| 112 | 
            +
                        content2 = str(item2.get("content", ""))
         | 
| 113 | 
            +
                        
         | 
| 114 | 
            +
                        # Calculate basic similarity (can be enhanced with more sophisticated methods)
         | 
| 115 | 
            +
                        common_words = set(content1.lower().split()) & set(content2.lower().split())
         | 
| 116 | 
            +
                        total_words = set(content1.lower().split()) | set(content2.lower().split())
         | 
| 117 | 
            +
                        
         | 
| 118 | 
            +
                        if not total_words:
         | 
| 119 | 
            +
                            return 0.0
         | 
| 120 | 
            +
                            
         | 
| 121 | 
            +
                        return len(common_words) / len(total_words)
         | 
| 122 | 
            +
                        
         | 
| 123 | 
            +
                    except Exception as e:
         | 
| 124 | 
            +
                        logging.error(f"Error calculating similarity: {str(e)}")
         | 
| 125 | 
            +
                        return 0.0
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 128 | 
            +
                    prompt = f"""
         | 
| 129 | 
            +
                    Perform integrated multi-modal analysis:
         | 
| 130 | 
            +
                    Alignment: {json.dumps(alignment)}
         | 
| 131 | 
            +
                    Context: {json.dumps(context)}
         | 
| 132 | 
            +
                    
         | 
| 133 | 
            +
                    For each insight:
         | 
| 134 | 
            +
                    1. [Insight]: Key finding
         | 
| 135 | 
            +
                    2. [Sources]: Contributing modalities
         | 
| 136 | 
            +
                    3. [Support]: Supporting evidence
         | 
| 137 | 
            +
                    4. [Confidence]: Confidence level
         | 
| 138 | 
            +
                    
         | 
| 139 | 
            +
                    Format as:
         | 
| 140 | 
            +
                    [I1]
         | 
| 141 | 
            +
                    Insight: ...
         | 
| 142 | 
            +
                    Sources: ...
         | 
| 143 | 
            +
                    Support: ...
         | 
| 144 | 
            +
                    Confidence: ...
         | 
| 145 | 
            +
                    """
         | 
| 146 | 
            +
                    
         | 
| 147 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 148 | 
            +
                    return self._parse_integration(response["answer"])
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 151 | 
            +
                    prompt = f"""
         | 
| 152 | 
            +
                    Generate unified multi-modal response:
         | 
| 153 | 
            +
                    Integration: {json.dumps(integration)}
         | 
| 154 | 
            +
                    Context: {json.dumps(context)}
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    Provide:
         | 
| 157 | 
            +
                    1. Main conclusion
         | 
| 158 | 
            +
                    2. Modal contributions
         | 
| 159 | 
            +
                    3. Integration benefits
         | 
| 160 | 
            +
                    4. Confidence level (0-1)
         | 
| 161 | 
            +
                    """
         | 
| 162 | 
            +
                    
         | 
| 163 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 164 | 
            +
                    return self._parse_response(response["answer"])
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
         | 
| 167 | 
            +
                    """Parse modalities from response."""
         | 
| 168 | 
            +
                    modalities = {}
         | 
| 169 | 
            +
                    current_modality = None
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    for line in response.split('\n'):
         | 
| 172 | 
            +
                        line = line.strip()
         | 
| 173 | 
            +
                        if not line:
         | 
| 174 | 
            +
                            continue
         | 
| 175 | 
            +
                            
         | 
| 176 | 
            +
                        if line.startswith('[M'):
         | 
| 177 | 
            +
                            if current_modality:
         | 
| 178 | 
            +
                                if current_modality["type"] not in modalities:
         | 
| 179 | 
            +
                                    modalities[current_modality["type"]] = []
         | 
| 180 | 
            +
                                modalities[current_modality["type"]].append(current_modality)
         | 
| 181 | 
            +
                            current_modality = {
         | 
| 182 | 
            +
                                "type": "",
         | 
| 183 | 
            +
                                "content": "",
         | 
| 184 | 
            +
                                "features": "",
         | 
| 185 | 
            +
                                "quality": ""
         | 
| 186 | 
            +
                            }
         | 
| 187 | 
            +
                        elif current_modality:
         | 
| 188 | 
            +
                            if line.startswith('Type:'):
         | 
| 189 | 
            +
                                current_modality["type"] = line[5:].strip()
         | 
| 190 | 
            +
                            elif line.startswith('Content:'):
         | 
| 191 | 
            +
                                current_modality["content"] = line[8:].strip()
         | 
| 192 | 
            +
                            elif line.startswith('Features:'):
         | 
| 193 | 
            +
                                current_modality["features"] = line[9:].strip()
         | 
| 194 | 
            +
                            elif line.startswith('Quality:'):
         | 
| 195 | 
            +
                                current_modality["quality"] = line[8:].strip()
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    if current_modality:
         | 
| 198 | 
            +
                        if current_modality["type"] not in modalities:
         | 
| 199 | 
            +
                            modalities[current_modality["type"]] = []
         | 
| 200 | 
            +
                        modalities[current_modality["type"]].append(current_modality)
         | 
| 201 | 
            +
                    
         | 
| 202 | 
            +
                    return modalities
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
         | 
| 205 | 
            +
                    """Parse integration from response."""
         | 
| 206 | 
            +
                    integration = []
         | 
| 207 | 
            +
                    current_insight = None
         | 
| 208 | 
            +
                    
         | 
| 209 | 
            +
                    for line in response.split('\n'):
         | 
| 210 | 
            +
                        line = line.strip()
         | 
| 211 | 
            +
                        if not line:
         | 
| 212 | 
            +
                            continue
         | 
| 213 | 
            +
                            
         | 
| 214 | 
            +
                        if line.startswith('[I'):
         | 
| 215 | 
            +
                            if current_insight:
         | 
| 216 | 
            +
                                integration.append(current_insight)
         | 
| 217 | 
            +
                            current_insight = {
         | 
| 218 | 
            +
                                "insight": "",
         | 
| 219 | 
            +
                                "sources": "",
         | 
| 220 | 
            +
                                "support": "",
         | 
| 221 | 
            +
                                "confidence": 0.0
         | 
| 222 | 
            +
                            }
         | 
| 223 | 
            +
                        elif current_insight:
         | 
| 224 | 
            +
                            if line.startswith('Insight:'):
         | 
| 225 | 
            +
                                current_insight["insight"] = line[8:].strip()
         | 
| 226 | 
            +
                            elif line.startswith('Sources:'):
         | 
| 227 | 
            +
                                current_insight["sources"] = line[8:].strip()
         | 
| 228 | 
            +
                            elif line.startswith('Support:'):
         | 
| 229 | 
            +
                                current_insight["support"] = line[8:].strip()
         | 
| 230 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 231 | 
            +
                                try:
         | 
| 232 | 
            +
                                    current_insight["confidence"] = float(line[11:].strip())
         | 
| 233 | 
            +
                                except:
         | 
| 234 | 
            +
                                    pass
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    if current_insight:
         | 
| 237 | 
            +
                        integration.append(current_insight)
         | 
| 238 | 
            +
                    
         | 
| 239 | 
            +
                    return integration
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                def _parse_response(self, response: str) -> Dict[str, Any]:
         | 
| 242 | 
            +
                    """Parse response from response."""
         | 
| 243 | 
            +
                    response_dict = {
         | 
| 244 | 
            +
                        "conclusion": "",
         | 
| 245 | 
            +
                        "modal_contributions": [],
         | 
| 246 | 
            +
                        "integration_benefits": [],
         | 
| 247 | 
            +
                        "confidence": 0.0
         | 
| 248 | 
            +
                    }
         | 
| 249 | 
            +
                    
         | 
| 250 | 
            +
                    mode = None
         | 
| 251 | 
            +
                    for line in response.split('\n'):
         | 
| 252 | 
            +
                        line = line.strip()
         | 
| 253 | 
            +
                        if not line:
         | 
| 254 | 
            +
                            continue
         | 
| 255 | 
            +
                            
         | 
| 256 | 
            +
                        if line.startswith('Conclusion:'):
         | 
| 257 | 
            +
                            response_dict["conclusion"] = line[11:].strip()
         | 
| 258 | 
            +
                        elif line.startswith('Modal Contributions:'):
         | 
| 259 | 
            +
                            mode = "modal"
         | 
| 260 | 
            +
                        elif line.startswith('Integration Benefits:'):
         | 
| 261 | 
            +
                            mode = "integration"
         | 
| 262 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 263 | 
            +
                            try:
         | 
| 264 | 
            +
                                response_dict["confidence"] = float(line[11:].strip())
         | 
| 265 | 
            +
                            except:
         | 
| 266 | 
            +
                                response_dict["confidence"] = 0.5
         | 
| 267 | 
            +
                            mode = None
         | 
| 268 | 
            +
                        elif mode == "modal" and line.startswith('- '):
         | 
| 269 | 
            +
                            response_dict["modal_contributions"].append(line[2:].strip())
         | 
| 270 | 
            +
                        elif mode == "integration" and line.startswith('- '):
         | 
| 271 | 
            +
                            response_dict["integration_benefits"].append(line[2:].strip())
         | 
| 272 | 
            +
                    
         | 
| 273 | 
            +
                    return response_dict
         | 
    	
        orchestrator.py
    ADDED
    
    | @@ -0,0 +1,522 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Agentic Orchestrator for Advanced AI System
         | 
| 3 | 
            +
            -----------------------------------------
         | 
| 4 | 
            +
            Manages and coordinates multiple agentic components:
         | 
| 5 | 
            +
            1. Task Planning & Decomposition
         | 
| 6 | 
            +
            2. Resource Management
         | 
| 7 | 
            +
            3. Agent Communication
         | 
| 8 | 
            +
            4. State Management
         | 
| 9 | 
            +
            5. Error Recovery
         | 
| 10 | 
            +
            6. Performance Monitoring
         | 
| 11 | 
            +
            """
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            import logging
         | 
| 14 | 
            +
            from typing import Dict, Any, List, Optional, Union, TypeVar, Generic
         | 
| 15 | 
            +
            from dataclasses import dataclass, field
         | 
| 16 | 
            +
            from enum import Enum
         | 
| 17 | 
            +
            import json
         | 
| 18 | 
            +
            import asyncio
         | 
| 19 | 
            +
            from datetime import datetime
         | 
| 20 | 
            +
            import uuid
         | 
| 21 | 
            +
            from concurrent.futures import ThreadPoolExecutor
         | 
| 22 | 
            +
            import networkx as nx
         | 
| 23 | 
            +
            from collections import defaultdict
         | 
| 24 | 
            +
            import numpy as np
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            from reasoning import ReasoningEngine, ReasoningMode
         | 
| 27 | 
            +
            from meta_learning import MetaLearningStrategy
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            T = TypeVar('T')
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            class AgentRole(Enum):
         | 
| 32 | 
            +
                """Different roles an agent can take."""
         | 
| 33 | 
            +
                PLANNER = "planner"
         | 
| 34 | 
            +
                EXECUTOR = "executor"
         | 
| 35 | 
            +
                MONITOR = "monitor"
         | 
| 36 | 
            +
                COORDINATOR = "coordinator"
         | 
| 37 | 
            +
                LEARNER = "learner"
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            class AgentState(Enum):
         | 
| 40 | 
            +
                """Possible states of an agent."""
         | 
| 41 | 
            +
                IDLE = "idle"
         | 
| 42 | 
            +
                BUSY = "busy"
         | 
| 43 | 
            +
                ERROR = "error"
         | 
| 44 | 
            +
                LEARNING = "learning"
         | 
| 45 | 
            +
                TERMINATED = "terminated"
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            class TaskPriority(Enum):
         | 
| 48 | 
            +
                """Task priority levels."""
         | 
| 49 | 
            +
                LOW = 0
         | 
| 50 | 
            +
                MEDIUM = 1
         | 
| 51 | 
            +
                HIGH = 2
         | 
| 52 | 
            +
                CRITICAL = 3
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            @dataclass
         | 
| 55 | 
            +
            class AgentMetadata:
         | 
| 56 | 
            +
                """Metadata about an agent."""
         | 
| 57 | 
            +
                id: str
         | 
| 58 | 
            +
                role: AgentRole
         | 
| 59 | 
            +
                capabilities: List[str]
         | 
| 60 | 
            +
                state: AgentState
         | 
| 61 | 
            +
                load: float
         | 
| 62 | 
            +
                last_active: datetime
         | 
| 63 | 
            +
                metrics: Dict[str, float]
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            @dataclass
         | 
| 66 | 
            +
            class Task:
         | 
| 67 | 
            +
                """Represents a task in the system."""
         | 
| 68 | 
            +
                id: str
         | 
| 69 | 
            +
                description: str
         | 
| 70 | 
            +
                priority: TaskPriority
         | 
| 71 | 
            +
                dependencies: List[str]
         | 
| 72 | 
            +
                assigned_to: Optional[str]
         | 
| 73 | 
            +
                state: str
         | 
| 74 | 
            +
                created_at: datetime
         | 
| 75 | 
            +
                deadline: Optional[datetime]
         | 
| 76 | 
            +
                metadata: Dict[str, Any]
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            class AgentOrchestrator:
         | 
| 79 | 
            +
                """Advanced orchestrator for managing agentic system."""
         | 
| 80 | 
            +
                
         | 
| 81 | 
            +
                def __init__(self, config: Dict[str, Any] = None):
         | 
| 82 | 
            +
                    self.config = config or {}
         | 
| 83 | 
            +
                    
         | 
| 84 | 
            +
                    # Core components
         | 
| 85 | 
            +
                    self.agents: Dict[str, AgentMetadata] = {}
         | 
| 86 | 
            +
                    self.tasks: Dict[str, Task] = {}
         | 
| 87 | 
            +
                    self.task_graph = nx.DiGraph()
         | 
| 88 | 
            +
                    
         | 
| 89 | 
            +
                    # State management
         | 
| 90 | 
            +
                    self.state_history: List[Dict[str, Any]] = []
         | 
| 91 | 
            +
                    self.global_state: Dict[str, Any] = {}
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
                    # Resource management
         | 
| 94 | 
            +
                    self.resource_pool: Dict[str, Any] = {}
         | 
| 95 | 
            +
                    self.resource_locks: Dict[str, asyncio.Lock] = {}
         | 
| 96 | 
            +
                    
         | 
| 97 | 
            +
                    # Communication
         | 
| 98 | 
            +
                    self.message_queue = asyncio.Queue()
         | 
| 99 | 
            +
                    self.event_bus = asyncio.Queue()
         | 
| 100 | 
            +
                    
         | 
| 101 | 
            +
                    # Performance monitoring
         | 
| 102 | 
            +
                    self.metrics = defaultdict(list)
         | 
| 103 | 
            +
                    self.performance_log = []
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
                    # Error handling
         | 
| 106 | 
            +
                    self.error_handlers: Dict[str, callable] = {}
         | 
| 107 | 
            +
                    self.recovery_strategies: Dict[str, callable] = {}
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    # Async support
         | 
| 110 | 
            +
                    self.executor = ThreadPoolExecutor(max_workers=4)
         | 
| 111 | 
            +
                    self.lock = asyncio.Lock()
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
                    # Logging
         | 
| 114 | 
            +
                    self.logger = logging.getLogger(__name__)
         | 
| 115 | 
            +
                    
         | 
| 116 | 
            +
                    # Initialize components
         | 
| 117 | 
            +
                    self._init_components()
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def _init_components(self):
         | 
| 120 | 
            +
                    """Initialize orchestrator components."""
         | 
| 121 | 
            +
                    # Initialize reasoning engine
         | 
| 122 | 
            +
                    self.reasoning_engine = ReasoningEngine(
         | 
| 123 | 
            +
                        model_manager=None,  # Will be injected
         | 
| 124 | 
            +
                        max_depth=5,
         | 
| 125 | 
            +
                        beam_width=3,
         | 
| 126 | 
            +
                        config=self.config.get("reasoning", {})
         | 
| 127 | 
            +
                    )
         | 
| 128 | 
            +
                    
         | 
| 129 | 
            +
                    # Initialize meta-learning
         | 
| 130 | 
            +
                    self.meta_learning = MetaLearningStrategy()
         | 
| 131 | 
            +
                    
         | 
| 132 | 
            +
                    # Register basic error handlers
         | 
| 133 | 
            +
                    self._register_error_handlers()
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                async def register_agent(
         | 
| 136 | 
            +
                    self,
         | 
| 137 | 
            +
                    role: AgentRole,
         | 
| 138 | 
            +
                    capabilities: List[str]
         | 
| 139 | 
            +
                ) -> str:
         | 
| 140 | 
            +
                    """Register a new agent with the orchestrator."""
         | 
| 141 | 
            +
                    agent_id = str(uuid.uuid4())
         | 
| 142 | 
            +
                    
         | 
| 143 | 
            +
                    agent = AgentMetadata(
         | 
| 144 | 
            +
                        id=agent_id,
         | 
| 145 | 
            +
                        role=role,
         | 
| 146 | 
            +
                        capabilities=capabilities,
         | 
| 147 | 
            +
                        state=AgentState.IDLE,
         | 
| 148 | 
            +
                        load=0.0,
         | 
| 149 | 
            +
                        last_active=datetime.now(),
         | 
| 150 | 
            +
                        metrics={}
         | 
| 151 | 
            +
                    )
         | 
| 152 | 
            +
                    
         | 
| 153 | 
            +
                    async with self.lock:
         | 
| 154 | 
            +
                        self.agents[agent_id] = agent
         | 
| 155 | 
            +
                        self.logger.info(f"Registered new agent: {agent_id} with role {role}")
         | 
| 156 | 
            +
                        
         | 
| 157 | 
            +
                    return agent_id
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                async def submit_task(
         | 
| 160 | 
            +
                    self,
         | 
| 161 | 
            +
                    description: str,
         | 
| 162 | 
            +
                    priority: TaskPriority = TaskPriority.MEDIUM,
         | 
| 163 | 
            +
                    dependencies: List[str] = None,
         | 
| 164 | 
            +
                    deadline: Optional[datetime] = None,
         | 
| 165 | 
            +
                    metadata: Dict[str, Any] = None
         | 
| 166 | 
            +
                ) -> str:
         | 
| 167 | 
            +
                    """Submit a new task to the orchestrator."""
         | 
| 168 | 
            +
                    task_id = str(uuid.uuid4())
         | 
| 169 | 
            +
                    
         | 
| 170 | 
            +
                    task = Task(
         | 
| 171 | 
            +
                        id=task_id,
         | 
| 172 | 
            +
                        description=description,
         | 
| 173 | 
            +
                        priority=priority,
         | 
| 174 | 
            +
                        dependencies=dependencies or [],
         | 
| 175 | 
            +
                        assigned_to=None,
         | 
| 176 | 
            +
                        state="pending",
         | 
| 177 | 
            +
                        created_at=datetime.now(),
         | 
| 178 | 
            +
                        deadline=deadline,
         | 
| 179 | 
            +
                        metadata=metadata or {}
         | 
| 180 | 
            +
                    )
         | 
| 181 | 
            +
                    
         | 
| 182 | 
            +
                    async with self.lock:
         | 
| 183 | 
            +
                        self.tasks[task_id] = task
         | 
| 184 | 
            +
                        self._update_task_graph(task)
         | 
| 185 | 
            +
                        
         | 
| 186 | 
            +
                    # Trigger task planning
         | 
| 187 | 
            +
                    await self._plan_task_execution(task_id)
         | 
| 188 | 
            +
                    
         | 
| 189 | 
            +
                    return task_id
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                async def _plan_task_execution(self, task_id: str) -> None:
         | 
| 192 | 
            +
                    """Plan the execution of a task."""
         | 
| 193 | 
            +
                    task = self.tasks[task_id]
         | 
| 194 | 
            +
                    
         | 
| 195 | 
            +
                    # Check dependencies
         | 
| 196 | 
            +
                    if not await self._check_dependencies(task):
         | 
| 197 | 
            +
                        self.logger.info(f"Task {task_id} waiting for dependencies")
         | 
| 198 | 
            +
                        return
         | 
| 199 | 
            +
                    
         | 
| 200 | 
            +
                    # Find suitable agent
         | 
| 201 | 
            +
                    agent_id = await self._find_suitable_agent(task)
         | 
| 202 | 
            +
                    if not agent_id:
         | 
| 203 | 
            +
                        self.logger.warning(f"No suitable agent found for task {task_id}")
         | 
| 204 | 
            +
                        return
         | 
| 205 | 
            +
                    
         | 
| 206 | 
            +
                    # Assign task
         | 
| 207 | 
            +
                    await self._assign_task(task_id, agent_id)
         | 
| 208 | 
            +
             | 
| 209 | 
            +
                async def _check_dependencies(self, task: Task) -> bool:
         | 
| 210 | 
            +
                    """Check if all task dependencies are satisfied."""
         | 
| 211 | 
            +
                    for dep_id in task.dependencies:
         | 
| 212 | 
            +
                        if dep_id not in self.tasks:
         | 
| 213 | 
            +
                            return False
         | 
| 214 | 
            +
                        if self.tasks[dep_id].state != "completed":
         | 
| 215 | 
            +
                            return False
         | 
| 216 | 
            +
                    return True
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                async def _find_suitable_agent(self, task: Task) -> Optional[str]:
         | 
| 219 | 
            +
                    """Find the most suitable agent for a task."""
         | 
| 220 | 
            +
                    best_agent = None
         | 
| 221 | 
            +
                    best_score = float('-inf')
         | 
| 222 | 
            +
                    
         | 
| 223 | 
            +
                    for agent_id, agent in self.agents.items():
         | 
| 224 | 
            +
                        if agent.state != AgentState.IDLE:
         | 
| 225 | 
            +
                            continue
         | 
| 226 | 
            +
                            
         | 
| 227 | 
            +
                        score = await self._calculate_agent_suitability(agent, task)
         | 
| 228 | 
            +
                        if score > best_score:
         | 
| 229 | 
            +
                            best_score = score
         | 
| 230 | 
            +
                            best_agent = agent_id
         | 
| 231 | 
            +
                            
         | 
| 232 | 
            +
                    return best_agent
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                async def _calculate_agent_suitability(
         | 
| 235 | 
            +
                    self,
         | 
| 236 | 
            +
                    agent: AgentMetadata,
         | 
| 237 | 
            +
                    task: Task
         | 
| 238 | 
            +
                ) -> float:
         | 
| 239 | 
            +
                    """Calculate how suitable an agent is for a task."""
         | 
| 240 | 
            +
                    # Base score on capabilities match
         | 
| 241 | 
            +
                    capability_score = sum(
         | 
| 242 | 
            +
                        1 for cap in task.metadata.get("required_capabilities", [])
         | 
| 243 | 
            +
                        if cap in agent.capabilities
         | 
| 244 | 
            +
                    )
         | 
| 245 | 
            +
                    
         | 
| 246 | 
            +
                    # Consider agent load
         | 
| 247 | 
            +
                    load_score = 1 - agent.load
         | 
| 248 | 
            +
                    
         | 
| 249 | 
            +
                    # Consider agent's recent performance
         | 
| 250 | 
            +
                    performance_score = sum(agent.metrics.values()) / len(agent.metrics) if agent.metrics else 0.5
         | 
| 251 | 
            +
                    
         | 
| 252 | 
            +
                    # Weighted combination
         | 
| 253 | 
            +
                    weights = self.config.get("agent_selection_weights", {
         | 
| 254 | 
            +
                        "capabilities": 0.5,
         | 
| 255 | 
            +
                        "load": 0.3,
         | 
| 256 | 
            +
                        "performance": 0.2
         | 
| 257 | 
            +
                    })
         | 
| 258 | 
            +
                    
         | 
| 259 | 
            +
                    return (
         | 
| 260 | 
            +
                        weights["capabilities"] * capability_score +
         | 
| 261 | 
            +
                        weights["load"] * load_score +
         | 
| 262 | 
            +
                        weights["performance"] * performance_score
         | 
| 263 | 
            +
                    )
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                async def _assign_task(self, task_id: str, agent_id: str) -> None:
         | 
| 266 | 
            +
                    """Assign a task to an agent."""
         | 
| 267 | 
            +
                    async with self.lock:
         | 
| 268 | 
            +
                        task = self.tasks[task_id]
         | 
| 269 | 
            +
                        agent = self.agents[agent_id]
         | 
| 270 | 
            +
                        
         | 
| 271 | 
            +
                        task.assigned_to = agent_id
         | 
| 272 | 
            +
                        task.state = "assigned"
         | 
| 273 | 
            +
                        agent.state = AgentState.BUSY
         | 
| 274 | 
            +
                        agent.load += 1
         | 
| 275 | 
            +
                        agent.last_active = datetime.now()
         | 
| 276 | 
            +
                        
         | 
| 277 | 
            +
                        self.logger.info(f"Assigned task {task_id} to agent {agent_id}")
         | 
| 278 | 
            +
                        
         | 
| 279 | 
            +
                        # Notify agent
         | 
| 280 | 
            +
                        await self.message_queue.put({
         | 
| 281 | 
            +
                            "type": "task_assignment",
         | 
| 282 | 
            +
                            "task_id": task_id,
         | 
| 283 | 
            +
                            "agent_id": agent_id,
         | 
| 284 | 
            +
                            "timestamp": datetime.now()
         | 
| 285 | 
            +
                        })
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                def _update_task_graph(self, task: Task) -> None:
         | 
| 288 | 
            +
                    """Update the task dependency graph."""
         | 
| 289 | 
            +
                    self.task_graph.add_node(task.id, task=task)
         | 
| 290 | 
            +
                    for dep_id in task.dependencies:
         | 
| 291 | 
            +
                        self.task_graph.add_edge(dep_id, task.id)
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                async def _monitor_system_state(self):
         | 
| 294 | 
            +
                    """Monitor overall system state."""
         | 
| 295 | 
            +
                    while True:
         | 
| 296 | 
            +
                        try:
         | 
| 297 | 
            +
                            # Collect agent states
         | 
| 298 | 
            +
                            agent_states = {
         | 
| 299 | 
            +
                                agent_id: {
         | 
| 300 | 
            +
                                    "state": agent.state,
         | 
| 301 | 
            +
                                    "load": agent.load,
         | 
| 302 | 
            +
                                    "metrics": agent.metrics
         | 
| 303 | 
            +
                                }
         | 
| 304 | 
            +
                                for agent_id, agent in self.agents.items()
         | 
| 305 | 
            +
                            }
         | 
| 306 | 
            +
                            
         | 
| 307 | 
            +
                            # Collect task states
         | 
| 308 | 
            +
                            task_states = {
         | 
| 309 | 
            +
                                task_id: {
         | 
| 310 | 
            +
                                    "state": task.state,
         | 
| 311 | 
            +
                                    "assigned_to": task.assigned_to,
         | 
| 312 | 
            +
                                    "deadline": task.deadline
         | 
| 313 | 
            +
                                }
         | 
| 314 | 
            +
                                for task_id, task in self.tasks.items()
         | 
| 315 | 
            +
                            }
         | 
| 316 | 
            +
                            
         | 
| 317 | 
            +
                            # Update global state
         | 
| 318 | 
            +
                            self.global_state = {
         | 
| 319 | 
            +
                                "timestamp": datetime.now(),
         | 
| 320 | 
            +
                                "agents": agent_states,
         | 
| 321 | 
            +
                                "tasks": task_states,
         | 
| 322 | 
            +
                                "resource_usage": self._get_resource_usage(),
         | 
| 323 | 
            +
                                "performance_metrics": self._calculate_performance_metrics()
         | 
| 324 | 
            +
                            }
         | 
| 325 | 
            +
                            
         | 
| 326 | 
            +
                            # Archive state
         | 
| 327 | 
            +
                            self.state_history.append(self.global_state.copy())
         | 
| 328 | 
            +
                            
         | 
| 329 | 
            +
                            # Trim history if too long
         | 
| 330 | 
            +
                            if len(self.state_history) > 1000:
         | 
| 331 | 
            +
                                self.state_history = self.state_history[-1000:]
         | 
| 332 | 
            +
                            
         | 
| 333 | 
            +
                            # Check for anomalies
         | 
| 334 | 
            +
                            await self._check_anomalies()
         | 
| 335 | 
            +
                            
         | 
| 336 | 
            +
                            await asyncio.sleep(1)  # Monitor frequency
         | 
| 337 | 
            +
                            
         | 
| 338 | 
            +
                        except Exception as e:
         | 
| 339 | 
            +
                            self.logger.error(f"Error in system monitoring: {e}")
         | 
| 340 | 
            +
                            await self._handle_error("monitoring_error", e)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                def _get_resource_usage(self) -> Dict[str, float]:
         | 
| 343 | 
            +
                    """Get current resource usage statistics."""
         | 
| 344 | 
            +
                    return {
         | 
| 345 | 
            +
                        "cpu_usage": sum(agent.load for agent in self.agents.values()) / len(self.agents),
         | 
| 346 | 
            +
                        "memory_usage": len(self.state_history) * 1000,  # Rough estimate
         | 
| 347 | 
            +
                        "queue_size": self.message_queue.qsize()
         | 
| 348 | 
            +
                    }
         | 
| 349 | 
            +
             | 
| 350 | 
            +
                def _calculate_performance_metrics(self) -> Dict[str, float]:
         | 
| 351 | 
            +
                    """Calculate current performance metrics."""
         | 
| 352 | 
            +
                    metrics = {}
         | 
| 353 | 
            +
                    
         | 
| 354 | 
            +
                    # Task completion rate
         | 
| 355 | 
            +
                    completed_tasks = sum(1 for task in self.tasks.values() if task.state == "completed")
         | 
| 356 | 
            +
                    total_tasks = len(self.tasks)
         | 
| 357 | 
            +
                    metrics["task_completion_rate"] = completed_tasks / max(1, total_tasks)
         | 
| 358 | 
            +
                    
         | 
| 359 | 
            +
                    # Average task duration
         | 
| 360 | 
            +
                    durations = []
         | 
| 361 | 
            +
                    for task in self.tasks.values():
         | 
| 362 | 
            +
                        if task.state == "completed" and "completion_time" in task.metadata:
         | 
| 363 | 
            +
                            duration = (task.metadata["completion_time"] - task.created_at).total_seconds()
         | 
| 364 | 
            +
                            durations.append(duration)
         | 
| 365 | 
            +
                    metrics["avg_task_duration"] = sum(durations) / len(durations) if durations else 0
         | 
| 366 | 
            +
                    
         | 
| 367 | 
            +
                    # Agent utilization
         | 
| 368 | 
            +
                    metrics["agent_utilization"] = sum(agent.load for agent in self.agents.values()) / len(self.agents)
         | 
| 369 | 
            +
                    
         | 
| 370 | 
            +
                    return metrics
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                async def _check_anomalies(self):
         | 
| 373 | 
            +
                    """Check for system anomalies."""
         | 
| 374 | 
            +
                    # Check for overloaded agents
         | 
| 375 | 
            +
                    for agent_id, agent in self.agents.items():
         | 
| 376 | 
            +
                        if agent.load > 0.9:  # 90% load threshold
         | 
| 377 | 
            +
                            await self._handle_overload(agent_id)
         | 
| 378 | 
            +
                    
         | 
| 379 | 
            +
                    # Check for stalled tasks
         | 
| 380 | 
            +
                    now = datetime.now()
         | 
| 381 | 
            +
                    for task_id, task in self.tasks.items():
         | 
| 382 | 
            +
                        if task.state == "assigned":
         | 
| 383 | 
            +
                            duration = (now - task.created_at).total_seconds()
         | 
| 384 | 
            +
                            if duration > 3600:  # 1 hour threshold
         | 
| 385 | 
            +
                                await self._handle_stalled_task(task_id)
         | 
| 386 | 
            +
                    
         | 
| 387 | 
            +
                    # Check for missed deadlines
         | 
| 388 | 
            +
                    for task_id, task in self.tasks.items():
         | 
| 389 | 
            +
                        if task.deadline and now > task.deadline and task.state != "completed":
         | 
| 390 | 
            +
                            await self._handle_missed_deadline(task_id)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                async def _handle_overload(self, agent_id: str):
         | 
| 393 | 
            +
                    """Handle an overloaded agent."""
         | 
| 394 | 
            +
                    agent = self.agents[agent_id]
         | 
| 395 | 
            +
                    
         | 
| 396 | 
            +
                    # Try to redistribute tasks
         | 
| 397 | 
            +
                    assigned_tasks = [
         | 
| 398 | 
            +
                        task_id for task_id, task in self.tasks.items()
         | 
| 399 | 
            +
                        if task.assigned_to == agent_id and task.state == "assigned"
         | 
| 400 | 
            +
                    ]
         | 
| 401 | 
            +
                    
         | 
| 402 | 
            +
                    for task_id in assigned_tasks:
         | 
| 403 | 
            +
                        # Find another suitable agent
         | 
| 404 | 
            +
                        new_agent_id = await self._find_suitable_agent(self.tasks[task_id])
         | 
| 405 | 
            +
                        if new_agent_id:
         | 
| 406 | 
            +
                            await self._reassign_task(task_id, new_agent_id)
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                async def _handle_stalled_task(self, task_id: str):
         | 
| 409 | 
            +
                    """Handle a stalled task."""
         | 
| 410 | 
            +
                    task = self.tasks[task_id]
         | 
| 411 | 
            +
                    
         | 
| 412 | 
            +
                    # First, try to ping the assigned agent
         | 
| 413 | 
            +
                    if task.assigned_to:
         | 
| 414 | 
            +
                        agent = self.agents[task.assigned_to]
         | 
| 415 | 
            +
                        if agent.state == AgentState.ERROR:
         | 
| 416 | 
            +
                            # Agent is in error state, reassign task
         | 
| 417 | 
            +
                            await self._reassign_task(task_id, None)
         | 
| 418 | 
            +
                        else:
         | 
| 419 | 
            +
                            # Request status update from agent
         | 
| 420 | 
            +
                            await self.message_queue.put({
         | 
| 421 | 
            +
                                "type": "status_request",
         | 
| 422 | 
            +
                                "task_id": task_id,
         | 
| 423 | 
            +
                                "agent_id": task.assigned_to,
         | 
| 424 | 
            +
                                "timestamp": datetime.now()
         | 
| 425 | 
            +
                            })
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                async def _handle_missed_deadline(self, task_id: str):
         | 
| 428 | 
            +
                    """Handle a missed deadline."""
         | 
| 429 | 
            +
                    task = self.tasks[task_id]
         | 
| 430 | 
            +
                    
         | 
| 431 | 
            +
                    # Log the incident
         | 
| 432 | 
            +
                    self.logger.warning(f"Task {task_id} missed deadline: {task.deadline}")
         | 
| 433 | 
            +
                    
         | 
| 434 | 
            +
                    # Update task priority to CRITICAL
         | 
| 435 | 
            +
                    task.priority = TaskPriority.CRITICAL
         | 
| 436 | 
            +
                    
         | 
| 437 | 
            +
                    # If task is assigned, try to speed it up
         | 
| 438 | 
            +
                    if task.assigned_to:
         | 
| 439 | 
            +
                        await self.message_queue.put({
         | 
| 440 | 
            +
                            "type": "expedite_request",
         | 
| 441 | 
            +
                            "task_id": task_id,
         | 
| 442 | 
            +
                            "agent_id": task.assigned_to,
         | 
| 443 | 
            +
                            "timestamp": datetime.now()
         | 
| 444 | 
            +
                        })
         | 
| 445 | 
            +
                    else:
         | 
| 446 | 
            +
                        # If not assigned, try to assign to fastest available agent
         | 
| 447 | 
            +
                        await self._plan_task_execution(task_id)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                async def _reassign_task(self, task_id: str, new_agent_id: Optional[str] = None):
         | 
| 450 | 
            +
                    """Reassign a task to a new agent."""
         | 
| 451 | 
            +
                    task = self.tasks[task_id]
         | 
| 452 | 
            +
                    old_agent_id = task.assigned_to
         | 
| 453 | 
            +
                    
         | 
| 454 | 
            +
                    if old_agent_id:
         | 
| 455 | 
            +
                        # Update old agent
         | 
| 456 | 
            +
                        old_agent = self.agents[old_agent_id]
         | 
| 457 | 
            +
                        old_agent.load -= 1
         | 
| 458 | 
            +
                        if old_agent.load <= 0:
         | 
| 459 | 
            +
                            old_agent.state = AgentState.IDLE
         | 
| 460 | 
            +
                    
         | 
| 461 | 
            +
                    if new_agent_id is None:
         | 
| 462 | 
            +
                        # Find new suitable agent
         | 
| 463 | 
            +
                        new_agent_id = await self._find_suitable_agent(task)
         | 
| 464 | 
            +
                    
         | 
| 465 | 
            +
                    if new_agent_id:
         | 
| 466 | 
            +
                        # Assign to new agent
         | 
| 467 | 
            +
                        await self._assign_task(task_id, new_agent_id)
         | 
| 468 | 
            +
                    else:
         | 
| 469 | 
            +
                        # No suitable agent found, mark task as pending
         | 
| 470 | 
            +
                        task.state = "pending"
         | 
| 471 | 
            +
                        task.assigned_to = None
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                def _register_error_handlers(self):
         | 
| 474 | 
            +
                    """Register basic error handlers."""
         | 
| 475 | 
            +
                    self.error_handlers.update({
         | 
| 476 | 
            +
                        "monitoring_error": self._handle_monitoring_error,
         | 
| 477 | 
            +
                        "agent_error": self._handle_agent_error,
         | 
| 478 | 
            +
                        "task_error": self._handle_task_error,
         | 
| 479 | 
            +
                        "resource_error": self._handle_resource_error
         | 
| 480 | 
            +
                    })
         | 
| 481 | 
            +
                    
         | 
| 482 | 
            +
                    self.recovery_strategies.update({
         | 
| 483 | 
            +
                        "agent_recovery": self._recover_agent,
         | 
| 484 | 
            +
                        "task_recovery": self._recover_task,
         | 
| 485 | 
            +
                        "resource_recovery": self._recover_resource
         | 
| 486 | 
            +
                    })
         | 
| 487 | 
            +
             | 
| 488 | 
            +
                async def _handle_error(self, error_type: str, error: Exception):
         | 
| 489 | 
            +
                    """Handle an error using registered handlers."""
         | 
| 490 | 
            +
                    handler = self.error_handlers.get(error_type)
         | 
| 491 | 
            +
                    if handler:
         | 
| 492 | 
            +
                        try:
         | 
| 493 | 
            +
                            await handler(error)
         | 
| 494 | 
            +
                        except Exception as e:
         | 
| 495 | 
            +
                            self.logger.error(f"Error in error handler: {e}")
         | 
| 496 | 
            +
                    else:
         | 
| 497 | 
            +
                        self.logger.error(f"No handler for error type: {error_type}")
         | 
| 498 | 
            +
                        self.logger.error(f"Error: {error}")
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                async def _handle_monitoring_error(self, error: Exception):
         | 
| 501 | 
            +
                    """Handle monitoring system errors."""
         | 
| 502 | 
            +
                    self.logger.error(f"Monitoring error: {error}")
         | 
| 503 | 
            +
                    # Implement recovery logic
         | 
| 504 | 
            +
                    pass
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                async def _handle_agent_error(self, error: Exception):
         | 
| 507 | 
            +
                    """Handle agent-related errors."""
         | 
| 508 | 
            +
                    self.logger.error(f"Agent error: {error}")
         | 
| 509 | 
            +
                    # Implement recovery logic
         | 
| 510 | 
            +
                    pass
         | 
| 511 | 
            +
             | 
| 512 | 
            +
                async def _handle_task_error(self, error: Exception):
         | 
| 513 | 
            +
                    """Handle task-related errors."""
         | 
| 514 | 
            +
                    self.logger.error(f"Task error: {error}")
         | 
| 515 | 
            +
                    # Implement recovery logic
         | 
| 516 | 
            +
                    pass
         | 
| 517 | 
            +
             | 
| 518 | 
            +
                async def _handle_resource_error(self, error: Exception):
         | 
| 519 | 
            +
                    """Handle resource-related errors."""
         | 
| 520 | 
            +
                    self.logger.error(f"Resource error: {error}")
         | 
| 521 | 
            +
                    # Implement recovery logic
         | 
| 522 | 
            +
                    pass
         | 
    	
        quick_check.py
    ADDED
    
    | @@ -0,0 +1,53 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import requests
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import time
         | 
| 4 | 
            +
            from datetime import datetime
         | 
| 5 | 
            +
            import sys
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            def check_space():
         | 
| 8 | 
            +
                url = "https://huggingface.co/api/spaces/nananie143/Agentic_llm"
         | 
| 9 | 
            +
                headers = {"Authorization": f"Bearer {os.environ['HUGGINGFACE_TOKEN']}"}
         | 
| 10 | 
            +
                
         | 
| 11 | 
            +
                try:
         | 
| 12 | 
            +
                    response = requests.get(url, headers=headers)
         | 
| 13 | 
            +
                    if response.ok:
         | 
| 14 | 
            +
                        data = response.json()
         | 
| 15 | 
            +
                        runtime = data.get('runtime', {})
         | 
| 16 | 
            +
                        stage = runtime.get('stage', 'UNKNOWN')
         | 
| 17 | 
            +
                        hardware = runtime.get('hardware', {})
         | 
| 18 | 
            +
                        domains = runtime.get('domains', [{}])[0]
         | 
| 19 | 
            +
                        
         | 
| 20 | 
            +
                        status_time = datetime.now().strftime('%H:%M:%S')
         | 
| 21 | 
            +
                        sys.stdout.write(f"\n[{status_time}] Space Status:\n")
         | 
| 22 | 
            +
                        sys.stdout.write(f"Stage: {stage}\n")
         | 
| 23 | 
            +
                        sys.stdout.write(f"Hardware: {hardware.get('current', 'Not assigned')} (requested: {hardware.get('requested', 'None')})\n")
         | 
| 24 | 
            +
                        sys.stdout.write(f"Domain: {domains.get('domain', 'Not assigned')} (status: {domains.get('stage', 'Unknown')})\n")
         | 
| 25 | 
            +
                        sys.stdout.flush()
         | 
| 26 | 
            +
                        
         | 
| 27 | 
            +
                        if stage == "RUNNING":
         | 
| 28 | 
            +
                            sys.stdout.write("\n🚀 Space is now running!\n")
         | 
| 29 | 
            +
                            sys.stdout.write(f"Access your Space at: https://{domains.get('domain', 'nananie143-agentic-llm.hf.space')}\n")
         | 
| 30 | 
            +
                            sys.stdout.flush()
         | 
| 31 | 
            +
                            return True
         | 
| 32 | 
            +
                        elif stage == "FAILED":
         | 
| 33 | 
            +
                            sys.stdout.write("\n❌ Space build failed!\n")
         | 
| 34 | 
            +
                            sys.stdout.flush()
         | 
| 35 | 
            +
                            return True
         | 
| 36 | 
            +
                        
         | 
| 37 | 
            +
                        return False
         | 
| 38 | 
            +
                        
         | 
| 39 | 
            +
                except Exception as e:
         | 
| 40 | 
            +
                    sys.stdout.write(f"\n[{datetime.now().strftime('%H:%M:%S')}] Error checking status: {e}\n")
         | 
| 41 | 
            +
                    sys.stdout.flush()
         | 
| 42 | 
            +
                    return False
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            sys.stdout.write("\nStarting automatic Space status check...\n")
         | 
| 45 | 
            +
            sys.stdout.write("Will check every 2 minutes until the Space is running or fails...\n")
         | 
| 46 | 
            +
            sys.stdout.write("Press Ctrl+C to stop checking\n\n")
         | 
| 47 | 
            +
            sys.stdout.flush()
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            while True:
         | 
| 50 | 
            +
                should_stop = check_space()
         | 
| 51 | 
            +
                if should_stop:
         | 
| 52 | 
            +
                    break
         | 
| 53 | 
            +
                time.sleep(120)  # Wait 2 minutes
         | 
    	
        reasoning.py
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        reasoning.py.bak2
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        reasoning/__init__.py
    ADDED
    
    | @@ -0,0 +1,70 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Advanced Reasoning Engine for Multi-Model System
         | 
| 3 | 
            +
            ---------------------------------------------
         | 
| 4 | 
            +
            A highly sophisticated reasoning system combining:
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            Core Reasoning:
         | 
| 7 | 
            +
            1. Chain of Thought (CoT)
         | 
| 8 | 
            +
            2. Tree of Thoughts (ToT)
         | 
| 9 | 
            +
            3. Graph of Thoughts (GoT)
         | 
| 10 | 
            +
            4. Recursive Reasoning
         | 
| 11 | 
            +
            5. Analogical Reasoning
         | 
| 12 | 
            +
            6. Meta-Learning
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            Advanced Reasoning:
         | 
| 15 | 
            +
            7. Neurosymbolic Reasoning
         | 
| 16 | 
            +
            8. Counterfactual Reasoning
         | 
| 17 | 
            +
            9. State Space Search
         | 
| 18 | 
            +
            10. Probabilistic Reasoning
         | 
| 19 | 
            +
            11. Causal Inference
         | 
| 20 | 
            +
            12. Temporal Reasoning
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            Learning & Adaptation:
         | 
| 23 | 
            +
            13. Online Learning
         | 
| 24 | 
            +
            14. Transfer Learning
         | 
| 25 | 
            +
            15. Meta-Learning
         | 
| 26 | 
            +
            16. Active Learning
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            Robustness Features:
         | 
| 29 | 
            +
            17. Uncertainty Quantification
         | 
| 30 | 
            +
            18. Error Recovery
         | 
| 31 | 
            +
            19. Consistency Checking
         | 
| 32 | 
            +
            20. Bias Detection
         | 
| 33 | 
            +
            """
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            from .base import ReasoningStrategy
         | 
| 36 | 
            +
            from .multimodal import MultiModalReasoning
         | 
| 37 | 
            +
            from .bayesian import BayesianReasoning
         | 
| 38 | 
            +
            from .quantum import QuantumReasoning, QuantumInspiredStrategy
         | 
| 39 | 
            +
            from .neurosymbolic import NeurosymbolicReasoning
         | 
| 40 | 
            +
            from .emergent import EmergentReasoning
         | 
| 41 | 
            +
            from .meta import MetaLearningStrategy
         | 
| 42 | 
            +
            from .chain_of_thought import ChainOfThoughtStrategy
         | 
| 43 | 
            +
            from .tree_of_thoughts import TreeOfThoughtsStrategy
         | 
| 44 | 
            +
            from .recursive import RecursiveReasoning
         | 
| 45 | 
            +
            from .analogical import AnalogicalReasoning
         | 
| 46 | 
            +
            from .causal import CausalReasoning
         | 
| 47 | 
            +
            from .state_space import StateSpaceSearch
         | 
| 48 | 
            +
            from .counterfactual import CounterfactualReasoning
         | 
| 49 | 
            +
            from .meta_reasoning import MetaReasoning
         | 
| 50 | 
            +
            from .engine import BavePantherReasoning
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            __all__ = [
         | 
| 53 | 
            +
                'ReasoningStrategy',
         | 
| 54 | 
            +
                'MultiModalReasoning',
         | 
| 55 | 
            +
                'BayesianReasoning',
         | 
| 56 | 
            +
                'QuantumReasoning',
         | 
| 57 | 
            +
                'QuantumInspiredStrategy',
         | 
| 58 | 
            +
                'NeurosymbolicReasoning',
         | 
| 59 | 
            +
                'EmergentReasoning',
         | 
| 60 | 
            +
                'MetaLearningStrategy',
         | 
| 61 | 
            +
                'ChainOfThoughtStrategy',
         | 
| 62 | 
            +
                'TreeOfThoughtsStrategy',
         | 
| 63 | 
            +
                'RecursiveReasoning',
         | 
| 64 | 
            +
                'AnalogicalReasoning',
         | 
| 65 | 
            +
                'CausalReasoning',
         | 
| 66 | 
            +
                'StateSpaceSearch',
         | 
| 67 | 
            +
                'CounterfactualReasoning',
         | 
| 68 | 
            +
                'MetaReasoning',
         | 
| 69 | 
            +
                'BavePantherReasoning'
         | 
| 70 | 
            +
            ]
         | 
    	
        reasoning/agentic.py
    ADDED
    
    | @@ -0,0 +1,345 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Specialized reasoning strategies for Agentic Workflow."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class TaskType(Enum):
         | 
| 15 | 
            +
                """Types of tasks in agentic workflow."""
         | 
| 16 | 
            +
                CODE_GENERATION = "code_generation"
         | 
| 17 | 
            +
                CODE_MODIFICATION = "code_modification"
         | 
| 18 | 
            +
                CODE_REVIEW = "code_review"
         | 
| 19 | 
            +
                DEBUGGING = "debugging"
         | 
| 20 | 
            +
                ARCHITECTURE = "architecture"
         | 
| 21 | 
            +
                OPTIMIZATION = "optimization"
         | 
| 22 | 
            +
                DOCUMENTATION = "documentation"
         | 
| 23 | 
            +
                TESTING = "testing"
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            class ResourceType(Enum):
         | 
| 26 | 
            +
                """Types of resources in agentic workflow."""
         | 
| 27 | 
            +
                CODE_CONTEXT = "code_context"
         | 
| 28 | 
            +
                SYSTEM_CONTEXT = "system_context"
         | 
| 29 | 
            +
                USER_CONTEXT = "user_context"
         | 
| 30 | 
            +
                TOOLS = "tools"
         | 
| 31 | 
            +
                APIS = "apis"
         | 
| 32 | 
            +
                DOCUMENTATION = "documentation"
         | 
| 33 | 
            +
                DEPENDENCIES = "dependencies"
         | 
| 34 | 
            +
                HISTORY = "history"
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            @dataclass
         | 
| 37 | 
            +
            class TaskComponent:
         | 
| 38 | 
            +
                """Component of a decomposed task."""
         | 
| 39 | 
            +
                id: str
         | 
| 40 | 
            +
                type: TaskType
         | 
| 41 | 
            +
                description: str
         | 
| 42 | 
            +
                dependencies: List[str]
         | 
| 43 | 
            +
                resources: Dict[ResourceType, Any]
         | 
| 44 | 
            +
                constraints: List[str]
         | 
| 45 | 
            +
                priority: float
         | 
| 46 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            @dataclass
         | 
| 49 | 
            +
            class ResourceAllocation:
         | 
| 50 | 
            +
                """Resource allocation for a task."""
         | 
| 51 | 
            +
                resource_type: ResourceType
         | 
| 52 | 
            +
                quantity: Union[int, float]
         | 
| 53 | 
            +
                priority: float
         | 
| 54 | 
            +
                constraints: List[str]
         | 
| 55 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            @dataclass
         | 
| 58 | 
            +
            class ExecutionStep:
         | 
| 59 | 
            +
                """Step in task execution."""
         | 
| 60 | 
            +
                id: str
         | 
| 61 | 
            +
                task_id: str
         | 
| 62 | 
            +
                action: str
         | 
| 63 | 
            +
                resources: Dict[ResourceType, Any]
         | 
| 64 | 
            +
                status: str
         | 
| 65 | 
            +
                result: Optional[Dict[str, Any]]
         | 
| 66 | 
            +
                feedback: List[str]
         | 
| 67 | 
            +
                timestamp: datetime = field(default_factory=datetime.now)
         | 
| 68 | 
            +
             | 
| 69 | 
            +
            class TaskDecompositionStrategy(ReasoningStrategy):
         | 
| 70 | 
            +
                """
         | 
| 71 | 
            +
                Advanced task decomposition strategy that:
         | 
| 72 | 
            +
                1. Analyzes task complexity and dependencies
         | 
| 73 | 
            +
                2. Breaks down tasks into manageable components
         | 
| 74 | 
            +
                3. Identifies resource requirements
         | 
| 75 | 
            +
                4. Establishes execution order
         | 
| 76 | 
            +
                5. Manages constraints and priorities
         | 
| 77 | 
            +
                """
         | 
| 78 | 
            +
                
         | 
| 79 | 
            +
                def __init__(self, max_components: int = 10):
         | 
| 80 | 
            +
                    self.max_components = max_components
         | 
| 81 | 
            +
                    self.components: Dict[str, TaskComponent] = {}
         | 
| 82 | 
            +
                    
         | 
| 83 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 84 | 
            +
                    """Decompose task into components."""
         | 
| 85 | 
            +
                    try:
         | 
| 86 | 
            +
                        # Analyze task
         | 
| 87 | 
            +
                        task_analysis = await self._analyze_task(query, context)
         | 
| 88 | 
            +
                        
         | 
| 89 | 
            +
                        # Generate components
         | 
| 90 | 
            +
                        components = await self._generate_components(task_analysis, context)
         | 
| 91 | 
            +
                        
         | 
| 92 | 
            +
                        # Establish dependencies
         | 
| 93 | 
            +
                        dependency_graph = await self._establish_dependencies(components, context)
         | 
| 94 | 
            +
                        
         | 
| 95 | 
            +
                        # Determine execution order
         | 
| 96 | 
            +
                        execution_order = await self._determine_execution_order(
         | 
| 97 | 
            +
                            components, dependency_graph, context)
         | 
| 98 | 
            +
                        
         | 
| 99 | 
            +
                        return {
         | 
| 100 | 
            +
                            "success": True,
         | 
| 101 | 
            +
                            "components": [self._component_to_dict(c) for c in components],
         | 
| 102 | 
            +
                            "dependency_graph": dependency_graph,
         | 
| 103 | 
            +
                            "execution_order": execution_order,
         | 
| 104 | 
            +
                            "metadata": {
         | 
| 105 | 
            +
                                "total_components": len(components),
         | 
| 106 | 
            +
                                "complexity_score": task_analysis.get("complexity_score", 0.0),
         | 
| 107 | 
            +
                                "resource_requirements": task_analysis.get("resource_requirements", {})
         | 
| 108 | 
            +
                            }
         | 
| 109 | 
            +
                        }
         | 
| 110 | 
            +
                    except Exception as e:
         | 
| 111 | 
            +
                        logging.error(f"Error in task decomposition: {str(e)}")
         | 
| 112 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            class ResourceManagementStrategy(ReasoningStrategy):
         | 
| 115 | 
            +
                """
         | 
| 116 | 
            +
                Advanced resource management strategy that:
         | 
| 117 | 
            +
                1. Tracks available resources
         | 
| 118 | 
            +
                2. Allocates resources to tasks
         | 
| 119 | 
            +
                3. Handles resource constraints
         | 
| 120 | 
            +
                4. Optimizes resource utilization
         | 
| 121 | 
            +
                5. Manages resource dependencies
         | 
| 122 | 
            +
                """
         | 
| 123 | 
            +
                
         | 
| 124 | 
            +
                def __init__(self):
         | 
| 125 | 
            +
                    self.allocations: Dict[str, ResourceAllocation] = {}
         | 
| 126 | 
            +
                    self.utilization_history: List[Dict[str, Any]] = []
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 129 | 
            +
                    """Manage resource allocation."""
         | 
| 130 | 
            +
                    try:
         | 
| 131 | 
            +
                        # Analyze resource requirements
         | 
| 132 | 
            +
                        requirements = await self._analyze_requirements(query, context)
         | 
| 133 | 
            +
                        
         | 
| 134 | 
            +
                        # Check resource availability
         | 
| 135 | 
            +
                        availability = await self._check_availability(requirements, context)
         | 
| 136 | 
            +
                        
         | 
| 137 | 
            +
                        # Generate allocation plan
         | 
| 138 | 
            +
                        allocation_plan = await self._generate_allocation_plan(
         | 
| 139 | 
            +
                            requirements, availability, context)
         | 
| 140 | 
            +
                        
         | 
| 141 | 
            +
                        # Optimize allocations
         | 
| 142 | 
            +
                        optimized_plan = await self._optimize_allocations(allocation_plan, context)
         | 
| 143 | 
            +
                        
         | 
| 144 | 
            +
                        return {
         | 
| 145 | 
            +
                            "success": True,
         | 
| 146 | 
            +
                            "allocation_plan": optimized_plan,
         | 
| 147 | 
            +
                            "resource_metrics": {
         | 
| 148 | 
            +
                                "utilization": self._calculate_utilization(),
         | 
| 149 | 
            +
                                "efficiency": self._calculate_efficiency(),
         | 
| 150 | 
            +
                                "constraints_satisfied": self._check_constraints(optimized_plan)
         | 
| 151 | 
            +
                            }
         | 
| 152 | 
            +
                        }
         | 
| 153 | 
            +
                    except Exception as e:
         | 
| 154 | 
            +
                        logging.error(f"Error in resource management: {str(e)}")
         | 
| 155 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 156 | 
            +
             | 
| 157 | 
            +
            class ContextualPlanningStrategy(ReasoningStrategy):
         | 
| 158 | 
            +
                """
         | 
| 159 | 
            +
                Advanced contextual planning strategy that:
         | 
| 160 | 
            +
                1. Analyzes multiple context types
         | 
| 161 | 
            +
                2. Generates context-aware plans
         | 
| 162 | 
            +
                3. Handles context changes
         | 
| 163 | 
            +
                4. Maintains context consistency
         | 
| 164 | 
            +
                5. Optimizes for context constraints
         | 
| 165 | 
            +
                """
         | 
| 166 | 
            +
                
         | 
| 167 | 
            +
                def __init__(self):
         | 
| 168 | 
            +
                    self.context_history: List[Dict[str, Any]] = []
         | 
| 169 | 
            +
                    self.plan_adaptations: List[Dict[str, Any]] = []
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 172 | 
            +
                    """Generate context-aware plan."""
         | 
| 173 | 
            +
                    try:
         | 
| 174 | 
            +
                        # Analyze contexts
         | 
| 175 | 
            +
                        context_analysis = await self._analyze_contexts(query, context)
         | 
| 176 | 
            +
                        
         | 
| 177 | 
            +
                        # Generate base plan
         | 
| 178 | 
            +
                        base_plan = await self._generate_base_plan(context_analysis, context)
         | 
| 179 | 
            +
                        
         | 
| 180 | 
            +
                        # Adapt to contexts
         | 
| 181 | 
            +
                        adapted_plan = await self._adapt_to_contexts(base_plan, context_analysis)
         | 
| 182 | 
            +
                        
         | 
| 183 | 
            +
                        # Validate plan
         | 
| 184 | 
            +
                        validation = await self._validate_plan(adapted_plan, context)
         | 
| 185 | 
            +
                        
         | 
| 186 | 
            +
                        return {
         | 
| 187 | 
            +
                            "success": True,
         | 
| 188 | 
            +
                            "plan": adapted_plan,
         | 
| 189 | 
            +
                            "context_impact": context_analysis.get("impact_assessment", {}),
         | 
| 190 | 
            +
                            "adaptations": self.plan_adaptations,
         | 
| 191 | 
            +
                            "validation_results": validation
         | 
| 192 | 
            +
                        }
         | 
| 193 | 
            +
                    except Exception as e:
         | 
| 194 | 
            +
                        logging.error(f"Error in contextual planning: {str(e)}")
         | 
| 195 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 196 | 
            +
             | 
| 197 | 
            +
            class AdaptiveExecutionStrategy(ReasoningStrategy):
         | 
| 198 | 
            +
                """
         | 
| 199 | 
            +
                Advanced adaptive execution strategy that:
         | 
| 200 | 
            +
                1. Monitors execution progress
         | 
| 201 | 
            +
                2. Adapts to changes and feedback
         | 
| 202 | 
            +
                3. Handles errors and exceptions
         | 
| 203 | 
            +
                4. Optimizes execution flow
         | 
| 204 | 
            +
                5. Maintains execution state
         | 
| 205 | 
            +
                """
         | 
| 206 | 
            +
                
         | 
| 207 | 
            +
                def __init__(self):
         | 
| 208 | 
            +
                    self.execution_steps: List[ExecutionStep] = []
         | 
| 209 | 
            +
                    self.adaptation_history: List[Dict[str, Any]] = []
         | 
| 210 | 
            +
                    
         | 
| 211 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 212 | 
            +
                    """Execute task adaptively."""
         | 
| 213 | 
            +
                    try:
         | 
| 214 | 
            +
                        # Initialize execution
         | 
| 215 | 
            +
                        execution_state = await self._initialize_execution(query, context)
         | 
| 216 | 
            +
                        
         | 
| 217 | 
            +
                        # Monitor and adapt
         | 
| 218 | 
            +
                        while not self._is_execution_complete(execution_state):
         | 
| 219 | 
            +
                            # Execute step
         | 
| 220 | 
            +
                            step_result = await self._execute_step(execution_state, context)
         | 
| 221 | 
            +
                            
         | 
| 222 | 
            +
                            # Process feedback
         | 
| 223 | 
            +
                            feedback = await self._process_feedback(step_result, context)
         | 
| 224 | 
            +
                            
         | 
| 225 | 
            +
                            # Adapt execution
         | 
| 226 | 
            +
                            execution_state = await self._adapt_execution(
         | 
| 227 | 
            +
                                execution_state, feedback, context)
         | 
| 228 | 
            +
                            
         | 
| 229 | 
            +
                            # Record step
         | 
| 230 | 
            +
                            self._record_step(step_result, feedback)
         | 
| 231 | 
            +
                        
         | 
| 232 | 
            +
                        return {
         | 
| 233 | 
            +
                            "success": True,
         | 
| 234 | 
            +
                            "execution_trace": [self._step_to_dict(s) for s in self.execution_steps],
         | 
| 235 | 
            +
                            "adaptations": self.adaptation_history,
         | 
| 236 | 
            +
                            "final_state": execution_state
         | 
| 237 | 
            +
                        }
         | 
| 238 | 
            +
                    except Exception as e:
         | 
| 239 | 
            +
                        logging.error(f"Error in adaptive execution: {str(e)}")
         | 
| 240 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 241 | 
            +
             | 
| 242 | 
            +
            class FeedbackIntegrationStrategy(ReasoningStrategy):
         | 
| 243 | 
            +
                """
         | 
| 244 | 
            +
                Advanced feedback integration strategy that:
         | 
| 245 | 
            +
                1. Collects multiple types of feedback
         | 
| 246 | 
            +
                2. Analyzes feedback patterns
         | 
| 247 | 
            +
                3. Generates improvement suggestions
         | 
| 248 | 
            +
                4. Tracks feedback implementation
         | 
| 249 | 
            +
                5. Measures feedback impact
         | 
| 250 | 
            +
                """
         | 
| 251 | 
            +
                
         | 
| 252 | 
            +
                def __init__(self):
         | 
| 253 | 
            +
                    self.feedback_history: List[Dict[str, Any]] = []
         | 
| 254 | 
            +
                    self.improvement_history: List[Dict[str, Any]] = []
         | 
| 255 | 
            +
                    
         | 
| 256 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 257 | 
            +
                    """Integrate and apply feedback."""
         | 
| 258 | 
            +
                    try:
         | 
| 259 | 
            +
                        # Collect feedback
         | 
| 260 | 
            +
                        feedback = await self._collect_feedback(query, context)
         | 
| 261 | 
            +
                        
         | 
| 262 | 
            +
                        # Analyze patterns
         | 
| 263 | 
            +
                        patterns = await self._analyze_patterns(feedback, context)
         | 
| 264 | 
            +
                        
         | 
| 265 | 
            +
                        # Generate improvements
         | 
| 266 | 
            +
                        improvements = await self._generate_improvements(patterns, context)
         | 
| 267 | 
            +
                        
         | 
| 268 | 
            +
                        # Implement changes
         | 
| 269 | 
            +
                        implementation = await self._implement_improvements(improvements, context)
         | 
| 270 | 
            +
                        
         | 
| 271 | 
            +
                        # Measure impact
         | 
| 272 | 
            +
                        impact = await self._measure_impact(implementation, context)
         | 
| 273 | 
            +
                        
         | 
| 274 | 
            +
                        return {
         | 
| 275 | 
            +
                            "success": True,
         | 
| 276 | 
            +
                            "feedback_analysis": patterns,
         | 
| 277 | 
            +
                            "improvements": improvements,
         | 
| 278 | 
            +
                            "implementation_status": implementation,
         | 
| 279 | 
            +
                            "impact_metrics": impact
         | 
| 280 | 
            +
                        }
         | 
| 281 | 
            +
                    except Exception as e:
         | 
| 282 | 
            +
                        logging.error(f"Error in feedback integration: {str(e)}")
         | 
| 283 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                async def _collect_feedback(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 286 | 
            +
                    """Collect feedback from multiple sources."""
         | 
| 287 | 
            +
                    prompt = f"""
         | 
| 288 | 
            +
                    Collect feedback from:
         | 
| 289 | 
            +
                    Query: {query}
         | 
| 290 | 
            +
                    Context: {json.dumps(context)}
         | 
| 291 | 
            +
                    
         | 
| 292 | 
            +
                    Consider:
         | 
| 293 | 
            +
                    1. User feedback
         | 
| 294 | 
            +
                    2. System metrics
         | 
| 295 | 
            +
                    3. Code analysis
         | 
| 296 | 
            +
                    4. Performance data
         | 
| 297 | 
            +
                    5. Error patterns
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                    Format as:
         | 
| 300 | 
            +
                    [Feedback]
         | 
| 301 | 
            +
                    Source: ...
         | 
| 302 | 
            +
                    Type: ...
         | 
| 303 | 
            +
                    Content: ...
         | 
| 304 | 
            +
                    Priority: ...
         | 
| 305 | 
            +
                    """
         | 
| 306 | 
            +
                    
         | 
| 307 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 308 | 
            +
                    return self._parse_feedback(response["answer"])
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def _parse_feedback(self, response: str) -> List[Dict[str, Any]]:
         | 
| 311 | 
            +
                    """Parse feedback from response."""
         | 
| 312 | 
            +
                    feedback_items = []
         | 
| 313 | 
            +
                    current = None
         | 
| 314 | 
            +
                    
         | 
| 315 | 
            +
                    for line in response.split('\n'):
         | 
| 316 | 
            +
                        line = line.strip()
         | 
| 317 | 
            +
                        if not line:
         | 
| 318 | 
            +
                            continue
         | 
| 319 | 
            +
                            
         | 
| 320 | 
            +
                        if line.startswith('[Feedback]'):
         | 
| 321 | 
            +
                            if current:
         | 
| 322 | 
            +
                                feedback_items.append(current)
         | 
| 323 | 
            +
                            current = {
         | 
| 324 | 
            +
                                "source": "",
         | 
| 325 | 
            +
                                "type": "",
         | 
| 326 | 
            +
                                "content": "",
         | 
| 327 | 
            +
                                "priority": 0.0
         | 
| 328 | 
            +
                            }
         | 
| 329 | 
            +
                        elif current:
         | 
| 330 | 
            +
                            if line.startswith('Source:'):
         | 
| 331 | 
            +
                                current["source"] = line[7:].strip()
         | 
| 332 | 
            +
                            elif line.startswith('Type:'):
         | 
| 333 | 
            +
                                current["type"] = line[5:].strip()
         | 
| 334 | 
            +
                            elif line.startswith('Content:'):
         | 
| 335 | 
            +
                                current["content"] = line[8:].strip()
         | 
| 336 | 
            +
                            elif line.startswith('Priority:'):
         | 
| 337 | 
            +
                                try:
         | 
| 338 | 
            +
                                    current["priority"] = float(line[9:].strip())
         | 
| 339 | 
            +
                                except:
         | 
| 340 | 
            +
                                    pass
         | 
| 341 | 
            +
                    
         | 
| 342 | 
            +
                    if current:
         | 
| 343 | 
            +
                        feedback_items.append(current)
         | 
| 344 | 
            +
                    
         | 
| 345 | 
            +
                    return feedback_items
         | 
    	
        reasoning/analogical.py
    ADDED
    
    | @@ -0,0 +1,600 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Analogical reasoning implementation with advanced pattern matching and transfer learning."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Tuple, Callable
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class AnalogicalLevel(Enum):
         | 
| 15 | 
            +
                """Levels of analogical similarity."""
         | 
| 16 | 
            +
                SURFACE = "surface"
         | 
| 17 | 
            +
                STRUCTURAL = "structural"
         | 
| 18 | 
            +
                SEMANTIC = "semantic"
         | 
| 19 | 
            +
                FUNCTIONAL = "functional"
         | 
| 20 | 
            +
                CAUSAL = "causal"
         | 
| 21 | 
            +
                ABSTRACT = "abstract"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            class MappingType(Enum):
         | 
| 24 | 
            +
                """Types of analogical mappings."""
         | 
| 25 | 
            +
                DIRECT = "direct"
         | 
| 26 | 
            +
                TRANSFORMED = "transformed"
         | 
| 27 | 
            +
                COMPOSITE = "composite"
         | 
| 28 | 
            +
                ABSTRACT = "abstract"
         | 
| 29 | 
            +
                METAPHORICAL = "metaphorical"
         | 
| 30 | 
            +
                HYBRID = "hybrid"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            @dataclass
         | 
| 33 | 
            +
            class AnalogicalPattern:
         | 
| 34 | 
            +
                """Represents a pattern for analogical matching."""
         | 
| 35 | 
            +
                id: str
         | 
| 36 | 
            +
                level: AnalogicalLevel
         | 
| 37 | 
            +
                features: Dict[str, Any]
         | 
| 38 | 
            +
                relations: List[Tuple[str, str, str]]  # (entity1, relation, entity2)
         | 
| 39 | 
            +
                constraints: List[str]
         | 
| 40 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            @dataclass
         | 
| 43 | 
            +
            class AnalogicalMapping:
         | 
| 44 | 
            +
                """Represents a mapping between source and target domains."""
         | 
| 45 | 
            +
                id: str
         | 
| 46 | 
            +
                type: MappingType
         | 
| 47 | 
            +
                source_elements: Dict[str, Any]
         | 
| 48 | 
            +
                target_elements: Dict[str, Any]
         | 
| 49 | 
            +
                correspondences: List[Tuple[str, str, float]]  # (source, target, strength)
         | 
| 50 | 
            +
                transformations: List[Dict[str, Any]]
         | 
| 51 | 
            +
                confidence: float
         | 
| 52 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            @dataclass
         | 
| 55 | 
            +
            class AnalogicalSolution:
         | 
| 56 | 
            +
                """Represents a solution derived through analogical reasoning."""
         | 
| 57 | 
            +
                id: str
         | 
| 58 | 
            +
                source_analogy: str
         | 
| 59 | 
            +
                mapping: AnalogicalMapping
         | 
| 60 | 
            +
                adaptation: Dict[str, Any]
         | 
| 61 | 
            +
                inference: Dict[str, Any]
         | 
| 62 | 
            +
                confidence: float
         | 
| 63 | 
            +
                validation: Dict[str, Any]
         | 
| 64 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            class AnalogicalReasoning(ReasoningStrategy):
         | 
| 67 | 
            +
                """
         | 
| 68 | 
            +
                Advanced Analogical Reasoning implementation with:
         | 
| 69 | 
            +
                - Multi-level pattern matching
         | 
| 70 | 
            +
                - Sophisticated similarity metrics
         | 
| 71 | 
            +
                - Transfer learning capabilities
         | 
| 72 | 
            +
                - Dynamic adaptation mechanisms
         | 
| 73 | 
            +
                - Quality assessment
         | 
| 74 | 
            +
                - Learning from experience
         | 
| 75 | 
            +
                """
         | 
| 76 | 
            +
                
         | 
| 77 | 
            +
                def __init__(self,
         | 
| 78 | 
            +
                             min_similarity: float = 0.6,
         | 
| 79 | 
            +
                             max_candidates: int = 5,
         | 
| 80 | 
            +
                             adaptation_threshold: float = 0.7,
         | 
| 81 | 
            +
                             learning_rate: float = 0.1):
         | 
| 82 | 
            +
                    self.min_similarity = min_similarity
         | 
| 83 | 
            +
                    self.max_candidates = max_candidates
         | 
| 84 | 
            +
                    self.adaptation_threshold = adaptation_threshold
         | 
| 85 | 
            +
                    self.learning_rate = learning_rate
         | 
| 86 | 
            +
                    
         | 
| 87 | 
            +
                    # Knowledge base
         | 
| 88 | 
            +
                    self.patterns: Dict[str, AnalogicalPattern] = {}
         | 
| 89 | 
            +
                    self.mappings: Dict[str, AnalogicalMapping] = {}
         | 
| 90 | 
            +
                    self.solutions: Dict[str, AnalogicalSolution] = {}
         | 
| 91 | 
            +
                    
         | 
| 92 | 
            +
                    # Learning components
         | 
| 93 | 
            +
                    self.pattern_weights: Dict[str, float] = defaultdict(float)
         | 
| 94 | 
            +
                    self.success_history: List[Dict[str, Any]] = []
         | 
| 95 | 
            +
                    self.adaptation_history: List[Dict[str, Any]] = []
         | 
| 96 | 
            +
                    
         | 
| 97 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 98 | 
            +
                    """Main reasoning method implementing analogical reasoning."""
         | 
| 99 | 
            +
                    try:
         | 
| 100 | 
            +
                        # Extract patterns from query
         | 
| 101 | 
            +
                        patterns = await self._extract_patterns(query, context)
         | 
| 102 | 
            +
                        
         | 
| 103 | 
            +
                        # Find analogical matches
         | 
| 104 | 
            +
                        matches = await self._find_matches(patterns, context)
         | 
| 105 | 
            +
                        
         | 
| 106 | 
            +
                        # Create and evaluate mappings
         | 
| 107 | 
            +
                        mappings = await self._create_mappings(matches, context)
         | 
| 108 | 
            +
                        
         | 
| 109 | 
            +
                        # Generate and adapt solutions
         | 
| 110 | 
            +
                        solutions = await self._generate_solutions(mappings, context)
         | 
| 111 | 
            +
                        
         | 
| 112 | 
            +
                        # Select best solution
         | 
| 113 | 
            +
                        best_solution = await self._select_best_solution(solutions, context)
         | 
| 114 | 
            +
                        
         | 
| 115 | 
            +
                        # Learn from experience
         | 
| 116 | 
            +
                        self._update_knowledge(patterns, mappings, best_solution)
         | 
| 117 | 
            +
                        
         | 
| 118 | 
            +
                        return {
         | 
| 119 | 
            +
                            "success": True,
         | 
| 120 | 
            +
                            "answer": best_solution.inference["conclusion"],
         | 
| 121 | 
            +
                            "confidence": best_solution.confidence,
         | 
| 122 | 
            +
                            "analogy": {
         | 
| 123 | 
            +
                                "source": best_solution.source_analogy,
         | 
| 124 | 
            +
                                "mapping": self._mapping_to_dict(best_solution.mapping),
         | 
| 125 | 
            +
                                "adaptation": best_solution.adaptation
         | 
| 126 | 
            +
                            },
         | 
| 127 | 
            +
                            "reasoning_trace": best_solution.metadata.get("reasoning_trace", []),
         | 
| 128 | 
            +
                            "meta_insights": best_solution.metadata.get("meta_insights", [])
         | 
| 129 | 
            +
                        }
         | 
| 130 | 
            +
                    except Exception as e:
         | 
| 131 | 
            +
                        logging.error(f"Error in analogical reasoning: {str(e)}")
         | 
| 132 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                async def _extract_patterns(self, query: str, context: Dict[str, Any]) -> List[AnalogicalPattern]:
         | 
| 135 | 
            +
                    """Extract patterns from query for analogical matching."""
         | 
| 136 | 
            +
                    prompt = f"""
         | 
| 137 | 
            +
                    Extract analogical patterns from query:
         | 
| 138 | 
            +
                    Query: {query}
         | 
| 139 | 
            +
                    Context: {json.dumps(context)}
         | 
| 140 | 
            +
                    
         | 
| 141 | 
            +
                    For each pattern level:
         | 
| 142 | 
            +
                    1. Surface features
         | 
| 143 | 
            +
                    2. Structural relations
         | 
| 144 | 
            +
                    3. Semantic concepts
         | 
| 145 | 
            +
                    4. Functional roles
         | 
| 146 | 
            +
                    5. Causal relationships
         | 
| 147 | 
            +
                    6. Abstract principles
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                    Format as:
         | 
| 150 | 
            +
                    [P1]
         | 
| 151 | 
            +
                    Level: ...
         | 
| 152 | 
            +
                    Features: ...
         | 
| 153 | 
            +
                    Relations: ...
         | 
| 154 | 
            +
                    Constraints: ...
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    [P2]
         | 
| 157 | 
            +
                    ...
         | 
| 158 | 
            +
                    """
         | 
| 159 | 
            +
                    
         | 
| 160 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 161 | 
            +
                    return self._parse_patterns(response["answer"])
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                async def _find_matches(self, patterns: List[AnalogicalPattern], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 164 | 
            +
                    """Find matching patterns in knowledge base."""
         | 
| 165 | 
            +
                    prompt = f"""
         | 
| 166 | 
            +
                    Find analogical matches:
         | 
| 167 | 
            +
                    Patterns: {json.dumps([self._pattern_to_dict(p) for p in patterns])}
         | 
| 168 | 
            +
                    Context: {json.dumps(context)}
         | 
| 169 | 
            +
                    
         | 
| 170 | 
            +
                    For each match provide:
         | 
| 171 | 
            +
                    1. Source domain
         | 
| 172 | 
            +
                    2. Similarity assessment
         | 
| 173 | 
            +
                    3. Key correspondences
         | 
| 174 | 
            +
                    4. Transfer potential
         | 
| 175 | 
            +
                    
         | 
| 176 | 
            +
                    Format as:
         | 
| 177 | 
            +
                    [M1]
         | 
| 178 | 
            +
                    Source: ...
         | 
| 179 | 
            +
                    Similarity: ...
         | 
| 180 | 
            +
                    Correspondences: ...
         | 
| 181 | 
            +
                    Transfer: ...
         | 
| 182 | 
            +
                    
         | 
| 183 | 
            +
                    [M2]
         | 
| 184 | 
            +
                    ...
         | 
| 185 | 
            +
                    """
         | 
| 186 | 
            +
                    
         | 
| 187 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 188 | 
            +
                    return self._parse_matches(response["answer"])
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                async def _create_mappings(self, matches: List[Dict[str, Any]], context: Dict[str, Any]) -> List[AnalogicalMapping]:
         | 
| 191 | 
            +
                    """Create mappings between source and target domains."""
         | 
| 192 | 
            +
                    prompt = f"""
         | 
| 193 | 
            +
                    Create analogical mappings:
         | 
| 194 | 
            +
                    Matches: {json.dumps(matches)}
         | 
| 195 | 
            +
                    Context: {json.dumps(context)}
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    For each mapping specify:
         | 
| 198 | 
            +
                    1. [Type]: {" | ".join([t.value for t in MappingType])}
         | 
| 199 | 
            +
                    2. [Elements]: Source and target elements
         | 
| 200 | 
            +
                    3. [Correspondences]: Element mappings
         | 
| 201 | 
            +
                    4. [Transformations]: Required adaptations
         | 
| 202 | 
            +
                    5. [Confidence]: Mapping strength
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    Format as:
         | 
| 205 | 
            +
                    [Map1]
         | 
| 206 | 
            +
                    Type: ...
         | 
| 207 | 
            +
                    Elements: ...
         | 
| 208 | 
            +
                    Correspondences: ...
         | 
| 209 | 
            +
                    Transformations: ...
         | 
| 210 | 
            +
                    Confidence: ...
         | 
| 211 | 
            +
                    """
         | 
| 212 | 
            +
                    
         | 
| 213 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 214 | 
            +
                    return self._parse_mappings(response["answer"])
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                async def _generate_solutions(self, mappings: List[AnalogicalMapping], context: Dict[str, Any]) -> List[AnalogicalSolution]:
         | 
| 217 | 
            +
                    """Generate solutions through analogical transfer."""
         | 
| 218 | 
            +
                    prompt = f"""
         | 
| 219 | 
            +
                    Generate analogical solutions:
         | 
| 220 | 
            +
                    Mappings: {json.dumps([self._mapping_to_dict(m) for m in mappings])}
         | 
| 221 | 
            +
                    Context: {json.dumps(context)}
         | 
| 222 | 
            +
                    
         | 
| 223 | 
            +
                    For each solution provide:
         | 
| 224 | 
            +
                    1. Analogical inference
         | 
| 225 | 
            +
                    2. Required adaptations
         | 
| 226 | 
            +
                    3. Validation criteria
         | 
| 227 | 
            +
                    4. Confidence assessment
         | 
| 228 | 
            +
                    5. Reasoning trace
         | 
| 229 | 
            +
                    
         | 
| 230 | 
            +
                    Format as:
         | 
| 231 | 
            +
                    [S1]
         | 
| 232 | 
            +
                    Inference: ...
         | 
| 233 | 
            +
                    Adaptation: ...
         | 
| 234 | 
            +
                    Validation: ...
         | 
| 235 | 
            +
                    Confidence: ...
         | 
| 236 | 
            +
                    Trace: ...
         | 
| 237 | 
            +
                    """
         | 
| 238 | 
            +
                    
         | 
| 239 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 240 | 
            +
                    return self._parse_solutions(response["answer"], mappings)
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                async def _select_best_solution(self, solutions: List[AnalogicalSolution], context: Dict[str, Any]) -> AnalogicalSolution:
         | 
| 243 | 
            +
                    """Select the best solution based on multiple criteria."""
         | 
| 244 | 
            +
                    prompt = f"""
         | 
| 245 | 
            +
                    Evaluate and select best solution:
         | 
| 246 | 
            +
                    Solutions: {json.dumps([self._solution_to_dict(s) for s in solutions])}
         | 
| 247 | 
            +
                    Context: {json.dumps(context)}
         | 
| 248 | 
            +
                    
         | 
| 249 | 
            +
                    Evaluate based on:
         | 
| 250 | 
            +
                    1. Inference quality
         | 
| 251 | 
            +
                    2. Adaptation feasibility
         | 
| 252 | 
            +
                    3. Validation strength
         | 
| 253 | 
            +
                    4. Overall confidence
         | 
| 254 | 
            +
                    
         | 
| 255 | 
            +
                    Format as:
         | 
| 256 | 
            +
                    [Evaluation]
         | 
| 257 | 
            +
                    Rankings: ...
         | 
| 258 | 
            +
                    Rationale: ...
         | 
| 259 | 
            +
                    Selection: ...
         | 
| 260 | 
            +
                    Confidence: ...
         | 
| 261 | 
            +
                    """
         | 
| 262 | 
            +
                    
         | 
| 263 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 264 | 
            +
                    selection = self._parse_selection(response["answer"])
         | 
| 265 | 
            +
                    
         | 
| 266 | 
            +
                    # Find selected solution
         | 
| 267 | 
            +
                    selected = max(solutions, key=lambda s: s.confidence)
         | 
| 268 | 
            +
                    for solution in solutions:
         | 
| 269 | 
            +
                        if solution.id == selection.get("selected_id"):
         | 
| 270 | 
            +
                            selected = solution
         | 
| 271 | 
            +
                            break
         | 
| 272 | 
            +
                    
         | 
| 273 | 
            +
                    return selected
         | 
| 274 | 
            +
             | 
| 275 | 
            +
                def _update_knowledge(self, patterns: List[AnalogicalPattern], mappings: List[AnalogicalMapping], solution: AnalogicalSolution):
         | 
| 276 | 
            +
                    """Update knowledge base with new patterns and successful mappings."""
         | 
| 277 | 
            +
                    # Update patterns
         | 
| 278 | 
            +
                    for pattern in patterns:
         | 
| 279 | 
            +
                        if pattern.id not in self.patterns:
         | 
| 280 | 
            +
                            self.patterns[pattern.id] = pattern
         | 
| 281 | 
            +
                        self.pattern_weights[pattern.id] += self.learning_rate * solution.confidence
         | 
| 282 | 
            +
                    
         | 
| 283 | 
            +
                    # Update mappings
         | 
| 284 | 
            +
                    if solution.mapping.id not in self.mappings:
         | 
| 285 | 
            +
                        self.mappings[solution.mapping.id] = solution.mapping
         | 
| 286 | 
            +
                    
         | 
| 287 | 
            +
                    # Record solution
         | 
| 288 | 
            +
                    self.solutions[solution.id] = solution
         | 
| 289 | 
            +
                    
         | 
| 290 | 
            +
                    # Update history
         | 
| 291 | 
            +
                    self.success_history.append({
         | 
| 292 | 
            +
                        "timestamp": datetime.now().isoformat(),
         | 
| 293 | 
            +
                        "solution_id": solution.id,
         | 
| 294 | 
            +
                        "confidence": solution.confidence,
         | 
| 295 | 
            +
                        "patterns": [p.id for p in patterns],
         | 
| 296 | 
            +
                        "mapping_type": solution.mapping.type.value
         | 
| 297 | 
            +
                    })
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                    # Update adaptation history
         | 
| 300 | 
            +
                    self.adaptation_history.append({
         | 
| 301 | 
            +
                        "timestamp": datetime.now().isoformat(),
         | 
| 302 | 
            +
                        "solution_id": solution.id,
         | 
| 303 | 
            +
                        "adaptations": solution.adaptation,
         | 
| 304 | 
            +
                        "success": solution.confidence >= self.adaptation_threshold
         | 
| 305 | 
            +
                    })
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def _parse_patterns(self, response: str) -> List[AnalogicalPattern]:
         | 
| 308 | 
            +
                    """Parse patterns from response."""
         | 
| 309 | 
            +
                    patterns = []
         | 
| 310 | 
            +
                    current = None
         | 
| 311 | 
            +
                    
         | 
| 312 | 
            +
                    for line in response.split('\n'):
         | 
| 313 | 
            +
                        line = line.strip()
         | 
| 314 | 
            +
                        if not line:
         | 
| 315 | 
            +
                            continue
         | 
| 316 | 
            +
                            
         | 
| 317 | 
            +
                        if line.startswith('[P'):
         | 
| 318 | 
            +
                            if current:
         | 
| 319 | 
            +
                                patterns.append(current)
         | 
| 320 | 
            +
                            current = None
         | 
| 321 | 
            +
                        elif line.startswith('Level:'):
         | 
| 322 | 
            +
                            level_str = line[6:].strip().lower()
         | 
| 323 | 
            +
                            try:
         | 
| 324 | 
            +
                                level = AnalogicalLevel(level_str)
         | 
| 325 | 
            +
                                current = AnalogicalPattern(
         | 
| 326 | 
            +
                                    id=f"pattern_{len(patterns)}",
         | 
| 327 | 
            +
                                    level=level,
         | 
| 328 | 
            +
                                    features={},
         | 
| 329 | 
            +
                                    relations=[],
         | 
| 330 | 
            +
                                    constraints=[],
         | 
| 331 | 
            +
                                    metadata={}
         | 
| 332 | 
            +
                                )
         | 
| 333 | 
            +
                            except ValueError:
         | 
| 334 | 
            +
                                logging.warning(f"Invalid analogical level: {level_str}")
         | 
| 335 | 
            +
                        elif current:
         | 
| 336 | 
            +
                            if line.startswith('Features:'):
         | 
| 337 | 
            +
                                try:
         | 
| 338 | 
            +
                                    current.features = json.loads(line[9:].strip())
         | 
| 339 | 
            +
                                except:
         | 
| 340 | 
            +
                                    current.features = {"raw": line[9:].strip()}
         | 
| 341 | 
            +
                            elif line.startswith('Relations:'):
         | 
| 342 | 
            +
                                relations = [r.strip() for r in line[10:].split(',')]
         | 
| 343 | 
            +
                                current.relations = [(r.split()[0], r.split()[1], r.split()[2]) 
         | 
| 344 | 
            +
                                                  for r in relations if len(r.split()) >= 3]
         | 
| 345 | 
            +
                            elif line.startswith('Constraints:'):
         | 
| 346 | 
            +
                                current.constraints = [c.strip() for c in line[12:].split(',')]
         | 
| 347 | 
            +
                    
         | 
| 348 | 
            +
                    if current:
         | 
| 349 | 
            +
                        patterns.append(current)
         | 
| 350 | 
            +
                    
         | 
| 351 | 
            +
                    return patterns
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                def _parse_matches(self, response: str) -> List[Dict[str, Any]]:
         | 
| 354 | 
            +
                    """Parse matches from response."""
         | 
| 355 | 
            +
                    matches = []
         | 
| 356 | 
            +
                    current = None
         | 
| 357 | 
            +
                    
         | 
| 358 | 
            +
                    for line in response.split('\n'):
         | 
| 359 | 
            +
                        line = line.strip()
         | 
| 360 | 
            +
                        if not line:
         | 
| 361 | 
            +
                            continue
         | 
| 362 | 
            +
                            
         | 
| 363 | 
            +
                        if line.startswith('[M'):
         | 
| 364 | 
            +
                            if current:
         | 
| 365 | 
            +
                                matches.append(current)
         | 
| 366 | 
            +
                            current = {
         | 
| 367 | 
            +
                                "source": "",
         | 
| 368 | 
            +
                                "similarity": 0.0,
         | 
| 369 | 
            +
                                "correspondences": [],
         | 
| 370 | 
            +
                                "transfer": []
         | 
| 371 | 
            +
                            }
         | 
| 372 | 
            +
                        elif current:
         | 
| 373 | 
            +
                            if line.startswith('Source:'):
         | 
| 374 | 
            +
                                current["source"] = line[7:].strip()
         | 
| 375 | 
            +
                            elif line.startswith('Similarity:'):
         | 
| 376 | 
            +
                                try:
         | 
| 377 | 
            +
                                    current["similarity"] = float(line[11:].strip())
         | 
| 378 | 
            +
                                except:
         | 
| 379 | 
            +
                                    pass
         | 
| 380 | 
            +
                            elif line.startswith('Correspondences:'):
         | 
| 381 | 
            +
                                current["correspondences"] = [c.strip() for c in line[16:].split(',')]
         | 
| 382 | 
            +
                            elif line.startswith('Transfer:'):
         | 
| 383 | 
            +
                                current["transfer"] = [t.strip() for t in line[9:].split(',')]
         | 
| 384 | 
            +
                    
         | 
| 385 | 
            +
                    if current:
         | 
| 386 | 
            +
                        matches.append(current)
         | 
| 387 | 
            +
                    
         | 
| 388 | 
            +
                    return matches
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                def _parse_mappings(self, response: str) -> List[AnalogicalMapping]:
         | 
| 391 | 
            +
                    """Parse mappings from response."""
         | 
| 392 | 
            +
                    mappings = []
         | 
| 393 | 
            +
                    current = None
         | 
| 394 | 
            +
                    
         | 
| 395 | 
            +
                    for line in response.split('\n'):
         | 
| 396 | 
            +
                        line = line.strip()
         | 
| 397 | 
            +
                        if not line:
         | 
| 398 | 
            +
                            continue
         | 
| 399 | 
            +
                            
         | 
| 400 | 
            +
                        if line.startswith('[Map'):
         | 
| 401 | 
            +
                            if current:
         | 
| 402 | 
            +
                                mappings.append(current)
         | 
| 403 | 
            +
                            current = None
         | 
| 404 | 
            +
                        elif line.startswith('Type:'):
         | 
| 405 | 
            +
                            type_str = line[5:].strip().lower()
         | 
| 406 | 
            +
                            try:
         | 
| 407 | 
            +
                                mapping_type = MappingType(type_str)
         | 
| 408 | 
            +
                                current = AnalogicalMapping(
         | 
| 409 | 
            +
                                    id=f"mapping_{len(mappings)}",
         | 
| 410 | 
            +
                                    type=mapping_type,
         | 
| 411 | 
            +
                                    source_elements={},
         | 
| 412 | 
            +
                                    target_elements={},
         | 
| 413 | 
            +
                                    correspondences=[],
         | 
| 414 | 
            +
                                    transformations=[],
         | 
| 415 | 
            +
                                    confidence=0.0,
         | 
| 416 | 
            +
                                    metadata={}
         | 
| 417 | 
            +
                                )
         | 
| 418 | 
            +
                            except ValueError:
         | 
| 419 | 
            +
                                logging.warning(f"Invalid mapping type: {type_str}")
         | 
| 420 | 
            +
                        elif current:
         | 
| 421 | 
            +
                            if line.startswith('Elements:'):
         | 
| 422 | 
            +
                                try:
         | 
| 423 | 
            +
                                    elements = json.loads(line[9:].strip())
         | 
| 424 | 
            +
                                    current.source_elements = elements.get("source", {})
         | 
| 425 | 
            +
                                    current.target_elements = elements.get("target", {})
         | 
| 426 | 
            +
                                except:
         | 
| 427 | 
            +
                                    pass
         | 
| 428 | 
            +
                            elif line.startswith('Correspondences:'):
         | 
| 429 | 
            +
                                pairs = [c.strip() for c in line[16:].split(',')]
         | 
| 430 | 
            +
                                for pair in pairs:
         | 
| 431 | 
            +
                                    parts = pair.split(':')
         | 
| 432 | 
            +
                                    if len(parts) >= 2:
         | 
| 433 | 
            +
                                        source = parts[0].strip()
         | 
| 434 | 
            +
                                        target = parts[1].strip()
         | 
| 435 | 
            +
                                        strength = float(parts[2]) if len(parts) > 2 else 1.0
         | 
| 436 | 
            +
                                        current.correspondences.append((source, target, strength))
         | 
| 437 | 
            +
                            elif line.startswith('Transformations:'):
         | 
| 438 | 
            +
                                try:
         | 
| 439 | 
            +
                                    current.transformations = json.loads(line[16:].strip())
         | 
| 440 | 
            +
                                except:
         | 
| 441 | 
            +
                                    current.transformations = [{"raw": line[16:].strip()}]
         | 
| 442 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 443 | 
            +
                                try:
         | 
| 444 | 
            +
                                    current.confidence = float(line[11:].strip())
         | 
| 445 | 
            +
                                except:
         | 
| 446 | 
            +
                                    pass
         | 
| 447 | 
            +
                    
         | 
| 448 | 
            +
                    if current:
         | 
| 449 | 
            +
                        mappings.append(current)
         | 
| 450 | 
            +
                    
         | 
| 451 | 
            +
                    return mappings
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                def _parse_solutions(self, response: str, mappings: List[AnalogicalMapping]) -> List[AnalogicalSolution]:
         | 
| 454 | 
            +
                    """Parse solutions from response."""
         | 
| 455 | 
            +
                    solutions = []
         | 
| 456 | 
            +
                    current = None
         | 
| 457 | 
            +
                    
         | 
| 458 | 
            +
                    for line in response.split('\n'):
         | 
| 459 | 
            +
                        line = line.strip()
         | 
| 460 | 
            +
                        if not line:
         | 
| 461 | 
            +
                            continue
         | 
| 462 | 
            +
                            
         | 
| 463 | 
            +
                        if line.startswith('[S'):
         | 
| 464 | 
            +
                            if current:
         | 
| 465 | 
            +
                                solutions.append(current)
         | 
| 466 | 
            +
                            current = None
         | 
| 467 | 
            +
                            mapping_idx = len(solutions)
         | 
| 468 | 
            +
                            if mapping_idx < len(mappings):
         | 
| 469 | 
            +
                                current = AnalogicalSolution(
         | 
| 470 | 
            +
                                    id=f"solution_{len(solutions)}",
         | 
| 471 | 
            +
                                    source_analogy="",
         | 
| 472 | 
            +
                                    mapping=mappings[mapping_idx],
         | 
| 473 | 
            +
                                    adaptation={},
         | 
| 474 | 
            +
                                    inference={},
         | 
| 475 | 
            +
                                    confidence=0.0,
         | 
| 476 | 
            +
                                    validation={},
         | 
| 477 | 
            +
                                    metadata={}
         | 
| 478 | 
            +
                                )
         | 
| 479 | 
            +
                        elif current:
         | 
| 480 | 
            +
                            if line.startswith('Inference:'):
         | 
| 481 | 
            +
                                try:
         | 
| 482 | 
            +
                                    current.inference = json.loads(line[10:].strip())
         | 
| 483 | 
            +
                                except:
         | 
| 484 | 
            +
                                    current.inference = {"conclusion": line[10:].strip()}
         | 
| 485 | 
            +
                            elif line.startswith('Adaptation:'):
         | 
| 486 | 
            +
                                try:
         | 
| 487 | 
            +
                                    current.adaptation = json.loads(line[11:].strip())
         | 
| 488 | 
            +
                                except:
         | 
| 489 | 
            +
                                    current.adaptation = {"steps": [line[11:].strip()]}
         | 
| 490 | 
            +
                            elif line.startswith('Validation:'):
         | 
| 491 | 
            +
                                try:
         | 
| 492 | 
            +
                                    current.validation = json.loads(line[11:].strip())
         | 
| 493 | 
            +
                                except:
         | 
| 494 | 
            +
                                    current.validation = {"criteria": [line[11:].strip()]}
         | 
| 495 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 496 | 
            +
                                try:
         | 
| 497 | 
            +
                                    current.confidence = float(line[11:].strip())
         | 
| 498 | 
            +
                                except:
         | 
| 499 | 
            +
                                    pass
         | 
| 500 | 
            +
                            elif line.startswith('Trace:'):
         | 
| 501 | 
            +
                                current.metadata["reasoning_trace"] = [t.strip() for t in line[6:].split(',')]
         | 
| 502 | 
            +
                    
         | 
| 503 | 
            +
                    if current:
         | 
| 504 | 
            +
                        solutions.append(current)
         | 
| 505 | 
            +
                    
         | 
| 506 | 
            +
                    return solutions
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                def _parse_selection(self, response: str) -> Dict[str, Any]:
         | 
| 509 | 
            +
                    """Parse solution selection from response."""
         | 
| 510 | 
            +
                    selection = {
         | 
| 511 | 
            +
                        "selected_id": None,
         | 
| 512 | 
            +
                        "confidence": 0.0,
         | 
| 513 | 
            +
                        "rationale": []
         | 
| 514 | 
            +
                    }
         | 
| 515 | 
            +
                    
         | 
| 516 | 
            +
                    for line in response.split('\n'):
         | 
| 517 | 
            +
                        line = line.strip()
         | 
| 518 | 
            +
                        if line.startswith('Selection:'):
         | 
| 519 | 
            +
                            selection["selected_id"] = line[10:].strip()
         | 
| 520 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 521 | 
            +
                            try:
         | 
| 522 | 
            +
                                selection["confidence"] = float(line[11:].strip())
         | 
| 523 | 
            +
                            except:
         | 
| 524 | 
            +
                                pass
         | 
| 525 | 
            +
                        elif line.startswith('Rationale:'):
         | 
| 526 | 
            +
                            selection["rationale"] = [r.strip() for r in line[10:].split(',')]
         | 
| 527 | 
            +
                    
         | 
| 528 | 
            +
                    return selection
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                def _pattern_to_dict(self, pattern: AnalogicalPattern) -> Dict[str, Any]:
         | 
| 531 | 
            +
                    """Convert pattern to dictionary for serialization."""
         | 
| 532 | 
            +
                    return {
         | 
| 533 | 
            +
                        "id": pattern.id,
         | 
| 534 | 
            +
                        "level": pattern.level.value,
         | 
| 535 | 
            +
                        "features": pattern.features,
         | 
| 536 | 
            +
                        "relations": pattern.relations,
         | 
| 537 | 
            +
                        "constraints": pattern.constraints,
         | 
| 538 | 
            +
                        "metadata": pattern.metadata
         | 
| 539 | 
            +
                    }
         | 
| 540 | 
            +
             | 
| 541 | 
            +
                def _mapping_to_dict(self, mapping: AnalogicalMapping) -> Dict[str, Any]:
         | 
| 542 | 
            +
                    """Convert mapping to dictionary for serialization."""
         | 
| 543 | 
            +
                    return {
         | 
| 544 | 
            +
                        "id": mapping.id,
         | 
| 545 | 
            +
                        "type": mapping.type.value,
         | 
| 546 | 
            +
                        "source_elements": mapping.source_elements,
         | 
| 547 | 
            +
                        "target_elements": mapping.target_elements,
         | 
| 548 | 
            +
                        "correspondences": mapping.correspondences,
         | 
| 549 | 
            +
                        "transformations": mapping.transformations,
         | 
| 550 | 
            +
                        "confidence": mapping.confidence,
         | 
| 551 | 
            +
                        "metadata": mapping.metadata
         | 
| 552 | 
            +
                    }
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                def _solution_to_dict(self, solution: AnalogicalSolution) -> Dict[str, Any]:
         | 
| 555 | 
            +
                    """Convert solution to dictionary for serialization."""
         | 
| 556 | 
            +
                    return {
         | 
| 557 | 
            +
                        "id": solution.id,
         | 
| 558 | 
            +
                        "source_analogy": solution.source_analogy,
         | 
| 559 | 
            +
                        "mapping": self._mapping_to_dict(solution.mapping),
         | 
| 560 | 
            +
                        "adaptation": solution.adaptation,
         | 
| 561 | 
            +
                        "inference": solution.inference,
         | 
| 562 | 
            +
                        "confidence": solution.confidence,
         | 
| 563 | 
            +
                        "validation": solution.validation,
         | 
| 564 | 
            +
                        "metadata": solution.metadata
         | 
| 565 | 
            +
                    }
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                def get_pattern_statistics(self) -> Dict[str, Any]:
         | 
| 568 | 
            +
                    """Get statistics about pattern usage and effectiveness."""
         | 
| 569 | 
            +
                    return {
         | 
| 570 | 
            +
                        "total_patterns": len(self.patterns),
         | 
| 571 | 
            +
                        "level_distribution": defaultdict(int, {p.level.value: 1 for p in self.patterns.values()}),
         | 
| 572 | 
            +
                        "average_constraints": sum(len(p.constraints) for p in self.patterns.values()) / len(self.patterns) if self.patterns else 0,
         | 
| 573 | 
            +
                        "pattern_weights": dict(self.pattern_weights)
         | 
| 574 | 
            +
                    }
         | 
| 575 | 
            +
             | 
| 576 | 
            +
                def get_mapping_statistics(self) -> Dict[str, Any]:
         | 
| 577 | 
            +
                    """Get statistics about mapping effectiveness."""
         | 
| 578 | 
            +
                    return {
         | 
| 579 | 
            +
                        "total_mappings": len(self.mappings),
         | 
| 580 | 
            +
                        "type_distribution": defaultdict(int, {m.type.value: 1 for m in self.mappings.values()}),
         | 
| 581 | 
            +
                        "average_confidence": sum(m.confidence for m in self.mappings.values()) / len(self.mappings) if self.mappings else 0,
         | 
| 582 | 
            +
                        "transformation_counts": defaultdict(int, {m.id: len(m.transformations) for m in self.mappings.values()})
         | 
| 583 | 
            +
                    }
         | 
| 584 | 
            +
             | 
| 585 | 
            +
                def get_solution_statistics(self) -> Dict[str, Any]:
         | 
| 586 | 
            +
                    """Get statistics about solution quality."""
         | 
| 587 | 
            +
                    return {
         | 
| 588 | 
            +
                        "total_solutions": len(self.solutions),
         | 
| 589 | 
            +
                        "average_confidence": sum(s.confidence for s in self.solutions.values()) / len(self.solutions) if self.solutions else 0,
         | 
| 590 | 
            +
                        "adaptation_success_rate": sum(1 for h in self.adaptation_history if h["success"]) / len(self.adaptation_history) if self.adaptation_history else 0
         | 
| 591 | 
            +
                    }
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                def clear_knowledge_base(self):
         | 
| 594 | 
            +
                    """Clear the knowledge base."""
         | 
| 595 | 
            +
                    self.patterns.clear()
         | 
| 596 | 
            +
                    self.mappings.clear()
         | 
| 597 | 
            +
                    self.solutions.clear()
         | 
| 598 | 
            +
                    self.pattern_weights.clear()
         | 
| 599 | 
            +
                    self.success_history.clear()
         | 
| 600 | 
            +
                    self.adaptation_history.clear()
         | 
    	
        reasoning/base.py
    ADDED
    
    | @@ -0,0 +1,17 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Base class for all reasoning strategies."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from typing import Dict, Any
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            class ReasoningStrategy:
         | 
| 6 | 
            +
                """Base class for reasoning strategies."""
         | 
| 7 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 8 | 
            +
                    """Apply reasoning strategy to query with context.
         | 
| 9 | 
            +
                    
         | 
| 10 | 
            +
                    Args:
         | 
| 11 | 
            +
                        query: The query to reason about
         | 
| 12 | 
            +
                        context: Additional context for reasoning
         | 
| 13 | 
            +
                        
         | 
| 14 | 
            +
                    Returns:
         | 
| 15 | 
            +
                        Dictionary containing reasoning results
         | 
| 16 | 
            +
                    """
         | 
| 17 | 
            +
                    raise NotImplementedError
         | 
    	
        reasoning/bayesian.py
    ADDED
    
    | @@ -0,0 +1,187 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Bayesian reasoning implementation."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            import re
         | 
| 7 | 
            +
            from datetime import datetime
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from .base import ReasoningStrategy
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class BayesianReasoning(ReasoningStrategy):
         | 
| 12 | 
            +
                """Implements Bayesian reasoning for probabilistic analysis."""
         | 
| 13 | 
            +
                
         | 
| 14 | 
            +
                def __init__(self, prior_weight: float = 0.3):
         | 
| 15 | 
            +
                    self.prior_weight = prior_weight
         | 
| 16 | 
            +
                
         | 
| 17 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 18 | 
            +
                    try:
         | 
| 19 | 
            +
                        # Generate hypotheses
         | 
| 20 | 
            +
                        hypotheses = await self._generate_hypotheses(query, context)
         | 
| 21 | 
            +
                        
         | 
| 22 | 
            +
                        # Calculate prior probabilities
         | 
| 23 | 
            +
                        priors = await self._calculate_priors(hypotheses, context)
         | 
| 24 | 
            +
                        
         | 
| 25 | 
            +
                        # Update with evidence
         | 
| 26 | 
            +
                        posteriors = await self._update_with_evidence(hypotheses, priors, context)
         | 
| 27 | 
            +
                        
         | 
| 28 | 
            +
                        # Generate final analysis
         | 
| 29 | 
            +
                        analysis = await self._generate_analysis(posteriors, context)
         | 
| 30 | 
            +
                        
         | 
| 31 | 
            +
                        return {
         | 
| 32 | 
            +
                            "success": True,
         | 
| 33 | 
            +
                            "answer": analysis["conclusion"],
         | 
| 34 | 
            +
                            "hypotheses": hypotheses,
         | 
| 35 | 
            +
                            "priors": priors,
         | 
| 36 | 
            +
                            "posteriors": posteriors,
         | 
| 37 | 
            +
                            "confidence": analysis["confidence"],
         | 
| 38 | 
            +
                            "reasoning_path": analysis["reasoning_path"]
         | 
| 39 | 
            +
                        }
         | 
| 40 | 
            +
                    except Exception as e:
         | 
| 41 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 42 | 
            +
                
         | 
| 43 | 
            +
                async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 44 | 
            +
                    prompt = f"""
         | 
| 45 | 
            +
                    Generate 3-4 hypotheses for this problem:
         | 
| 46 | 
            +
                    Query: {query}
         | 
| 47 | 
            +
                    Context: {json.dumps(context)}
         | 
| 48 | 
            +
                    
         | 
| 49 | 
            +
                    For each hypothesis:
         | 
| 50 | 
            +
                    1. [Statement]: Clear statement of the hypothesis
         | 
| 51 | 
            +
                    2. [Assumptions]: Key assumptions made
         | 
| 52 | 
            +
                    3. [Testability]: How it could be tested/verified
         | 
| 53 | 
            +
                    
         | 
| 54 | 
            +
                    Format as:
         | 
| 55 | 
            +
                    [H1]
         | 
| 56 | 
            +
                    Statement: ...
         | 
| 57 | 
            +
                    Assumptions: ...
         | 
| 58 | 
            +
                    Testability: ...
         | 
| 59 | 
            +
                    """
         | 
| 60 | 
            +
                    
         | 
| 61 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 62 | 
            +
                    return self._parse_hypotheses(response["answer"])
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]:
         | 
| 65 | 
            +
                    prompt = f"""
         | 
| 66 | 
            +
                    Calculate prior probabilities for these hypotheses:
         | 
| 67 | 
            +
                    Context: {json.dumps(context)}
         | 
| 68 | 
            +
                    
         | 
| 69 | 
            +
                    Hypotheses:
         | 
| 70 | 
            +
                    {json.dumps(hypotheses, indent=2)}
         | 
| 71 | 
            +
                    
         | 
| 72 | 
            +
                    For each hypothesis, estimate its prior probability (0-1) based on:
         | 
| 73 | 
            +
                    1. Alignment with known principles
         | 
| 74 | 
            +
                    2. Historical precedent
         | 
| 75 | 
            +
                    3. Domain expertise
         | 
| 76 | 
            +
                    
         | 
| 77 | 
            +
                    Format: [H1]: 0.XX, [H2]: 0.XX, ...
         | 
| 78 | 
            +
                    """
         | 
| 79 | 
            +
                    
         | 
| 80 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 81 | 
            +
                    return self._parse_probabilities(response["answer"])
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], 
         | 
| 84 | 
            +
                                              context: Dict[str, Any]) -> Dict[str, float]:
         | 
| 85 | 
            +
                    prompt = f"""
         | 
| 86 | 
            +
                    Update probabilities with available evidence:
         | 
| 87 | 
            +
                    Context: {json.dumps(context)}
         | 
| 88 | 
            +
                    
         | 
| 89 | 
            +
                    Hypotheses and Priors:
         | 
| 90 | 
            +
                    {json.dumps(list(zip(hypotheses, priors.values())), indent=2)}
         | 
| 91 | 
            +
                    
         | 
| 92 | 
            +
                    Consider:
         | 
| 93 | 
            +
                    1. How well each hypothesis explains the evidence
         | 
| 94 | 
            +
                    2. Any new evidence from the context
         | 
| 95 | 
            +
                    3. Potential conflicts or support between hypotheses
         | 
| 96 | 
            +
                    
         | 
| 97 | 
            +
                    Format: [H1]: 0.XX, [H2]: 0.XX, ...
         | 
| 98 | 
            +
                    """
         | 
| 99 | 
            +
                    
         | 
| 100 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 101 | 
            +
                    return self._parse_probabilities(response["answer"])
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 104 | 
            +
                    prompt = f"""
         | 
| 105 | 
            +
                    Generate final Bayesian analysis:
         | 
| 106 | 
            +
                    Context: {json.dumps(context)}
         | 
| 107 | 
            +
                    
         | 
| 108 | 
            +
                    Posterior Probabilities:
         | 
| 109 | 
            +
                    {json.dumps(posteriors, indent=2)}
         | 
| 110 | 
            +
                    
         | 
| 111 | 
            +
                    Provide:
         | 
| 112 | 
            +
                    1. Main conclusion based on highest probability hypotheses
         | 
| 113 | 
            +
                    2. Confidence level (0-1)
         | 
| 114 | 
            +
                    3. Key reasoning steps taken
         | 
| 115 | 
            +
                    """
         | 
| 116 | 
            +
                    
         | 
| 117 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 118 | 
            +
                    return self._parse_analysis(response["answer"])
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]:
         | 
| 121 | 
            +
                    """Parse hypotheses from response."""
         | 
| 122 | 
            +
                    hypotheses = []
         | 
| 123 | 
            +
                    current = None
         | 
| 124 | 
            +
                    
         | 
| 125 | 
            +
                    for line in response.split('\n'):
         | 
| 126 | 
            +
                        line = line.strip()
         | 
| 127 | 
            +
                        if not line:
         | 
| 128 | 
            +
                            continue
         | 
| 129 | 
            +
                        
         | 
| 130 | 
            +
                        if line.startswith('[H'):
         | 
| 131 | 
            +
                            if current:
         | 
| 132 | 
            +
                                hypotheses.append(current)
         | 
| 133 | 
            +
                            current = {
         | 
| 134 | 
            +
                                "statement": "",
         | 
| 135 | 
            +
                                "assumptions": "",
         | 
| 136 | 
            +
                                "testability": ""
         | 
| 137 | 
            +
                            }
         | 
| 138 | 
            +
                        elif current:
         | 
| 139 | 
            +
                            if line.startswith('Statement:'):
         | 
| 140 | 
            +
                                current["statement"] = line[10:].strip()
         | 
| 141 | 
            +
                            elif line.startswith('Assumptions:'):
         | 
| 142 | 
            +
                                current["assumptions"] = line[12:].strip()
         | 
| 143 | 
            +
                            elif line.startswith('Testability:'):
         | 
| 144 | 
            +
                                current["testability"] = line[12:].strip()
         | 
| 145 | 
            +
                    
         | 
| 146 | 
            +
                    if current:
         | 
| 147 | 
            +
                        hypotheses.append(current)
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                    return hypotheses
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def _parse_probabilities(self, response: str) -> Dict[str, float]:
         | 
| 152 | 
            +
                    """Parse probabilities from response."""
         | 
| 153 | 
            +
                    probs = {}
         | 
| 154 | 
            +
                    pattern = r'\[H(\d+)\]:\s*(0\.\d+)'
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    for match in re.finditer(pattern, response):
         | 
| 157 | 
            +
                        h_num = int(match.group(1))
         | 
| 158 | 
            +
                        prob = float(match.group(2))
         | 
| 159 | 
            +
                        probs[f"H{h_num}"] = prob
         | 
| 160 | 
            +
                    
         | 
| 161 | 
            +
                    return probs
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                def _parse_analysis(self, response: str) -> Dict[str, Any]:
         | 
| 164 | 
            +
                    """Parse analysis from response."""
         | 
| 165 | 
            +
                    lines = response.split('\n')
         | 
| 166 | 
            +
                    analysis = {
         | 
| 167 | 
            +
                        "conclusion": "",
         | 
| 168 | 
            +
                        "confidence": 0.0,
         | 
| 169 | 
            +
                        "reasoning_path": []
         | 
| 170 | 
            +
                    }
         | 
| 171 | 
            +
                    
         | 
| 172 | 
            +
                    for line in lines:
         | 
| 173 | 
            +
                        line = line.strip()
         | 
| 174 | 
            +
                        if not line:
         | 
| 175 | 
            +
                            continue
         | 
| 176 | 
            +
                            
         | 
| 177 | 
            +
                        if line.startswith('Conclusion:'):
         | 
| 178 | 
            +
                            analysis["conclusion"] = line[11:].strip()
         | 
| 179 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 180 | 
            +
                            try:
         | 
| 181 | 
            +
                                analysis["confidence"] = float(line[11:].strip())
         | 
| 182 | 
            +
                            except:
         | 
| 183 | 
            +
                                analysis["confidence"] = 0.5
         | 
| 184 | 
            +
                        elif line.startswith('- '):
         | 
| 185 | 
            +
                            analysis["reasoning_path"].append(line[2:].strip())
         | 
| 186 | 
            +
                    
         | 
| 187 | 
            +
                    return analysis
         | 
    	
        reasoning/chain_of_thought.py
    ADDED
    
    | @@ -0,0 +1,410 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Chain of Thought reasoning implementation with advanced features."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            from .base import ReasoningStrategy
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class ThoughtType(Enum):
         | 
| 12 | 
            +
                """Types of thoughts in the chain."""
         | 
| 13 | 
            +
                OBSERVATION = "observation"
         | 
| 14 | 
            +
                ANALYSIS = "analysis"
         | 
| 15 | 
            +
                HYPOTHESIS = "hypothesis"
         | 
| 16 | 
            +
                VERIFICATION = "verification"
         | 
| 17 | 
            +
                CONCLUSION = "conclusion"
         | 
| 18 | 
            +
                REFLECTION = "reflection"
         | 
| 19 | 
            +
                REFINEMENT = "refinement"
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            @dataclass
         | 
| 22 | 
            +
            class Thought:
         | 
| 23 | 
            +
                """Represents a single thought in the chain."""
         | 
| 24 | 
            +
                type: ThoughtType
         | 
| 25 | 
            +
                content: str
         | 
| 26 | 
            +
                confidence: float
         | 
| 27 | 
            +
                evidence: List[str]
         | 
| 28 | 
            +
                alternatives: List[str]
         | 
| 29 | 
            +
                next_steps: List[str]
         | 
| 30 | 
            +
                metadata: Dict[str, Any]
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            class ChainOfThoughtStrategy(ReasoningStrategy):
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
                Advanced Chain of Thought reasoning implementation with:
         | 
| 35 | 
            +
                - Hierarchical thought chains
         | 
| 36 | 
            +
                - Confidence scoring
         | 
| 37 | 
            +
                - Alternative path exploration
         | 
| 38 | 
            +
                - Self-reflection and refinement
         | 
| 39 | 
            +
                - Evidence tracking
         | 
| 40 | 
            +
                - Meta-learning capabilities
         | 
| 41 | 
            +
                """
         | 
| 42 | 
            +
                
         | 
| 43 | 
            +
                def __init__(self, 
         | 
| 44 | 
            +
                             max_chain_length: int = 10,
         | 
| 45 | 
            +
                             min_confidence: float = 0.7,
         | 
| 46 | 
            +
                             exploration_breadth: int = 3,
         | 
| 47 | 
            +
                             enable_reflection: bool = True):
         | 
| 48 | 
            +
                    self.max_chain_length = max_chain_length
         | 
| 49 | 
            +
                    self.min_confidence = min_confidence
         | 
| 50 | 
            +
                    self.exploration_breadth = exploration_breadth
         | 
| 51 | 
            +
                    self.enable_reflection = enable_reflection
         | 
| 52 | 
            +
                    self.thought_history: List[Thought] = []
         | 
| 53 | 
            +
                    
         | 
| 54 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 55 | 
            +
                    """Main reasoning method implementing chain of thought."""
         | 
| 56 | 
            +
                    try:
         | 
| 57 | 
            +
                        # Initialize reasoning chain
         | 
| 58 | 
            +
                        chain = await self._initialize_chain(query, context)
         | 
| 59 | 
            +
                        
         | 
| 60 | 
            +
                        # Generate initial thoughts
         | 
| 61 | 
            +
                        thoughts = await self._generate_thoughts(query, context)
         | 
| 62 | 
            +
                        
         | 
| 63 | 
            +
                        # Build thought chain
         | 
| 64 | 
            +
                        chain = await self._build_chain(thoughts, context)
         | 
| 65 | 
            +
                        
         | 
| 66 | 
            +
                        # Reflect and refine
         | 
| 67 | 
            +
                        if self.enable_reflection:
         | 
| 68 | 
            +
                            chain = await self._reflect_and_refine(chain, context)
         | 
| 69 | 
            +
                        
         | 
| 70 | 
            +
                        # Extract conclusion
         | 
| 71 | 
            +
                        conclusion = await self._extract_conclusion(chain, context)
         | 
| 72 | 
            +
                        
         | 
| 73 | 
            +
                        # Update thought history
         | 
| 74 | 
            +
                        self.thought_history.extend(chain)
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        return {
         | 
| 77 | 
            +
                            "success": True,
         | 
| 78 | 
            +
                            "answer": conclusion["answer"],
         | 
| 79 | 
            +
                            "confidence": conclusion["confidence"],
         | 
| 80 | 
            +
                            "reasoning_chain": [self._thought_to_dict(t) for t in chain],
         | 
| 81 | 
            +
                            "alternatives": conclusion["alternatives"],
         | 
| 82 | 
            +
                            "evidence": conclusion["evidence"],
         | 
| 83 | 
            +
                            "meta_insights": conclusion["meta_insights"]
         | 
| 84 | 
            +
                        }
         | 
| 85 | 
            +
                    except Exception as e:
         | 
| 86 | 
            +
                        logging.error(f"Error in chain of thought reasoning: {str(e)}")
         | 
| 87 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                async def _initialize_chain(self, query: str, context: Dict[str, Any]) -> List[Thought]:
         | 
| 90 | 
            +
                    """Initialize the thought chain with observations."""
         | 
| 91 | 
            +
                    prompt = f"""
         | 
| 92 | 
            +
                    Initialize chain of thought for query:
         | 
| 93 | 
            +
                    Query: {query}
         | 
| 94 | 
            +
                    Context: {json.dumps(context)}
         | 
| 95 | 
            +
                    
         | 
| 96 | 
            +
                    Provide initial observations:
         | 
| 97 | 
            +
                    1. Key elements in query
         | 
| 98 | 
            +
                    2. Relevant context factors
         | 
| 99 | 
            +
                    3. Initial hypotheses
         | 
| 100 | 
            +
                    4. Potential approaches
         | 
| 101 | 
            +
                    
         | 
| 102 | 
            +
                    Format as:
         | 
| 103 | 
            +
                    [O1] Element: ... | Relevance: ... | Confidence: ...
         | 
| 104 | 
            +
                    [O2] Context: ... | Impact: ... | Confidence: ...
         | 
| 105 | 
            +
                    [O3] Hypothesis: ... | Support: ... | Confidence: ...
         | 
| 106 | 
            +
                    [O4] Approach: ... | Rationale: ... | Confidence: ...
         | 
| 107 | 
            +
                    """
         | 
| 108 | 
            +
                    
         | 
| 109 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 110 | 
            +
                    return self._parse_observations(response["answer"])
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                async def _generate_thoughts(self, query: str, context: Dict[str, Any]) -> List[Thought]:
         | 
| 113 | 
            +
                    """Generate candidate thoughts for the chain."""
         | 
| 114 | 
            +
                    prompt = f"""
         | 
| 115 | 
            +
                    Generate thoughts for query analysis:
         | 
| 116 | 
            +
                    Query: {query}
         | 
| 117 | 
            +
                    Context: {json.dumps(context)}
         | 
| 118 | 
            +
                    
         | 
| 119 | 
            +
                    For each thought provide:
         | 
| 120 | 
            +
                    1. [Type]: {" | ".join([t.value for t in ThoughtType])}
         | 
| 121 | 
            +
                    2. [Content]: Main thought
         | 
| 122 | 
            +
                    3. [Evidence]: Supporting evidence
         | 
| 123 | 
            +
                    4. [Alternatives]: Alternative perspectives
         | 
| 124 | 
            +
                    5. [Next]: Potential next steps
         | 
| 125 | 
            +
                    6. [Confidence]: 0-1 score
         | 
| 126 | 
            +
                    
         | 
| 127 | 
            +
                    Format as:
         | 
| 128 | 
            +
                    [T1]
         | 
| 129 | 
            +
                    Type: ...
         | 
| 130 | 
            +
                    Content: ...
         | 
| 131 | 
            +
                    Evidence: ...
         | 
| 132 | 
            +
                    Alternatives: ...
         | 
| 133 | 
            +
                    Next: ...
         | 
| 134 | 
            +
                    Confidence: ...
         | 
| 135 | 
            +
                    """
         | 
| 136 | 
            +
                    
         | 
| 137 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 138 | 
            +
                    return self._parse_thoughts(response["answer"])
         | 
| 139 | 
            +
             | 
| 140 | 
            +
                async def _build_chain(self, thoughts: List[Thought], context: Dict[str, Any]) -> List[Thought]:
         | 
| 141 | 
            +
                    """Build coherent chain from candidate thoughts."""
         | 
| 142 | 
            +
                    prompt = f"""
         | 
| 143 | 
            +
                    Build coherent thought chain:
         | 
| 144 | 
            +
                    Thoughts: {json.dumps([self._thought_to_dict(t) for t in thoughts])}
         | 
| 145 | 
            +
                    Context: {json.dumps(context)}
         | 
| 146 | 
            +
                    
         | 
| 147 | 
            +
                    For each step specify:
         | 
| 148 | 
            +
                    1. Selected thought
         | 
| 149 | 
            +
                    2. Reasoning for selection
         | 
| 150 | 
            +
                    3. Connection to previous
         | 
| 151 | 
            +
                    4. Expected impact
         | 
| 152 | 
            +
                    
         | 
| 153 | 
            +
                    Format as:
         | 
| 154 | 
            +
                    [S1]
         | 
| 155 | 
            +
                    Thought: ...
         | 
| 156 | 
            +
                    Reason: ...
         | 
| 157 | 
            +
                    Connection: ...
         | 
| 158 | 
            +
                    Impact: ...
         | 
| 159 | 
            +
                    """
         | 
| 160 | 
            +
                    
         | 
| 161 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 162 | 
            +
                    return self._parse_chain(response["answer"], thoughts)
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                async def _reflect_and_refine(self, chain: List[Thought], context: Dict[str, Any]) -> List[Thought]:
         | 
| 165 | 
            +
                    """Reflect on and refine the thought chain."""
         | 
| 166 | 
            +
                    prompt = f"""
         | 
| 167 | 
            +
                    Reflect on thought chain:
         | 
| 168 | 
            +
                    Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
         | 
| 169 | 
            +
                    Context: {json.dumps(context)}
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    Analyze for:
         | 
| 172 | 
            +
                    1. Logical gaps
         | 
| 173 | 
            +
                    2. Weak assumptions
         | 
| 174 | 
            +
                    3. Missing evidence
         | 
| 175 | 
            +
                    4. Alternative perspectives
         | 
| 176 | 
            +
                    
         | 
| 177 | 
            +
                    Suggest refinements:
         | 
| 178 | 
            +
                    1. Additional thoughts
         | 
| 179 | 
            +
                    2. Modified reasoning
         | 
| 180 | 
            +
                    3. New connections
         | 
| 181 | 
            +
                    4. Evidence needs
         | 
| 182 | 
            +
                    
         | 
| 183 | 
            +
                    Format as:
         | 
| 184 | 
            +
                    [Analysis]
         | 
| 185 | 
            +
                    Gaps: ...
         | 
| 186 | 
            +
                    Assumptions: ...
         | 
| 187 | 
            +
                    Missing: ...
         | 
| 188 | 
            +
                    Alternatives: ...
         | 
| 189 | 
            +
                    
         | 
| 190 | 
            +
                    [Refinements]
         | 
| 191 | 
            +
                    Thoughts: ...
         | 
| 192 | 
            +
                    Reasoning: ...
         | 
| 193 | 
            +
                    Connections: ...
         | 
| 194 | 
            +
                    Evidence: ...
         | 
| 195 | 
            +
                    """
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 198 | 
            +
                    return self._apply_refinements(chain, response["answer"])
         | 
| 199 | 
            +
             | 
| 200 | 
            +
                async def _extract_conclusion(self, chain: List[Thought], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 201 | 
            +
                    """Extract final conclusion from thought chain."""
         | 
| 202 | 
            +
                    prompt = f"""
         | 
| 203 | 
            +
                    Extract conclusion from thought chain:
         | 
| 204 | 
            +
                    Chain: {json.dumps([self._thought_to_dict(t) for t in chain])}
         | 
| 205 | 
            +
                    Context: {json.dumps(context)}
         | 
| 206 | 
            +
                    
         | 
| 207 | 
            +
                    Provide:
         | 
| 208 | 
            +
                    1. Main conclusion
         | 
| 209 | 
            +
                    2. Confidence level
         | 
| 210 | 
            +
                    3. Supporting evidence
         | 
| 211 | 
            +
                    4. Alternative conclusions
         | 
| 212 | 
            +
                    5. Meta-insights gained
         | 
| 213 | 
            +
                    6. Future considerations
         | 
| 214 | 
            +
                    
         | 
| 215 | 
            +
                    Format as:
         | 
| 216 | 
            +
                    [Conclusion]
         | 
| 217 | 
            +
                    Answer: ...
         | 
| 218 | 
            +
                    Confidence: ...
         | 
| 219 | 
            +
                    Evidence: ...
         | 
| 220 | 
            +
                    Alternatives: ...
         | 
| 221 | 
            +
                    
         | 
| 222 | 
            +
                    [Meta]
         | 
| 223 | 
            +
                    Insights: ...
         | 
| 224 | 
            +
                    Future: ...
         | 
| 225 | 
            +
                    """
         | 
| 226 | 
            +
                    
         | 
| 227 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 228 | 
            +
                    return self._parse_conclusion(response["answer"])
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                def _parse_observations(self, response: str) -> List[Thought]:
         | 
| 231 | 
            +
                    """Parse initial observations into thoughts."""
         | 
| 232 | 
            +
                    observations = []
         | 
| 233 | 
            +
                    lines = response.split('\n')
         | 
| 234 | 
            +
                    
         | 
| 235 | 
            +
                    for line in lines:
         | 
| 236 | 
            +
                        if line.startswith('[O'):
         | 
| 237 | 
            +
                            parts = line.split('|')
         | 
| 238 | 
            +
                            if len(parts) >= 3:
         | 
| 239 | 
            +
                                main_part = parts[0].split(']')[1].strip()
         | 
| 240 | 
            +
                                key, content = main_part.split(':', 1)
         | 
| 241 | 
            +
                                
         | 
| 242 | 
            +
                                evidence = [p.strip() for p in parts[1].split(':')[1].strip().split(',')]
         | 
| 243 | 
            +
                                
         | 
| 244 | 
            +
                                try:
         | 
| 245 | 
            +
                                    confidence = float(parts[2].split(':')[1].strip())
         | 
| 246 | 
            +
                                except:
         | 
| 247 | 
            +
                                    confidence = 0.5
         | 
| 248 | 
            +
                                
         | 
| 249 | 
            +
                                observations.append(Thought(
         | 
| 250 | 
            +
                                    type=ThoughtType.OBSERVATION,
         | 
| 251 | 
            +
                                    content=content.strip(),
         | 
| 252 | 
            +
                                    confidence=confidence,
         | 
| 253 | 
            +
                                    evidence=evidence,
         | 
| 254 | 
            +
                                    alternatives=[],
         | 
| 255 | 
            +
                                    next_steps=[],
         | 
| 256 | 
            +
                                    metadata={"key": key}
         | 
| 257 | 
            +
                                ))
         | 
| 258 | 
            +
                    
         | 
| 259 | 
            +
                    return observations
         | 
| 260 | 
            +
             | 
| 261 | 
            +
                def _parse_thoughts(self, response: str) -> List[Thought]:
         | 
| 262 | 
            +
                    """Parse generated thoughts."""
         | 
| 263 | 
            +
                    thoughts = []
         | 
| 264 | 
            +
                    current = None
         | 
| 265 | 
            +
                    
         | 
| 266 | 
            +
                    for line in response.split('\n'):
         | 
| 267 | 
            +
                        line = line.strip()
         | 
| 268 | 
            +
                        if not line:
         | 
| 269 | 
            +
                            continue
         | 
| 270 | 
            +
                            
         | 
| 271 | 
            +
                        if line.startswith('[T'):
         | 
| 272 | 
            +
                            if current:
         | 
| 273 | 
            +
                                thoughts.append(current)
         | 
| 274 | 
            +
                            current = None
         | 
| 275 | 
            +
                        elif line.startswith('Type:'):
         | 
| 276 | 
            +
                            type_str = line[5:].strip()
         | 
| 277 | 
            +
                            try:
         | 
| 278 | 
            +
                                thought_type = ThoughtType(type_str.lower())
         | 
| 279 | 
            +
                                current = Thought(
         | 
| 280 | 
            +
                                    type=thought_type,
         | 
| 281 | 
            +
                                    content="",
         | 
| 282 | 
            +
                                    confidence=0.0,
         | 
| 283 | 
            +
                                    evidence=[],
         | 
| 284 | 
            +
                                    alternatives=[],
         | 
| 285 | 
            +
                                    next_steps=[],
         | 
| 286 | 
            +
                                    metadata={}
         | 
| 287 | 
            +
                                )
         | 
| 288 | 
            +
                            except ValueError:
         | 
| 289 | 
            +
                                logging.warning(f"Invalid thought type: {type_str}")
         | 
| 290 | 
            +
                        elif current:
         | 
| 291 | 
            +
                            if line.startswith('Content:'):
         | 
| 292 | 
            +
                                current.content = line[8:].strip()
         | 
| 293 | 
            +
                            elif line.startswith('Evidence:'):
         | 
| 294 | 
            +
                                current.evidence = [e.strip() for e in line[9:].split(',')]
         | 
| 295 | 
            +
                            elif line.startswith('Alternatives:'):
         | 
| 296 | 
            +
                                current.alternatives = [a.strip() for a in line[13:].split(',')]
         | 
| 297 | 
            +
                            elif line.startswith('Next:'):
         | 
| 298 | 
            +
                                current.next_steps = [n.strip() for n in line[5:].split(',')]
         | 
| 299 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 300 | 
            +
                                try:
         | 
| 301 | 
            +
                                    current.confidence = float(line[11:].strip())
         | 
| 302 | 
            +
                                except:
         | 
| 303 | 
            +
                                    current.confidence = 0.5
         | 
| 304 | 
            +
                    
         | 
| 305 | 
            +
                    if current:
         | 
| 306 | 
            +
                        thoughts.append(current)
         | 
| 307 | 
            +
                    
         | 
| 308 | 
            +
                    return thoughts
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                def _parse_chain(self, response: str, thoughts: List[Thought]) -> List[Thought]:
         | 
| 311 | 
            +
                    """Parse and order thoughts into a chain."""
         | 
| 312 | 
            +
                    chain = []
         | 
| 313 | 
            +
                    thought_map = {self._thought_to_dict(t)["content"]: t for t in thoughts}
         | 
| 314 | 
            +
                    
         | 
| 315 | 
            +
                    for line in response.split('\n'):
         | 
| 316 | 
            +
                        if line.startswith('Thought:'):
         | 
| 317 | 
            +
                            content = line[8:].strip()
         | 
| 318 | 
            +
                            if content in thought_map:
         | 
| 319 | 
            +
                                chain.append(thought_map[content])
         | 
| 320 | 
            +
                    
         | 
| 321 | 
            +
                    return chain
         | 
| 322 | 
            +
             | 
| 323 | 
            +
                def _apply_refinements(self, chain: List[Thought], response: str) -> List[Thought]:
         | 
| 324 | 
            +
                    """Apply refinements to thought chain."""
         | 
| 325 | 
            +
                    refined_chain = chain.copy()
         | 
| 326 | 
            +
                    
         | 
| 327 | 
            +
                    # Parse refinements
         | 
| 328 | 
            +
                    sections = response.split('[')
         | 
| 329 | 
            +
                    for section in sections:
         | 
| 330 | 
            +
                        if section.startswith('Refinements]'):
         | 
| 331 | 
            +
                            lines = section.split('\n')[1:]
         | 
| 332 | 
            +
                            for line in lines:
         | 
| 333 | 
            +
                                if line.startswith('Thoughts:'):
         | 
| 334 | 
            +
                                    new_thoughts = self._parse_refinement_thoughts(line[9:])
         | 
| 335 | 
            +
                                    refined_chain.extend(new_thoughts)
         | 
| 336 | 
            +
                    
         | 
| 337 | 
            +
                    return refined_chain
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                def _parse_refinement_thoughts(self, refinements: str) -> List[Thought]:
         | 
| 340 | 
            +
                    """Parse refinement thoughts."""
         | 
| 341 | 
            +
                    thoughts = []
         | 
| 342 | 
            +
                    for refinement in refinements.split(';'):
         | 
| 343 | 
            +
                        if refinement.strip():
         | 
| 344 | 
            +
                            thoughts.append(Thought(
         | 
| 345 | 
            +
                                type=ThoughtType.REFINEMENT,
         | 
| 346 | 
            +
                                content=refinement.strip(),
         | 
| 347 | 
            +
                                confidence=0.8,  # Refinements typically have high confidence
         | 
| 348 | 
            +
                                evidence=[],
         | 
| 349 | 
            +
                                alternatives=[],
         | 
| 350 | 
            +
                                next_steps=[],
         | 
| 351 | 
            +
                                metadata={"refined": True}
         | 
| 352 | 
            +
                            ))
         | 
| 353 | 
            +
                    return thoughts
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                def _parse_conclusion(self, response: str) -> Dict[str, Any]:
         | 
| 356 | 
            +
                    """Parse final conclusion."""
         | 
| 357 | 
            +
                    conclusion = {
         | 
| 358 | 
            +
                        "answer": "",
         | 
| 359 | 
            +
                        "confidence": 0.0,
         | 
| 360 | 
            +
                        "evidence": [],
         | 
| 361 | 
            +
                        "alternatives": [],
         | 
| 362 | 
            +
                        "meta_insights": [],
         | 
| 363 | 
            +
                        "future_considerations": []
         | 
| 364 | 
            +
                    }
         | 
| 365 | 
            +
                    
         | 
| 366 | 
            +
                    sections = response.split('[')
         | 
| 367 | 
            +
                    for section in sections:
         | 
| 368 | 
            +
                        if section.startswith('Conclusion]'):
         | 
| 369 | 
            +
                            lines = section.split('\n')[1:]
         | 
| 370 | 
            +
                            for line in lines:
         | 
| 371 | 
            +
                                if line.startswith('Answer:'):
         | 
| 372 | 
            +
                                    conclusion["answer"] = line[7:].strip()
         | 
| 373 | 
            +
                                elif line.startswith('Confidence:'):
         | 
| 374 | 
            +
                                    try:
         | 
| 375 | 
            +
                                        conclusion["confidence"] = float(line[11:].strip())
         | 
| 376 | 
            +
                                    except:
         | 
| 377 | 
            +
                                        conclusion["confidence"] = 0.5
         | 
| 378 | 
            +
                                elif line.startswith('Evidence:'):
         | 
| 379 | 
            +
                                    conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
         | 
| 380 | 
            +
                                elif line.startswith('Alternatives:'):
         | 
| 381 | 
            +
                                    conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
         | 
| 382 | 
            +
                        elif section.startswith('Meta]'):
         | 
| 383 | 
            +
                            lines = section.split('\n')[1:]
         | 
| 384 | 
            +
                            for line in lines:
         | 
| 385 | 
            +
                                if line.startswith('Insights:'):
         | 
| 386 | 
            +
                                    conclusion["meta_insights"] = [i.strip() for i in line[9:].split(',')]
         | 
| 387 | 
            +
                                elif line.startswith('Future:'):
         | 
| 388 | 
            +
                                    conclusion["future_considerations"] = [f.strip() for f in line[7:].split(',')]
         | 
| 389 | 
            +
                    
         | 
| 390 | 
            +
                    return conclusion
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                def _thought_to_dict(self, thought: Thought) -> Dict[str, Any]:
         | 
| 393 | 
            +
                    """Convert thought to dictionary for serialization."""
         | 
| 394 | 
            +
                    return {
         | 
| 395 | 
            +
                        "type": thought.type.value,
         | 
| 396 | 
            +
                        "content": thought.content,
         | 
| 397 | 
            +
                        "confidence": thought.confidence,
         | 
| 398 | 
            +
                        "evidence": thought.evidence,
         | 
| 399 | 
            +
                        "alternatives": thought.alternatives,
         | 
| 400 | 
            +
                        "next_steps": thought.next_steps,
         | 
| 401 | 
            +
                        "metadata": thought.metadata
         | 
| 402 | 
            +
                    }
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                def get_thought_history(self) -> List[Dict[str, Any]]:
         | 
| 405 | 
            +
                    """Get the history of all thoughts processed."""
         | 
| 406 | 
            +
                    return [self._thought_to_dict(t) for t in self.thought_history]
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                def clear_history(self) -> None:
         | 
| 409 | 
            +
                    """Clear thought history."""
         | 
| 410 | 
            +
                    self.thought_history = []
         | 
    	
        reasoning/coordination.py
    ADDED
    
    | @@ -0,0 +1,525 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Advanced strategy coordination patterns for the unified reasoning engine."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
            from .unified_engine import StrategyType, StrategyResult, UnifiedResult
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            class CoordinationPattern(Enum):
         | 
| 16 | 
            +
                """Types of strategy coordination patterns."""
         | 
| 17 | 
            +
                PIPELINE = "pipeline"
         | 
| 18 | 
            +
                PARALLEL = "parallel"
         | 
| 19 | 
            +
                HIERARCHICAL = "hierarchical"
         | 
| 20 | 
            +
                FEEDBACK = "feedback"
         | 
| 21 | 
            +
                ADAPTIVE = "adaptive"
         | 
| 22 | 
            +
                ENSEMBLE = "ensemble"
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            class CoordinationPhase(Enum):
         | 
| 25 | 
            +
                """Phases in strategy coordination."""
         | 
| 26 | 
            +
                INITIALIZATION = "initialization"
         | 
| 27 | 
            +
                EXECUTION = "execution"
         | 
| 28 | 
            +
                SYNCHRONIZATION = "synchronization"
         | 
| 29 | 
            +
                ADAPTATION = "adaptation"
         | 
| 30 | 
            +
                COMPLETION = "completion"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            @dataclass
         | 
| 33 | 
            +
            class CoordinationState:
         | 
| 34 | 
            +
                """State of strategy coordination."""
         | 
| 35 | 
            +
                pattern: CoordinationPattern
         | 
| 36 | 
            +
                active_strategies: Dict[StrategyType, bool]
         | 
| 37 | 
            +
                phase: CoordinationPhase
         | 
| 38 | 
            +
                shared_context: Dict[str, Any]
         | 
| 39 | 
            +
                synchronization_points: List[str]
         | 
| 40 | 
            +
                adaptation_history: List[Dict[str, Any]]
         | 
| 41 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            @dataclass
         | 
| 44 | 
            +
            class StrategyInteraction:
         | 
| 45 | 
            +
                """Interaction between strategies."""
         | 
| 46 | 
            +
                source: StrategyType
         | 
| 47 | 
            +
                target: StrategyType
         | 
| 48 | 
            +
                interaction_type: str
         | 
| 49 | 
            +
                data: Dict[str, Any]
         | 
| 50 | 
            +
                timestamp: datetime = field(default_factory=datetime.now)
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            class StrategyCoordinator:
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
                Advanced strategy coordinator that:
         | 
| 55 | 
            +
                1. Manages strategy interactions
         | 
| 56 | 
            +
                2. Implements coordination patterns
         | 
| 57 | 
            +
                3. Handles state synchronization
         | 
| 58 | 
            +
                4. Adapts coordination dynamically
         | 
| 59 | 
            +
                5. Optimizes strategy combinations
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                
         | 
| 62 | 
            +
                def __init__(self,
         | 
| 63 | 
            +
                             strategies: Dict[StrategyType, ReasoningStrategy],
         | 
| 64 | 
            +
                             learning_rate: float = 0.1):
         | 
| 65 | 
            +
                    self.strategies = strategies
         | 
| 66 | 
            +
                    self.learning_rate = learning_rate
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                    # Coordination state
         | 
| 69 | 
            +
                    self.states: Dict[str, CoordinationState] = {}
         | 
| 70 | 
            +
                    self.interactions: List[StrategyInteraction] = []
         | 
| 71 | 
            +
                    
         | 
| 72 | 
            +
                    # Pattern performance
         | 
| 73 | 
            +
                    self.pattern_performance: Dict[CoordinationPattern, List[float]] = defaultdict(list)
         | 
| 74 | 
            +
                    self.pattern_weights: Dict[CoordinationPattern, float] = {
         | 
| 75 | 
            +
                        pattern: 1.0 for pattern in CoordinationPattern
         | 
| 76 | 
            +
                    }
         | 
| 77 | 
            +
                    
         | 
| 78 | 
            +
                async def coordinate(self,
         | 
| 79 | 
            +
                                    query: str,
         | 
| 80 | 
            +
                                    context: Dict[str, Any],
         | 
| 81 | 
            +
                                    pattern: Optional[CoordinationPattern] = None) -> Dict[str, Any]:
         | 
| 82 | 
            +
                    """Coordinate strategy execution using specified pattern."""
         | 
| 83 | 
            +
                    try:
         | 
| 84 | 
            +
                        # Select pattern if not specified
         | 
| 85 | 
            +
                        if not pattern:
         | 
| 86 | 
            +
                            pattern = await self._select_pattern(query, context)
         | 
| 87 | 
            +
                        
         | 
| 88 | 
            +
                        # Initialize coordination
         | 
| 89 | 
            +
                        state = await self._initialize_coordination(pattern, context)
         | 
| 90 | 
            +
                        
         | 
| 91 | 
            +
                        # Execute coordination pattern
         | 
| 92 | 
            +
                        if pattern == CoordinationPattern.PIPELINE:
         | 
| 93 | 
            +
                            result = await self._coordinate_pipeline(query, context, state)
         | 
| 94 | 
            +
                        elif pattern == CoordinationPattern.PARALLEL:
         | 
| 95 | 
            +
                            result = await self._coordinate_parallel(query, context, state)
         | 
| 96 | 
            +
                        elif pattern == CoordinationPattern.HIERARCHICAL:
         | 
| 97 | 
            +
                            result = await self._coordinate_hierarchical(query, context, state)
         | 
| 98 | 
            +
                        elif pattern == CoordinationPattern.FEEDBACK:
         | 
| 99 | 
            +
                            result = await self._coordinate_feedback(query, context, state)
         | 
| 100 | 
            +
                        elif pattern == CoordinationPattern.ADAPTIVE:
         | 
| 101 | 
            +
                            result = await self._coordinate_adaptive(query, context, state)
         | 
| 102 | 
            +
                        elif pattern == CoordinationPattern.ENSEMBLE:
         | 
| 103 | 
            +
                            result = await self._coordinate_ensemble(query, context, state)
         | 
| 104 | 
            +
                        else:
         | 
| 105 | 
            +
                            raise ValueError(f"Unsupported coordination pattern: {pattern}")
         | 
| 106 | 
            +
                        
         | 
| 107 | 
            +
                        # Update performance metrics
         | 
| 108 | 
            +
                        self._update_pattern_performance(pattern, result)
         | 
| 109 | 
            +
                        
         | 
| 110 | 
            +
                        return result
         | 
| 111 | 
            +
                        
         | 
| 112 | 
            +
                    except Exception as e:
         | 
| 113 | 
            +
                        logging.error(f"Error in strategy coordination: {str(e)}")
         | 
| 114 | 
            +
                        return {
         | 
| 115 | 
            +
                            "success": False,
         | 
| 116 | 
            +
                            "error": str(e),
         | 
| 117 | 
            +
                            "pattern": pattern.value if pattern else None
         | 
| 118 | 
            +
                        }
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                async def _select_pattern(self, query: str, context: Dict[str, Any]) -> CoordinationPattern:
         | 
| 121 | 
            +
                    """Select appropriate coordination pattern."""
         | 
| 122 | 
            +
                    prompt = f"""
         | 
| 123 | 
            +
                    Select coordination pattern:
         | 
| 124 | 
            +
                    Query: {query}
         | 
| 125 | 
            +
                    Context: {json.dumps(context)}
         | 
| 126 | 
            +
                    
         | 
| 127 | 
            +
                    Consider:
         | 
| 128 | 
            +
                    1. Task complexity and type
         | 
| 129 | 
            +
                    2. Strategy dependencies
         | 
| 130 | 
            +
                    3. Resource constraints
         | 
| 131 | 
            +
                    4. Performance history
         | 
| 132 | 
            +
                    5. Adaptation needs
         | 
| 133 | 
            +
                    
         | 
| 134 | 
            +
                    Format as:
         | 
| 135 | 
            +
                    [Selection]
         | 
| 136 | 
            +
                    Pattern: ...
         | 
| 137 | 
            +
                    Rationale: ...
         | 
| 138 | 
            +
                    Confidence: ...
         | 
| 139 | 
            +
                    """
         | 
| 140 | 
            +
                    
         | 
| 141 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 142 | 
            +
                    selection = self._parse_pattern_selection(response["answer"])
         | 
| 143 | 
            +
                    
         | 
| 144 | 
            +
                    # Weight by performance history
         | 
| 145 | 
            +
                    weighted_patterns = {
         | 
| 146 | 
            +
                        pattern: self.pattern_weights[pattern] * selection.get(pattern.value, 0.0)
         | 
| 147 | 
            +
                        for pattern in CoordinationPattern
         | 
| 148 | 
            +
                    }
         | 
| 149 | 
            +
                    
         | 
| 150 | 
            +
                    return max(weighted_patterns.items(), key=lambda x: x[1])[0]
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                async def _coordinate_pipeline(self,
         | 
| 153 | 
            +
                                             query: str,
         | 
| 154 | 
            +
                                             context: Dict[str, Any],
         | 
| 155 | 
            +
                                             state: CoordinationState) -> Dict[str, Any]:
         | 
| 156 | 
            +
                    """Coordinate strategies in pipeline pattern."""
         | 
| 157 | 
            +
                    results = []
         | 
| 158 | 
            +
                    current_context = context.copy()
         | 
| 159 | 
            +
                    
         | 
| 160 | 
            +
                    # Determine optimal order
         | 
| 161 | 
            +
                    strategy_order = await self._determine_pipeline_order(query, context)
         | 
| 162 | 
            +
                    
         | 
| 163 | 
            +
                    for strategy_type in strategy_order:
         | 
| 164 | 
            +
                        try:
         | 
| 165 | 
            +
                            # Execute strategy
         | 
| 166 | 
            +
                            strategy = self.strategies[strategy_type]
         | 
| 167 | 
            +
                            result = await strategy.reason(query, current_context)
         | 
| 168 | 
            +
                            
         | 
| 169 | 
            +
                            # Update context with result
         | 
| 170 | 
            +
                            current_context.update({
         | 
| 171 | 
            +
                                "previous_result": result,
         | 
| 172 | 
            +
                                "pipeline_position": len(results)
         | 
| 173 | 
            +
                            })
         | 
| 174 | 
            +
                            
         | 
| 175 | 
            +
                            results.append(StrategyResult(
         | 
| 176 | 
            +
                                strategy_type=strategy_type,
         | 
| 177 | 
            +
                                success=result.get("success", False),
         | 
| 178 | 
            +
                                answer=result.get("answer"),
         | 
| 179 | 
            +
                                confidence=result.get("confidence", 0.0),
         | 
| 180 | 
            +
                                reasoning_trace=result.get("reasoning_trace", []),
         | 
| 181 | 
            +
                                metadata=result.get("metadata", {}),
         | 
| 182 | 
            +
                                performance_metrics=result.get("performance_metrics", {})
         | 
| 183 | 
            +
                            ))
         | 
| 184 | 
            +
                            
         | 
| 185 | 
            +
                            # Record interaction
         | 
| 186 | 
            +
                            self._record_interaction(
         | 
| 187 | 
            +
                                source=strategy_type,
         | 
| 188 | 
            +
                                target=strategy_order[len(results)] if len(results) < len(strategy_order) else None,
         | 
| 189 | 
            +
                                interaction_type="pipeline_transfer",
         | 
| 190 | 
            +
                                data={"result": result}
         | 
| 191 | 
            +
                            )
         | 
| 192 | 
            +
                            
         | 
| 193 | 
            +
                        except Exception as e:
         | 
| 194 | 
            +
                            logging.error(f"Error in pipeline strategy {strategy_type}: {str(e)}")
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    return {
         | 
| 197 | 
            +
                        "success": any(r.success for r in results),
         | 
| 198 | 
            +
                        "results": results,
         | 
| 199 | 
            +
                        "pattern": CoordinationPattern.PIPELINE.value,
         | 
| 200 | 
            +
                        "metrics": {
         | 
| 201 | 
            +
                            "total_steps": len(results),
         | 
| 202 | 
            +
                            "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
         | 
| 203 | 
            +
                        }
         | 
| 204 | 
            +
                    }
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                async def _coordinate_parallel(self,
         | 
| 207 | 
            +
                                             query: str,
         | 
| 208 | 
            +
                                             context: Dict[str, Any],
         | 
| 209 | 
            +
                                             state: CoordinationState) -> Dict[str, Any]:
         | 
| 210 | 
            +
                    """Coordinate strategies in parallel pattern."""
         | 
| 211 | 
            +
                    async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
         | 
| 212 | 
            +
                        try:
         | 
| 213 | 
            +
                            strategy = self.strategies[strategy_type]
         | 
| 214 | 
            +
                            result = await strategy.reason(query, context)
         | 
| 215 | 
            +
                            
         | 
| 216 | 
            +
                            return StrategyResult(
         | 
| 217 | 
            +
                                strategy_type=strategy_type,
         | 
| 218 | 
            +
                                success=result.get("success", False),
         | 
| 219 | 
            +
                                answer=result.get("answer"),
         | 
| 220 | 
            +
                                confidence=result.get("confidence", 0.0),
         | 
| 221 | 
            +
                                reasoning_trace=result.get("reasoning_trace", []),
         | 
| 222 | 
            +
                                metadata=result.get("metadata", {}),
         | 
| 223 | 
            +
                                performance_metrics=result.get("performance_metrics", {})
         | 
| 224 | 
            +
                            )
         | 
| 225 | 
            +
                        except Exception as e:
         | 
| 226 | 
            +
                            logging.error(f"Error in parallel strategy {strategy_type}: {str(e)}")
         | 
| 227 | 
            +
                            return StrategyResult(
         | 
| 228 | 
            +
                                strategy_type=strategy_type,
         | 
| 229 | 
            +
                                success=False,
         | 
| 230 | 
            +
                                answer=None,
         | 
| 231 | 
            +
                                confidence=0.0,
         | 
| 232 | 
            +
                                reasoning_trace=[{"error": str(e)}],
         | 
| 233 | 
            +
                                metadata={},
         | 
| 234 | 
            +
                                performance_metrics={}
         | 
| 235 | 
            +
                            )
         | 
| 236 | 
            +
                    
         | 
| 237 | 
            +
                    # Execute strategies in parallel
         | 
| 238 | 
            +
                    tasks = [execute_strategy(strategy_type) 
         | 
| 239 | 
            +
                            for strategy_type in state.active_strategies
         | 
| 240 | 
            +
                            if state.active_strategies[strategy_type]]
         | 
| 241 | 
            +
                    
         | 
| 242 | 
            +
                    results = await asyncio.gather(*tasks)
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    # Synthesize results
         | 
| 245 | 
            +
                    synthesis = await self._synthesize_parallel_results(results, context)
         | 
| 246 | 
            +
                    
         | 
| 247 | 
            +
                    return {
         | 
| 248 | 
            +
                        "success": synthesis.get("success", False),
         | 
| 249 | 
            +
                        "results": results,
         | 
| 250 | 
            +
                        "synthesis": synthesis,
         | 
| 251 | 
            +
                        "pattern": CoordinationPattern.PARALLEL.value,
         | 
| 252 | 
            +
                        "metrics": {
         | 
| 253 | 
            +
                            "total_strategies": len(results),
         | 
| 254 | 
            +
                            "success_rate": sum(1 for r in results if r.success) / len(results) if results else 0
         | 
| 255 | 
            +
                        }
         | 
| 256 | 
            +
                    }
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                async def _coordinate_hierarchical(self,
         | 
| 259 | 
            +
                                                 query: str,
         | 
| 260 | 
            +
                                                 context: Dict[str, Any],
         | 
| 261 | 
            +
                                                 state: CoordinationState) -> Dict[str, Any]:
         | 
| 262 | 
            +
                    """Coordinate strategies in hierarchical pattern."""
         | 
| 263 | 
            +
                    # Build strategy hierarchy
         | 
| 264 | 
            +
                    hierarchy = await self._build_strategy_hierarchy(query, context)
         | 
| 265 | 
            +
                    results = {}
         | 
| 266 | 
            +
                    
         | 
| 267 | 
            +
                    async def execute_level(level_strategies: List[StrategyType],
         | 
| 268 | 
            +
                                          level_context: Dict[str, Any]) -> List[StrategyResult]:
         | 
| 269 | 
            +
                        tasks = []
         | 
| 270 | 
            +
                        for strategy_type in level_strategies:
         | 
| 271 | 
            +
                            if strategy_type in state.active_strategies and state.active_strategies[strategy_type]:
         | 
| 272 | 
            +
                                strategy = self.strategies[strategy_type]
         | 
| 273 | 
            +
                                tasks.append(strategy.reason(query, level_context))
         | 
| 274 | 
            +
                        
         | 
| 275 | 
            +
                        level_results = await asyncio.gather(*tasks)
         | 
| 276 | 
            +
                        return [
         | 
| 277 | 
            +
                            StrategyResult(
         | 
| 278 | 
            +
                                strategy_type=strategy_type,
         | 
| 279 | 
            +
                                success=result.get("success", False),
         | 
| 280 | 
            +
                                answer=result.get("answer"),
         | 
| 281 | 
            +
                                confidence=result.get("confidence", 0.0),
         | 
| 282 | 
            +
                                reasoning_trace=result.get("reasoning_trace", []),
         | 
| 283 | 
            +
                                metadata=result.get("metadata", {}),
         | 
| 284 | 
            +
                                performance_metrics=result.get("performance_metrics", {})
         | 
| 285 | 
            +
                            )
         | 
| 286 | 
            +
                            for strategy_type, result in zip(level_strategies, level_results)
         | 
| 287 | 
            +
                        ]
         | 
| 288 | 
            +
                    
         | 
| 289 | 
            +
                    # Execute hierarchy levels
         | 
| 290 | 
            +
                    current_context = context.copy()
         | 
| 291 | 
            +
                    for level, level_strategies in enumerate(hierarchy):
         | 
| 292 | 
            +
                        results[level] = await execute_level(level_strategies, current_context)
         | 
| 293 | 
            +
                        
         | 
| 294 | 
            +
                        # Update context for next level
         | 
| 295 | 
            +
                        current_context.update({
         | 
| 296 | 
            +
                            "previous_level_results": results[level],
         | 
| 297 | 
            +
                            "hierarchy_level": level
         | 
| 298 | 
            +
                        })
         | 
| 299 | 
            +
                    
         | 
| 300 | 
            +
                    return {
         | 
| 301 | 
            +
                        "success": any(any(r.success for r in level_results) 
         | 
| 302 | 
            +
                                     for level_results in results.values()),
         | 
| 303 | 
            +
                        "results": results,
         | 
| 304 | 
            +
                        "hierarchy": hierarchy,
         | 
| 305 | 
            +
                        "pattern": CoordinationPattern.HIERARCHICAL.value,
         | 
| 306 | 
            +
                        "metrics": {
         | 
| 307 | 
            +
                            "total_levels": len(hierarchy),
         | 
| 308 | 
            +
                            "level_success_rates": {
         | 
| 309 | 
            +
                                level: sum(1 for r in results[level] if r.success) / len(results[level])
         | 
| 310 | 
            +
                                for level in results if results[level]
         | 
| 311 | 
            +
                            }
         | 
| 312 | 
            +
                        }
         | 
| 313 | 
            +
                    }
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                async def _coordinate_feedback(self,
         | 
| 316 | 
            +
                                             query: str,
         | 
| 317 | 
            +
                                             context: Dict[str, Any],
         | 
| 318 | 
            +
                                             state: CoordinationState) -> Dict[str, Any]:
         | 
| 319 | 
            +
                    """Coordinate strategies with feedback loops."""
         | 
| 320 | 
            +
                    results = []
         | 
| 321 | 
            +
                    feedback_history = []
         | 
| 322 | 
            +
                    current_context = context.copy()
         | 
| 323 | 
            +
                    
         | 
| 324 | 
            +
                    max_iterations = 5  # Prevent infinite loops
         | 
| 325 | 
            +
                    iteration = 0
         | 
| 326 | 
            +
                    
         | 
| 327 | 
            +
                    while iteration < max_iterations:
         | 
| 328 | 
            +
                        iteration += 1
         | 
| 329 | 
            +
                        
         | 
| 330 | 
            +
                        # Execute strategies
         | 
| 331 | 
            +
                        iteration_results = []
         | 
| 332 | 
            +
                        for strategy_type in state.active_strategies:
         | 
| 333 | 
            +
                            if state.active_strategies[strategy_type]:
         | 
| 334 | 
            +
                                try:
         | 
| 335 | 
            +
                                    strategy = self.strategies[strategy_type]
         | 
| 336 | 
            +
                                    result = await strategy.reason(query, current_context)
         | 
| 337 | 
            +
                                    
         | 
| 338 | 
            +
                                    strategy_result = StrategyResult(
         | 
| 339 | 
            +
                                        strategy_type=strategy_type,
         | 
| 340 | 
            +
                                        success=result.get("success", False),
         | 
| 341 | 
            +
                                        answer=result.get("answer"),
         | 
| 342 | 
            +
                                        confidence=result.get("confidence", 0.0),
         | 
| 343 | 
            +
                                        reasoning_trace=result.get("reasoning_trace", []),
         | 
| 344 | 
            +
                                        metadata=result.get("metadata", {}),
         | 
| 345 | 
            +
                                        performance_metrics=result.get("performance_metrics", {})
         | 
| 346 | 
            +
                                    )
         | 
| 347 | 
            +
                                    
         | 
| 348 | 
            +
                                    iteration_results.append(strategy_result)
         | 
| 349 | 
            +
                                    
         | 
| 350 | 
            +
                                except Exception as e:
         | 
| 351 | 
            +
                                    logging.error(f"Error in feedback strategy {strategy_type}: {str(e)}")
         | 
| 352 | 
            +
                        
         | 
| 353 | 
            +
                        results.append(iteration_results)
         | 
| 354 | 
            +
                        
         | 
| 355 | 
            +
                        # Generate feedback
         | 
| 356 | 
            +
                        feedback = await self._generate_feedback(iteration_results, current_context)
         | 
| 357 | 
            +
                        feedback_history.append(feedback)
         | 
| 358 | 
            +
                        
         | 
| 359 | 
            +
                        # Check termination condition
         | 
| 360 | 
            +
                        if self._should_terminate_feedback(feedback, iteration_results):
         | 
| 361 | 
            +
                            break
         | 
| 362 | 
            +
                        
         | 
| 363 | 
            +
                        # Update context with feedback
         | 
| 364 | 
            +
                        current_context.update({
         | 
| 365 | 
            +
                            "previous_results": iteration_results,
         | 
| 366 | 
            +
                            "feedback": feedback,
         | 
| 367 | 
            +
                            "iteration": iteration
         | 
| 368 | 
            +
                        })
         | 
| 369 | 
            +
                    
         | 
| 370 | 
            +
                    return {
         | 
| 371 | 
            +
                        "success": any(any(r.success for r in iteration_results) 
         | 
| 372 | 
            +
                                     for iteration_results in results),
         | 
| 373 | 
            +
                        "results": results,
         | 
| 374 | 
            +
                        "feedback_history": feedback_history,
         | 
| 375 | 
            +
                        "pattern": CoordinationPattern.FEEDBACK.value,
         | 
| 376 | 
            +
                        "metrics": {
         | 
| 377 | 
            +
                            "total_iterations": iteration,
         | 
| 378 | 
            +
                            "feedback_impact": self._calculate_feedback_impact(results, feedback_history)
         | 
| 379 | 
            +
                        }
         | 
| 380 | 
            +
                    }
         | 
| 381 | 
            +
             | 
| 382 | 
            +
                async def _coordinate_adaptive(self,
         | 
| 383 | 
            +
                                             query: str,
         | 
| 384 | 
            +
                                             context: Dict[str, Any],
         | 
| 385 | 
            +
                                             state: CoordinationState) -> Dict[str, Any]:
         | 
| 386 | 
            +
                    """Coordinate strategies with adaptive selection."""
         | 
| 387 | 
            +
                    results = []
         | 
| 388 | 
            +
                    adaptations = []
         | 
| 389 | 
            +
                    current_context = context.copy()
         | 
| 390 | 
            +
                    
         | 
| 391 | 
            +
                    while len(results) < len(state.active_strategies):
         | 
| 392 | 
            +
                        # Select next strategy
         | 
| 393 | 
            +
                        next_strategy = await self._select_next_strategy(
         | 
| 394 | 
            +
                            results, state.active_strategies, current_context)
         | 
| 395 | 
            +
                        
         | 
| 396 | 
            +
                        if not next_strategy:
         | 
| 397 | 
            +
                            break
         | 
| 398 | 
            +
                        
         | 
| 399 | 
            +
                        try:
         | 
| 400 | 
            +
                            # Execute strategy
         | 
| 401 | 
            +
                            strategy = self.strategies[next_strategy]
         | 
| 402 | 
            +
                            result = await strategy.reason(query, current_context)
         | 
| 403 | 
            +
                            
         | 
| 404 | 
            +
                            strategy_result = StrategyResult(
         | 
| 405 | 
            +
                                strategy_type=next_strategy,
         | 
| 406 | 
            +
                                success=result.get("success", False),
         | 
| 407 | 
            +
                                answer=result.get("answer"),
         | 
| 408 | 
            +
                                confidence=result.get("confidence", 0.0),
         | 
| 409 | 
            +
                                reasoning_trace=result.get("reasoning_trace", []),
         | 
| 410 | 
            +
                                metadata=result.get("metadata", {}),
         | 
| 411 | 
            +
                                performance_metrics=result.get("performance_metrics", {})
         | 
| 412 | 
            +
                            )
         | 
| 413 | 
            +
                            
         | 
| 414 | 
            +
                            results.append(strategy_result)
         | 
| 415 | 
            +
                            
         | 
| 416 | 
            +
                            # Adapt strategy selection
         | 
| 417 | 
            +
                            adaptation = await self._adapt_strategy_selection(
         | 
| 418 | 
            +
                                strategy_result, current_context)
         | 
| 419 | 
            +
                            adaptations.append(adaptation)
         | 
| 420 | 
            +
                            
         | 
| 421 | 
            +
                            # Update context
         | 
| 422 | 
            +
                            current_context.update({
         | 
| 423 | 
            +
                                "previous_results": results,
         | 
| 424 | 
            +
                                "adaptations": adaptations,
         | 
| 425 | 
            +
                                "current_strategy": next_strategy
         | 
| 426 | 
            +
                            })
         | 
| 427 | 
            +
                            
         | 
| 428 | 
            +
                        except Exception as e:
         | 
| 429 | 
            +
                            logging.error(f"Error in adaptive strategy {next_strategy}: {str(e)}")
         | 
| 430 | 
            +
                    
         | 
| 431 | 
            +
                    return {
         | 
| 432 | 
            +
                        "success": any(r.success for r in results),
         | 
| 433 | 
            +
                        "results": results,
         | 
| 434 | 
            +
                        "adaptations": adaptations,
         | 
| 435 | 
            +
                        "pattern": CoordinationPattern.ADAPTIVE.value,
         | 
| 436 | 
            +
                        "metrics": {
         | 
| 437 | 
            +
                            "total_strategies": len(results),
         | 
| 438 | 
            +
                            "adaptation_impact": self._calculate_adaptation_impact(results, adaptations)
         | 
| 439 | 
            +
                        }
         | 
| 440 | 
            +
                    }
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                async def _coordinate_ensemble(self,
         | 
| 443 | 
            +
                                             query: str,
         | 
| 444 | 
            +
                                             context: Dict[str, Any],
         | 
| 445 | 
            +
                                             state: CoordinationState) -> Dict[str, Any]:
         | 
| 446 | 
            +
                    """Coordinate strategies as an ensemble."""
         | 
| 447 | 
            +
                    # Execute all strategies
         | 
| 448 | 
            +
                    results = []
         | 
| 449 | 
            +
                    for strategy_type in state.active_strategies:
         | 
| 450 | 
            +
                        if state.active_strategies[strategy_type]:
         | 
| 451 | 
            +
                            try:
         | 
| 452 | 
            +
                                strategy = self.strategies[strategy_type]
         | 
| 453 | 
            +
                                result = await strategy.reason(query, context)
         | 
| 454 | 
            +
                                
         | 
| 455 | 
            +
                                strategy_result = StrategyResult(
         | 
| 456 | 
            +
                                    strategy_type=strategy_type,
         | 
| 457 | 
            +
                                    success=result.get("success", False),
         | 
| 458 | 
            +
                                    answer=result.get("answer"),
         | 
| 459 | 
            +
                                    confidence=result.get("confidence", 0.0),
         | 
| 460 | 
            +
                                    reasoning_trace=result.get("reasoning_trace", []),
         | 
| 461 | 
            +
                                    metadata=result.get("metadata", {}),
         | 
| 462 | 
            +
                                    performance_metrics=result.get("performance_metrics", {})
         | 
| 463 | 
            +
                                )
         | 
| 464 | 
            +
                                
         | 
| 465 | 
            +
                                results.append(strategy_result)
         | 
| 466 | 
            +
                                
         | 
| 467 | 
            +
                            except Exception as e:
         | 
| 468 | 
            +
                                logging.error(f"Error in ensemble strategy {strategy_type}: {str(e)}")
         | 
| 469 | 
            +
                    
         | 
| 470 | 
            +
                    # Combine results using ensemble methods
         | 
| 471 | 
            +
                    ensemble_result = await self._combine_ensemble_results(results, context)
         | 
| 472 | 
            +
                    
         | 
| 473 | 
            +
                    return {
         | 
| 474 | 
            +
                        "success": ensemble_result.get("success", False),
         | 
| 475 | 
            +
                        "results": results,
         | 
| 476 | 
            +
                        "ensemble_result": ensemble_result,
         | 
| 477 | 
            +
                        "pattern": CoordinationPattern.ENSEMBLE.value,
         | 
| 478 | 
            +
                        "metrics": {
         | 
| 479 | 
            +
                            "total_members": len(results),
         | 
| 480 | 
            +
                            "ensemble_confidence": ensemble_result.get("confidence", 0.0)
         | 
| 481 | 
            +
                        }
         | 
| 482 | 
            +
                    }
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                def _record_interaction(self,
         | 
| 485 | 
            +
                                      source: StrategyType,
         | 
| 486 | 
            +
                                      target: Optional[StrategyType],
         | 
| 487 | 
            +
                                      interaction_type: str,
         | 
| 488 | 
            +
                                      data: Dict[str, Any]):
         | 
| 489 | 
            +
                    """Record strategy interaction."""
         | 
| 490 | 
            +
                    self.interactions.append(StrategyInteraction(
         | 
| 491 | 
            +
                        source=source,
         | 
| 492 | 
            +
                        target=target,
         | 
| 493 | 
            +
                        interaction_type=interaction_type,
         | 
| 494 | 
            +
                        data=data
         | 
| 495 | 
            +
                    ))
         | 
| 496 | 
            +
             | 
| 497 | 
            +
                def _update_pattern_performance(self, pattern: CoordinationPattern, result: Dict[str, Any]):
         | 
| 498 | 
            +
                    """Update pattern performance metrics."""
         | 
| 499 | 
            +
                    success_rate = result["metrics"].get("success_rate", 0.0)
         | 
| 500 | 
            +
                    self.pattern_performance[pattern].append(success_rate)
         | 
| 501 | 
            +
                    
         | 
| 502 | 
            +
                    # Update weights using exponential moving average
         | 
| 503 | 
            +
                    current_weight = self.pattern_weights[pattern]
         | 
| 504 | 
            +
                    self.pattern_weights[pattern] = (
         | 
| 505 | 
            +
                        (1 - self.learning_rate) * current_weight +
         | 
| 506 | 
            +
                        self.learning_rate * success_rate
         | 
| 507 | 
            +
                    )
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                def get_performance_metrics(self) -> Dict[str, Any]:
         | 
| 510 | 
            +
                    """Get comprehensive performance metrics."""
         | 
| 511 | 
            +
                    return {
         | 
| 512 | 
            +
                        "pattern_weights": dict(self.pattern_weights),
         | 
| 513 | 
            +
                        "average_performance": {
         | 
| 514 | 
            +
                            pattern.value: sum(scores) / len(scores) if scores else 0
         | 
| 515 | 
            +
                            for pattern, scores in self.pattern_performance.items()
         | 
| 516 | 
            +
                        },
         | 
| 517 | 
            +
                        "interaction_counts": defaultdict(int, {
         | 
| 518 | 
            +
                            interaction.interaction_type: 1
         | 
| 519 | 
            +
                            for interaction in self.interactions
         | 
| 520 | 
            +
                        }),
         | 
| 521 | 
            +
                        "active_patterns": [
         | 
| 522 | 
            +
                            pattern.value for pattern, weight in self.pattern_weights.items()
         | 
| 523 | 
            +
                            if weight > 0.5
         | 
| 524 | 
            +
                        ]
         | 
| 525 | 
            +
                    }
         | 
    	
        reasoning/learning.py
    ADDED
    
    | @@ -0,0 +1,394 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Enhanced learning mechanisms for reasoning strategies."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            @dataclass
         | 
| 13 | 
            +
            class LearningEvent:
         | 
| 14 | 
            +
                """Event for strategy learning."""
         | 
| 15 | 
            +
                strategy_type: str
         | 
| 16 | 
            +
                event_type: str
         | 
| 17 | 
            +
                data: Dict[str, Any]
         | 
| 18 | 
            +
                outcome: Optional[float]
         | 
| 19 | 
            +
                timestamp: datetime = field(default_factory=datetime.now)
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            class LearningMode(Enum):
         | 
| 22 | 
            +
                """Types of learning modes."""
         | 
| 23 | 
            +
                SUPERVISED = "supervised"
         | 
| 24 | 
            +
                REINFORCEMENT = "reinforcement"
         | 
| 25 | 
            +
                ACTIVE = "active"
         | 
| 26 | 
            +
                TRANSFER = "transfer"
         | 
| 27 | 
            +
                META = "meta"
         | 
| 28 | 
            +
                ENSEMBLE = "ensemble"
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            @dataclass
         | 
| 31 | 
            +
            class LearningState:
         | 
| 32 | 
            +
                """State for learning process."""
         | 
| 33 | 
            +
                mode: LearningMode
         | 
| 34 | 
            +
                parameters: Dict[str, Any]
         | 
| 35 | 
            +
                history: List[LearningEvent]
         | 
| 36 | 
            +
                metrics: Dict[str, float]
         | 
| 37 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            class EnhancedLearningManager:
         | 
| 40 | 
            +
                """
         | 
| 41 | 
            +
                Advanced learning manager that:
         | 
| 42 | 
            +
                1. Implements multiple learning modes
         | 
| 43 | 
            +
                2. Tracks learning progress
         | 
| 44 | 
            +
                3. Adapts learning parameters
         | 
| 45 | 
            +
                4. Optimizes strategy performance
         | 
| 46 | 
            +
                5. Transfers knowledge between strategies
         | 
| 47 | 
            +
                """
         | 
| 48 | 
            +
                
         | 
| 49 | 
            +
                def __init__(self,
         | 
| 50 | 
            +
                             learning_rate: float = 0.1,
         | 
| 51 | 
            +
                             exploration_rate: float = 0.2,
         | 
| 52 | 
            +
                             memory_size: int = 1000):
         | 
| 53 | 
            +
                    self.learning_rate = learning_rate
         | 
| 54 | 
            +
                    self.exploration_rate = exploration_rate
         | 
| 55 | 
            +
                    self.memory_size = memory_size
         | 
| 56 | 
            +
                    
         | 
| 57 | 
            +
                    # Learning states
         | 
| 58 | 
            +
                    self.states: Dict[str, LearningState] = {}
         | 
| 59 | 
            +
                    
         | 
| 60 | 
            +
                    # Performance tracking
         | 
| 61 | 
            +
                    self.performance_history: List[Dict[str, Any]] = []
         | 
| 62 | 
            +
                    self.strategy_metrics: Dict[str, List[float]] = defaultdict(list)
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    # Knowledge transfer
         | 
| 65 | 
            +
                    self.knowledge_base: Dict[str, Any] = {}
         | 
| 66 | 
            +
                    self.transfer_history: List[Dict[str, Any]] = []
         | 
| 67 | 
            +
                    
         | 
| 68 | 
            +
                async def learn(self,
         | 
| 69 | 
            +
                               strategy_type: str,
         | 
| 70 | 
            +
                               event: LearningEvent,
         | 
| 71 | 
            +
                               context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 72 | 
            +
                    """Learn from strategy execution event."""
         | 
| 73 | 
            +
                    try:
         | 
| 74 | 
            +
                        # Initialize or get learning state
         | 
| 75 | 
            +
                        state = self._get_learning_state(strategy_type)
         | 
| 76 | 
            +
                        
         | 
| 77 | 
            +
                        # Select learning mode
         | 
| 78 | 
            +
                        mode = await self._select_learning_mode(event, state, context)
         | 
| 79 | 
            +
                        
         | 
| 80 | 
            +
                        # Execute learning
         | 
| 81 | 
            +
                        if mode == LearningMode.SUPERVISED:
         | 
| 82 | 
            +
                            result = await self._supervised_learning(event, state, context)
         | 
| 83 | 
            +
                        elif mode == LearningMode.REINFORCEMENT:
         | 
| 84 | 
            +
                            result = await self._reinforcement_learning(event, state, context)
         | 
| 85 | 
            +
                        elif mode == LearningMode.ACTIVE:
         | 
| 86 | 
            +
                            result = await self._active_learning(event, state, context)
         | 
| 87 | 
            +
                        elif mode == LearningMode.TRANSFER:
         | 
| 88 | 
            +
                            result = await self._transfer_learning(event, state, context)
         | 
| 89 | 
            +
                        elif mode == LearningMode.META:
         | 
| 90 | 
            +
                            result = await self._meta_learning(event, state, context)
         | 
| 91 | 
            +
                        elif mode == LearningMode.ENSEMBLE:
         | 
| 92 | 
            +
                            result = await self._ensemble_learning(event, state, context)
         | 
| 93 | 
            +
                        else:
         | 
| 94 | 
            +
                            raise ValueError(f"Unsupported learning mode: {mode}")
         | 
| 95 | 
            +
                        
         | 
| 96 | 
            +
                        # Update state
         | 
| 97 | 
            +
                        self._update_learning_state(state, result)
         | 
| 98 | 
            +
                        
         | 
| 99 | 
            +
                        # Record performance
         | 
| 100 | 
            +
                        self._record_performance(strategy_type, result)
         | 
| 101 | 
            +
                        
         | 
| 102 | 
            +
                        return result
         | 
| 103 | 
            +
                        
         | 
| 104 | 
            +
                    except Exception as e:
         | 
| 105 | 
            +
                        logging.error(f"Error in learning: {str(e)}")
         | 
| 106 | 
            +
                        return {
         | 
| 107 | 
            +
                            "success": False,
         | 
| 108 | 
            +
                            "error": str(e),
         | 
| 109 | 
            +
                            "mode": mode.value if 'mode' in locals() else None
         | 
| 110 | 
            +
                        }
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                async def _supervised_learning(self,
         | 
| 113 | 
            +
                                             event: LearningEvent,
         | 
| 114 | 
            +
                                             state: LearningState,
         | 
| 115 | 
            +
                                             context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 116 | 
            +
                    """Implement supervised learning."""
         | 
| 117 | 
            +
                    # Extract features and labels
         | 
| 118 | 
            +
                    features = await self._extract_features(event.data, context)
         | 
| 119 | 
            +
                    labels = event.outcome if event.outcome is not None else 0.0
         | 
| 120 | 
            +
                    
         | 
| 121 | 
            +
                    # Train model
         | 
| 122 | 
            +
                    model_update = await self._update_model(features, labels, state, context)
         | 
| 123 | 
            +
                    
         | 
| 124 | 
            +
                    # Validate performance
         | 
| 125 | 
            +
                    validation = await self._validate_model(model_update, state, context)
         | 
| 126 | 
            +
                    
         | 
| 127 | 
            +
                    return {
         | 
| 128 | 
            +
                        "success": True,
         | 
| 129 | 
            +
                        "mode": LearningMode.SUPERVISED.value,
         | 
| 130 | 
            +
                        "model_update": model_update,
         | 
| 131 | 
            +
                        "validation": validation,
         | 
| 132 | 
            +
                        "metrics": {
         | 
| 133 | 
            +
                            "accuracy": validation.get("accuracy", 0.0),
         | 
| 134 | 
            +
                            "loss": validation.get("loss", 0.0)
         | 
| 135 | 
            +
                        }
         | 
| 136 | 
            +
                    }
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                async def _reinforcement_learning(self,
         | 
| 139 | 
            +
                                                event: LearningEvent,
         | 
| 140 | 
            +
                                                state: LearningState,
         | 
| 141 | 
            +
                                                context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 142 | 
            +
                    """Implement reinforcement learning."""
         | 
| 143 | 
            +
                    # Extract state and action
         | 
| 144 | 
            +
                    current_state = await self._extract_state(event.data, context)
         | 
| 145 | 
            +
                    action = event.data.get("action")
         | 
| 146 | 
            +
                    reward = event.outcome if event.outcome is not None else 0.0
         | 
| 147 | 
            +
                    
         | 
| 148 | 
            +
                    # Update policy
         | 
| 149 | 
            +
                    policy_update = await self._update_policy(
         | 
| 150 | 
            +
                        current_state, action, reward, state, context)
         | 
| 151 | 
            +
                    
         | 
| 152 | 
            +
                    # Optimize value function
         | 
| 153 | 
            +
                    value_update = await self._update_value_function(
         | 
| 154 | 
            +
                        current_state, reward, state, context)
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    return {
         | 
| 157 | 
            +
                        "success": True,
         | 
| 158 | 
            +
                        "mode": LearningMode.REINFORCEMENT.value,
         | 
| 159 | 
            +
                        "policy_update": policy_update,
         | 
| 160 | 
            +
                        "value_update": value_update,
         | 
| 161 | 
            +
                        "metrics": {
         | 
| 162 | 
            +
                            "reward": reward,
         | 
| 163 | 
            +
                            "value_error": value_update.get("error", 0.0)
         | 
| 164 | 
            +
                        }
         | 
| 165 | 
            +
                    }
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                async def _active_learning(self,
         | 
| 168 | 
            +
                                         event: LearningEvent,
         | 
| 169 | 
            +
                                         state: LearningState,
         | 
| 170 | 
            +
                                         context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 171 | 
            +
                    """Implement active learning."""
         | 
| 172 | 
            +
                    # Query selection
         | 
| 173 | 
            +
                    query = await self._select_query(event.data, state, context)
         | 
| 174 | 
            +
                    
         | 
| 175 | 
            +
                    # Get feedback
         | 
| 176 | 
            +
                    feedback = await self._get_feedback(query, context)
         | 
| 177 | 
            +
                    
         | 
| 178 | 
            +
                    # Update model
         | 
| 179 | 
            +
                    model_update = await self._update_model_active(
         | 
| 180 | 
            +
                        query, feedback, state, context)
         | 
| 181 | 
            +
                    
         | 
| 182 | 
            +
                    return {
         | 
| 183 | 
            +
                        "success": True,
         | 
| 184 | 
            +
                        "mode": LearningMode.ACTIVE.value,
         | 
| 185 | 
            +
                        "query": query,
         | 
| 186 | 
            +
                        "feedback": feedback,
         | 
| 187 | 
            +
                        "model_update": model_update,
         | 
| 188 | 
            +
                        "metrics": {
         | 
| 189 | 
            +
                            "uncertainty": query.get("uncertainty", 0.0),
         | 
| 190 | 
            +
                            "feedback_quality": feedback.get("quality", 0.0)
         | 
| 191 | 
            +
                        }
         | 
| 192 | 
            +
                    }
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                async def _transfer_learning(self,
         | 
| 195 | 
            +
                                           event: LearningEvent,
         | 
| 196 | 
            +
                                           state: LearningState,
         | 
| 197 | 
            +
                                           context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 198 | 
            +
                    """Implement transfer learning."""
         | 
| 199 | 
            +
                    # Source task selection
         | 
| 200 | 
            +
                    source_task = await self._select_source_task(event.data, state, context)
         | 
| 201 | 
            +
                    
         | 
| 202 | 
            +
                    # Knowledge extraction
         | 
| 203 | 
            +
                    knowledge = await self._extract_knowledge(source_task, context)
         | 
| 204 | 
            +
                    
         | 
| 205 | 
            +
                    # Transfer adaptation
         | 
| 206 | 
            +
                    adaptation = await self._adapt_knowledge(
         | 
| 207 | 
            +
                        knowledge, event.data, state, context)
         | 
| 208 | 
            +
                    
         | 
| 209 | 
            +
                    # Apply transfer
         | 
| 210 | 
            +
                    transfer = await self._apply_transfer(adaptation, state, context)
         | 
| 211 | 
            +
                    
         | 
| 212 | 
            +
                    return {
         | 
| 213 | 
            +
                        "success": True,
         | 
| 214 | 
            +
                        "mode": LearningMode.TRANSFER.value,
         | 
| 215 | 
            +
                        "source_task": source_task,
         | 
| 216 | 
            +
                        "knowledge": knowledge,
         | 
| 217 | 
            +
                        "adaptation": adaptation,
         | 
| 218 | 
            +
                        "transfer": transfer,
         | 
| 219 | 
            +
                        "metrics": {
         | 
| 220 | 
            +
                            "transfer_efficiency": transfer.get("efficiency", 0.0),
         | 
| 221 | 
            +
                            "adaptation_quality": adaptation.get("quality", 0.0)
         | 
| 222 | 
            +
                        }
         | 
| 223 | 
            +
                    }
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                async def _meta_learning(self,
         | 
| 226 | 
            +
                                       event: LearningEvent,
         | 
| 227 | 
            +
                                       state: LearningState,
         | 
| 228 | 
            +
                                       context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 229 | 
            +
                    """Implement meta-learning."""
         | 
| 230 | 
            +
                    # Task characterization
         | 
| 231 | 
            +
                    task_char = await self._characterize_task(event.data, context)
         | 
| 232 | 
            +
                    
         | 
| 233 | 
            +
                    # Strategy selection
         | 
| 234 | 
            +
                    strategy = await self._select_strategy(task_char, state, context)
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    # Parameter optimization
         | 
| 237 | 
            +
                    optimization = await self._optimize_parameters(
         | 
| 238 | 
            +
                        strategy, task_char, state, context)
         | 
| 239 | 
            +
                    
         | 
| 240 | 
            +
                    # Apply meta-learning
         | 
| 241 | 
            +
                    meta_update = await self._apply_meta_learning(
         | 
| 242 | 
            +
                        optimization, state, context)
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    return {
         | 
| 245 | 
            +
                        "success": True,
         | 
| 246 | 
            +
                        "mode": LearningMode.META.value,
         | 
| 247 | 
            +
                        "task_characterization": task_char,
         | 
| 248 | 
            +
                        "strategy": strategy,
         | 
| 249 | 
            +
                        "optimization": optimization,
         | 
| 250 | 
            +
                        "meta_update": meta_update,
         | 
| 251 | 
            +
                        "metrics": {
         | 
| 252 | 
            +
                            "strategy_fit": strategy.get("fit_score", 0.0),
         | 
| 253 | 
            +
                            "optimization_improvement": optimization.get("improvement", 0.0)
         | 
| 254 | 
            +
                        }
         | 
| 255 | 
            +
                    }
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                async def _ensemble_learning(self,
         | 
| 258 | 
            +
                                           event: LearningEvent,
         | 
| 259 | 
            +
                                           state: LearningState,
         | 
| 260 | 
            +
                                           context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 261 | 
            +
                    """Implement ensemble learning."""
         | 
| 262 | 
            +
                    # Member selection
         | 
| 263 | 
            +
                    members = await self._select_members(event.data, state, context)
         | 
| 264 | 
            +
                    
         | 
| 265 | 
            +
                    # Weight optimization
         | 
| 266 | 
            +
                    weights = await self._optimize_weights(members, state, context)
         | 
| 267 | 
            +
                    
         | 
| 268 | 
            +
                    # Combine predictions
         | 
| 269 | 
            +
                    combination = await self._combine_predictions(
         | 
| 270 | 
            +
                        members, weights, event.data, context)
         | 
| 271 | 
            +
                    
         | 
| 272 | 
            +
                    return {
         | 
| 273 | 
            +
                        "success": True,
         | 
| 274 | 
            +
                        "mode": LearningMode.ENSEMBLE.value,
         | 
| 275 | 
            +
                        "members": members,
         | 
| 276 | 
            +
                        "weights": weights,
         | 
| 277 | 
            +
                        "combination": combination,
         | 
| 278 | 
            +
                        "metrics": {
         | 
| 279 | 
            +
                            "ensemble_diversity": weights.get("diversity", 0.0),
         | 
| 280 | 
            +
                            "combination_strength": combination.get("strength", 0.0)
         | 
| 281 | 
            +
                        }
         | 
| 282 | 
            +
                    }
         | 
| 283 | 
            +
             | 
| 284 | 
            +
                def _get_learning_state(self, strategy_type: str) -> LearningState:
         | 
| 285 | 
            +
                    """Get or initialize learning state for strategy."""
         | 
| 286 | 
            +
                    if strategy_type not in self.states:
         | 
| 287 | 
            +
                        self.states[strategy_type] = LearningState(
         | 
| 288 | 
            +
                            mode=LearningMode.SUPERVISED,
         | 
| 289 | 
            +
                            parameters={
         | 
| 290 | 
            +
                                "learning_rate": self.learning_rate,
         | 
| 291 | 
            +
                                "exploration_rate": self.exploration_rate
         | 
| 292 | 
            +
                            },
         | 
| 293 | 
            +
                            history=[],
         | 
| 294 | 
            +
                            metrics={}
         | 
| 295 | 
            +
                        )
         | 
| 296 | 
            +
                    return self.states[strategy_type]
         | 
| 297 | 
            +
             | 
| 298 | 
            +
                def _update_learning_state(self, state: LearningState, result: Dict[str, Any]):
         | 
| 299 | 
            +
                    """Update learning state with result."""
         | 
| 300 | 
            +
                    # Update history
         | 
| 301 | 
            +
                    state.history.append(LearningEvent(
         | 
| 302 | 
            +
                        strategy_type=result.get("strategy_type", "unknown"),
         | 
| 303 | 
            +
                        event_type="learning_update",
         | 
| 304 | 
            +
                        data=result,
         | 
| 305 | 
            +
                        outcome=result.get("metrics", {}).get("accuracy", 0.0),
         | 
| 306 | 
            +
                        timestamp=datetime.now()
         | 
| 307 | 
            +
                    ))
         | 
| 308 | 
            +
                    
         | 
| 309 | 
            +
                    # Update metrics
         | 
| 310 | 
            +
                    for metric, value in result.get("metrics", {}).items():
         | 
| 311 | 
            +
                        if metric in state.metrics:
         | 
| 312 | 
            +
                            state.metrics[metric] = (
         | 
| 313 | 
            +
                                0.9 * state.metrics[metric] + 0.1 * value  # Exponential moving average
         | 
| 314 | 
            +
                            )
         | 
| 315 | 
            +
                        else:
         | 
| 316 | 
            +
                            state.metrics[metric] = value
         | 
| 317 | 
            +
                    
         | 
| 318 | 
            +
                    # Adapt parameters
         | 
| 319 | 
            +
                    self._adapt_parameters(state, result)
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                def _record_performance(self, strategy_type: str, result: Dict[str, Any]):
         | 
| 322 | 
            +
                    """Record learning performance."""
         | 
| 323 | 
            +
                    self.performance_history.append({
         | 
| 324 | 
            +
                        "timestamp": datetime.now().isoformat(),
         | 
| 325 | 
            +
                        "strategy_type": strategy_type,
         | 
| 326 | 
            +
                        "mode": result.get("mode"),
         | 
| 327 | 
            +
                        "metrics": result.get("metrics", {}),
         | 
| 328 | 
            +
                        "success": result.get("success", False)
         | 
| 329 | 
            +
                    })
         | 
| 330 | 
            +
                    
         | 
| 331 | 
            +
                    # Update strategy metrics
         | 
| 332 | 
            +
                    for metric, value in result.get("metrics", {}).items():
         | 
| 333 | 
            +
                        self.strategy_metrics[f"{strategy_type}_{metric}"].append(value)
         | 
| 334 | 
            +
                    
         | 
| 335 | 
            +
                    # Maintain memory size
         | 
| 336 | 
            +
                    if len(self.performance_history) > self.memory_size:
         | 
| 337 | 
            +
                        self.performance_history = self.performance_history[-self.memory_size:]
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                def _adapt_parameters(self, state: LearningState, result: Dict[str, Any]):
         | 
| 340 | 
            +
                    """Adapt learning parameters based on performance."""
         | 
| 341 | 
            +
                    # Adapt learning rate
         | 
| 342 | 
            +
                    if "accuracy" in result.get("metrics", {}):
         | 
| 343 | 
            +
                        accuracy = result["metrics"]["accuracy"]
         | 
| 344 | 
            +
                        if accuracy > 0.8:
         | 
| 345 | 
            +
                            state.parameters["learning_rate"] *= 0.95  # Decrease if performing well
         | 
| 346 | 
            +
                        elif accuracy < 0.6:
         | 
| 347 | 
            +
                            state.parameters["learning_rate"] *= 1.05  # Increase if performing poorly
         | 
| 348 | 
            +
                    
         | 
| 349 | 
            +
                    # Adapt exploration rate
         | 
| 350 | 
            +
                    if "reward" in result.get("metrics", {}):
         | 
| 351 | 
            +
                        reward = result["metrics"]["reward"]
         | 
| 352 | 
            +
                        if reward > 0:
         | 
| 353 | 
            +
                            state.parameters["exploration_rate"] *= 0.95  # Decrease if getting rewards
         | 
| 354 | 
            +
                        else:
         | 
| 355 | 
            +
                            state.parameters["exploration_rate"] *= 1.05  # Increase if not getting rewards
         | 
| 356 | 
            +
                    
         | 
| 357 | 
            +
                    # Clip parameters to reasonable ranges
         | 
| 358 | 
            +
                    state.parameters["learning_rate"] = np.clip(
         | 
| 359 | 
            +
                        state.parameters["learning_rate"], 0.001, 0.5)
         | 
| 360 | 
            +
                    state.parameters["exploration_rate"] = np.clip(
         | 
| 361 | 
            +
                        state.parameters["exploration_rate"], 0.01, 0.5)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                def get_performance_metrics(self) -> Dict[str, Any]:
         | 
| 364 | 
            +
                    """Get comprehensive performance metrics."""
         | 
| 365 | 
            +
                    return {
         | 
| 366 | 
            +
                        "learning_states": {
         | 
| 367 | 
            +
                            strategy_type: {
         | 
| 368 | 
            +
                                "mode": state.mode.value,
         | 
| 369 | 
            +
                                "parameters": state.parameters,
         | 
| 370 | 
            +
                                "metrics": state.metrics
         | 
| 371 | 
            +
                            }
         | 
| 372 | 
            +
                            for strategy_type, state in self.states.items()
         | 
| 373 | 
            +
                        },
         | 
| 374 | 
            +
                        "strategy_performance": {
         | 
| 375 | 
            +
                            metric: {
         | 
| 376 | 
            +
                                "mean": np.mean(values) if values else 0.0,
         | 
| 377 | 
            +
                                "std": np.std(values) if values else 0.0,
         | 
| 378 | 
            +
                                "min": min(values) if values else 0.0,
         | 
| 379 | 
            +
                                "max": max(values) if values else 0.0
         | 
| 380 | 
            +
                            }
         | 
| 381 | 
            +
                            for metric, values in self.strategy_metrics.items()
         | 
| 382 | 
            +
                        },
         | 
| 383 | 
            +
                        "transfer_metrics": {
         | 
| 384 | 
            +
                            "total_transfers": len(self.transfer_history),
         | 
| 385 | 
            +
                            "success_rate": sum(1 for t in self.transfer_history if t.get("success", False)) / len(self.transfer_history) if self.transfer_history else 0
         | 
| 386 | 
            +
                        }
         | 
| 387 | 
            +
                    }
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                def clear_history(self):
         | 
| 390 | 
            +
                    """Clear learning history and reset states."""
         | 
| 391 | 
            +
                    self.states.clear()
         | 
| 392 | 
            +
                    self.performance_history.clear()
         | 
| 393 | 
            +
                    self.strategy_metrics.clear()
         | 
| 394 | 
            +
                    self.transfer_history.clear()
         | 
    	
        reasoning/local_llm.py
    ADDED
    
    | @@ -0,0 +1,139 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Local LLM integration for the reasoning system."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            from typing import Dict, Any, Optional
         | 
| 5 | 
            +
            from datetime import datetime
         | 
| 6 | 
            +
            import logging
         | 
| 7 | 
            +
            from llama_cpp import Llama
         | 
| 8 | 
            +
            import huggingface_hub
         | 
| 9 | 
            +
            from .base import ReasoningStrategy
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class LocalLLMStrategy(ReasoningStrategy):
         | 
| 12 | 
            +
                """Implements reasoning using local LLM."""
         | 
| 13 | 
            +
                
         | 
| 14 | 
            +
                def __init__(self):
         | 
| 15 | 
            +
                    """Initialize the local LLM strategy."""
         | 
| 16 | 
            +
                    self.repo_id = "tensorblock/Llama-3.2-3B-Overthinker-GGUF"
         | 
| 17 | 
            +
                    self.filename = "Llama-3.2-3B-Overthinker-Q8_0.gguf"
         | 
| 18 | 
            +
                    self.model_dir = "models"
         | 
| 19 | 
            +
                    self.logger = logging.getLogger(__name__)
         | 
| 20 | 
            +
                    self.model = None
         | 
| 21 | 
            +
                    
         | 
| 22 | 
            +
                async def initialize(self):
         | 
| 23 | 
            +
                    """Initialize the model."""
         | 
| 24 | 
            +
                    try:
         | 
| 25 | 
            +
                        # Create models directory if it doesn't exist
         | 
| 26 | 
            +
                        os.makedirs(self.model_dir, exist_ok=True)
         | 
| 27 | 
            +
                        model_path = os.path.join(self.model_dir, self.filename)
         | 
| 28 | 
            +
                        
         | 
| 29 | 
            +
                        # Download model if it doesn't exist
         | 
| 30 | 
            +
                        if not os.path.exists(model_path):
         | 
| 31 | 
            +
                            self.logger.info(f"Downloading model to {model_path}...")
         | 
| 32 | 
            +
                            model_path = huggingface_hub.hf_hub_download(
         | 
| 33 | 
            +
                                repo_id=self.repo_id,
         | 
| 34 | 
            +
                                filename=self.filename,
         | 
| 35 | 
            +
                                repo_type="model",
         | 
| 36 | 
            +
                                local_dir=self.model_dir,
         | 
| 37 | 
            +
                                local_dir_use_symlinks=False
         | 
| 38 | 
            +
                            )
         | 
| 39 | 
            +
                            self.logger.info("Model downloaded successfully!")
         | 
| 40 | 
            +
                        else:
         | 
| 41 | 
            +
                            self.logger.info("Using existing model file...")
         | 
| 42 | 
            +
                        
         | 
| 43 | 
            +
                        # Try to use GPU, fall back to CPU if not available
         | 
| 44 | 
            +
                        try:
         | 
| 45 | 
            +
                            self.model = Llama(
         | 
| 46 | 
            +
                                model_path=model_path,
         | 
| 47 | 
            +
                                n_ctx=4096,
         | 
| 48 | 
            +
                                n_batch=512,
         | 
| 49 | 
            +
                                n_threads=8,
         | 
| 50 | 
            +
                                n_gpu_layers=35
         | 
| 51 | 
            +
                            )
         | 
| 52 | 
            +
                            self.logger.info("Model loaded with GPU acceleration!")
         | 
| 53 | 
            +
                        except Exception as e:
         | 
| 54 | 
            +
                            self.logger.warning(f"GPU loading failed: {e}, falling back to CPU...")
         | 
| 55 | 
            +
                            self.model = Llama(
         | 
| 56 | 
            +
                                model_path=model_path,
         | 
| 57 | 
            +
                                n_ctx=2048,
         | 
| 58 | 
            +
                                n_batch=512,
         | 
| 59 | 
            +
                                n_threads=4,
         | 
| 60 | 
            +
                                n_gpu_layers=0
         | 
| 61 | 
            +
                            )
         | 
| 62 | 
            +
                            self.logger.info("Model loaded in CPU-only mode")
         | 
| 63 | 
            +
                            
         | 
| 64 | 
            +
                    except Exception as e:
         | 
| 65 | 
            +
                        self.logger.error(f"Error initializing model: {e}")
         | 
| 66 | 
            +
                        raise
         | 
| 67 | 
            +
                        
         | 
| 68 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 69 | 
            +
                    """Generate reasoning response using local LLM."""
         | 
| 70 | 
            +
                    try:
         | 
| 71 | 
            +
                        if not self.model:
         | 
| 72 | 
            +
                            await self.initialize()
         | 
| 73 | 
            +
                        
         | 
| 74 | 
            +
                        # Format prompt with context
         | 
| 75 | 
            +
                        prompt = self._format_prompt(query, context)
         | 
| 76 | 
            +
                        
         | 
| 77 | 
            +
                        # Generate response
         | 
| 78 | 
            +
                        response = self.model(
         | 
| 79 | 
            +
                            prompt,
         | 
| 80 | 
            +
                            max_tokens=1024 if self.model.n_ctx >= 4096 else 512,
         | 
| 81 | 
            +
                            temperature=0.7,
         | 
| 82 | 
            +
                            top_p=0.95,
         | 
| 83 | 
            +
                            repeat_penalty=1.1,
         | 
| 84 | 
            +
                            echo=False
         | 
| 85 | 
            +
                        )
         | 
| 86 | 
            +
                        
         | 
| 87 | 
            +
                        # Extract and structure the response
         | 
| 88 | 
            +
                        result = self._parse_response(response['choices'][0]['text'])
         | 
| 89 | 
            +
                        
         | 
| 90 | 
            +
                        return {
         | 
| 91 | 
            +
                            'success': True,
         | 
| 92 | 
            +
                            'answer': result['answer'],
         | 
| 93 | 
            +
                            'reasoning': result['reasoning'],
         | 
| 94 | 
            +
                            'confidence': result['confidence'],
         | 
| 95 | 
            +
                            'timestamp': datetime.now(),
         | 
| 96 | 
            +
                            'metadata': {
         | 
| 97 | 
            +
                                'model': self.repo_id,
         | 
| 98 | 
            +
                                'strategy': 'local_llm',
         | 
| 99 | 
            +
                                'context_length': len(prompt),
         | 
| 100 | 
            +
                                'response_length': len(response['choices'][0]['text'])
         | 
| 101 | 
            +
                            }
         | 
| 102 | 
            +
                        }
         | 
| 103 | 
            +
                            
         | 
| 104 | 
            +
                    except Exception as e:
         | 
| 105 | 
            +
                        self.logger.error(f"Error in reasoning: {e}")
         | 
| 106 | 
            +
                        return {
         | 
| 107 | 
            +
                            'success': False,
         | 
| 108 | 
            +
                            'error': str(e),
         | 
| 109 | 
            +
                            'timestamp': datetime.now()
         | 
| 110 | 
            +
                        }
         | 
| 111 | 
            +
                        
         | 
| 112 | 
            +
                def _format_prompt(self, query: str, context: Dict[str, Any]) -> str:
         | 
| 113 | 
            +
                    """Format the prompt with query and context."""
         | 
| 114 | 
            +
                    # Include relevant context
         | 
| 115 | 
            +
                    context_str = "\n".join([
         | 
| 116 | 
            +
                        f"{k}: {v}" for k, v in context.items()
         | 
| 117 | 
            +
                        if k in ['objective', 'constraints', 'background']
         | 
| 118 | 
            +
                    ])
         | 
| 119 | 
            +
                    
         | 
| 120 | 
            +
                    return f"""Let's solve this problem step by step.
         | 
| 121 | 
            +
             | 
| 122 | 
            +
            Context:
         | 
| 123 | 
            +
            {context_str}
         | 
| 124 | 
            +
             | 
| 125 | 
            +
            Question: {query}
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            Let me break this down:
         | 
| 128 | 
            +
            1."""
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                def _parse_response(self, text: str) -> Dict[str, Any]:
         | 
| 131 | 
            +
                    """Parse the response into structured output."""
         | 
| 132 | 
            +
                    # Simple parsing for now
         | 
| 133 | 
            +
                    lines = text.strip().split('\n')
         | 
| 134 | 
            +
                    
         | 
| 135 | 
            +
                    return {
         | 
| 136 | 
            +
                        'answer': lines[-1] if lines else '',
         | 
| 137 | 
            +
                        'reasoning': '\n'.join(lines[:-1]) if len(lines) > 1 else '',
         | 
| 138 | 
            +
                        'confidence': 0.8  # Default confidence
         | 
| 139 | 
            +
                    }
         | 
    	
        reasoning/market_analysis.py
    ADDED
    
    | @@ -0,0 +1,342 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Advanced market analysis tools for venture strategies."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            @dataclass
         | 
| 13 | 
            +
            class MarketSegment:
         | 
| 14 | 
            +
                """Market segment analysis."""
         | 
| 15 | 
            +
                size: float
         | 
| 16 | 
            +
                growth_rate: float
         | 
| 17 | 
            +
                cagr: float
         | 
| 18 | 
            +
                competition: List[Dict[str, Any]]
         | 
| 19 | 
            +
                barriers: List[str]
         | 
| 20 | 
            +
                opportunities: List[str]
         | 
| 21 | 
            +
                risks: List[str]
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            @dataclass
         | 
| 24 | 
            +
            class CompetitorAnalysis:
         | 
| 25 | 
            +
                """Competitor analysis."""
         | 
| 26 | 
            +
                name: str
         | 
| 27 | 
            +
                market_share: float
         | 
| 28 | 
            +
                strengths: List[str]
         | 
| 29 | 
            +
                weaknesses: List[str]
         | 
| 30 | 
            +
                strategy: str
         | 
| 31 | 
            +
                revenue: Optional[float]
         | 
| 32 | 
            +
                valuation: Optional[float]
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            @dataclass
         | 
| 35 | 
            +
            class MarketTrend:
         | 
| 36 | 
            +
                """Market trend analysis."""
         | 
| 37 | 
            +
                name: str
         | 
| 38 | 
            +
                impact: float
         | 
| 39 | 
            +
                timeline: str
         | 
| 40 | 
            +
                adoption_rate: float
         | 
| 41 | 
            +
                market_potential: float
         | 
| 42 | 
            +
                risk_level: float
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            class MarketAnalyzer:
         | 
| 45 | 
            +
                """
         | 
| 46 | 
            +
                Advanced market analysis toolkit that:
         | 
| 47 | 
            +
                1. Analyzes market segments
         | 
| 48 | 
            +
                2. Tracks competitors
         | 
| 49 | 
            +
                3. Identifies trends
         | 
| 50 | 
            +
                4. Predicts opportunities
         | 
| 51 | 
            +
                5. Assesses risks
         | 
| 52 | 
            +
                """
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                def __init__(self):
         | 
| 55 | 
            +
                    self.segments: Dict[str, MarketSegment] = {}
         | 
| 56 | 
            +
                    self.competitors: Dict[str, CompetitorAnalysis] = {}
         | 
| 57 | 
            +
                    self.trends: List[MarketTrend] = []
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                async def analyze_market(self, 
         | 
| 60 | 
            +
                                       segment: str,
         | 
| 61 | 
            +
                                       context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 62 | 
            +
                    """Perform comprehensive market analysis."""
         | 
| 63 | 
            +
                    try:
         | 
| 64 | 
            +
                        # Segment analysis
         | 
| 65 | 
            +
                        segment_analysis = await self._analyze_segment(segment, context)
         | 
| 66 | 
            +
                        
         | 
| 67 | 
            +
                        # Competitor analysis
         | 
| 68 | 
            +
                        competitor_analysis = await self._analyze_competitors(segment, context)
         | 
| 69 | 
            +
                        
         | 
| 70 | 
            +
                        # Trend analysis
         | 
| 71 | 
            +
                        trend_analysis = await self._analyze_trends(segment, context)
         | 
| 72 | 
            +
                        
         | 
| 73 | 
            +
                        # Opportunity analysis
         | 
| 74 | 
            +
                        opportunity_analysis = await self._analyze_opportunities(
         | 
| 75 | 
            +
                            segment_analysis, competitor_analysis, trend_analysis, context)
         | 
| 76 | 
            +
                        
         | 
| 77 | 
            +
                        # Risk analysis
         | 
| 78 | 
            +
                        risk_analysis = await self._analyze_risks(
         | 
| 79 | 
            +
                            segment_analysis, competitor_analysis, trend_analysis, context)
         | 
| 80 | 
            +
                        
         | 
| 81 | 
            +
                        return {
         | 
| 82 | 
            +
                            "success": True,
         | 
| 83 | 
            +
                            "segment_analysis": segment_analysis,
         | 
| 84 | 
            +
                            "competitor_analysis": competitor_analysis,
         | 
| 85 | 
            +
                            "trend_analysis": trend_analysis,
         | 
| 86 | 
            +
                            "opportunity_analysis": opportunity_analysis,
         | 
| 87 | 
            +
                            "risk_analysis": risk_analysis,
         | 
| 88 | 
            +
                            "metrics": {
         | 
| 89 | 
            +
                                "market_score": self._calculate_market_score(segment_analysis),
         | 
| 90 | 
            +
                                "opportunity_score": self._calculate_opportunity_score(opportunity_analysis),
         | 
| 91 | 
            +
                                "risk_score": self._calculate_risk_score(risk_analysis)
         | 
| 92 | 
            +
                            }
         | 
| 93 | 
            +
                        }
         | 
| 94 | 
            +
                    except Exception as e:
         | 
| 95 | 
            +
                        logging.error(f"Error in market analysis: {str(e)}")
         | 
| 96 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                async def _analyze_segment(self,
         | 
| 99 | 
            +
                                         segment: str,
         | 
| 100 | 
            +
                                         context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 101 | 
            +
                    """Analyze market segment."""
         | 
| 102 | 
            +
                    prompt = f"""
         | 
| 103 | 
            +
                    Analyze market segment:
         | 
| 104 | 
            +
                    Segment: {segment}
         | 
| 105 | 
            +
                    Context: {json.dumps(context)}
         | 
| 106 | 
            +
                    
         | 
| 107 | 
            +
                    Analyze:
         | 
| 108 | 
            +
                    1. Market size and growth
         | 
| 109 | 
            +
                    2. Customer segments
         | 
| 110 | 
            +
                    3. Value chain
         | 
| 111 | 
            +
                    4. Entry barriers
         | 
| 112 | 
            +
                    5. Competitive dynamics
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                    Format as:
         | 
| 115 | 
            +
                    [Analysis]
         | 
| 116 | 
            +
                    Size: ...
         | 
| 117 | 
            +
                    Growth: ...
         | 
| 118 | 
            +
                    Segments: ...
         | 
| 119 | 
            +
                    Value_Chain: ...
         | 
| 120 | 
            +
                    Barriers: ...
         | 
| 121 | 
            +
                    """
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 124 | 
            +
                    return self._parse_segment_analysis(response["answer"])
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                async def _analyze_competitors(self,
         | 
| 127 | 
            +
                                             segment: str,
         | 
| 128 | 
            +
                                             context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 129 | 
            +
                    """Analyze competitors in segment."""
         | 
| 130 | 
            +
                    prompt = f"""
         | 
| 131 | 
            +
                    Analyze competitors:
         | 
| 132 | 
            +
                    Segment: {segment}
         | 
| 133 | 
            +
                    Context: {json.dumps(context)}
         | 
| 134 | 
            +
                    
         | 
| 135 | 
            +
                    For each competitor analyze:
         | 
| 136 | 
            +
                    1. Market share
         | 
| 137 | 
            +
                    2. Business model
         | 
| 138 | 
            +
                    3. Strengths/weaknesses
         | 
| 139 | 
            +
                    4. Strategy
         | 
| 140 | 
            +
                    5. Performance metrics
         | 
| 141 | 
            +
                    
         | 
| 142 | 
            +
                    Format as:
         | 
| 143 | 
            +
                    [Competitor1]
         | 
| 144 | 
            +
                    Share: ...
         | 
| 145 | 
            +
                    Model: ...
         | 
| 146 | 
            +
                    Strengths: ...
         | 
| 147 | 
            +
                    Weaknesses: ...
         | 
| 148 | 
            +
                    Strategy: ...
         | 
| 149 | 
            +
                    Metrics: ...
         | 
| 150 | 
            +
                    """
         | 
| 151 | 
            +
                    
         | 
| 152 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 153 | 
            +
                    return self._parse_competitor_analysis(response["answer"])
         | 
| 154 | 
            +
             | 
| 155 | 
            +
                async def _analyze_trends(self,
         | 
| 156 | 
            +
                                        segment: str,
         | 
| 157 | 
            +
                                        context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 158 | 
            +
                    """Analyze market trends."""
         | 
| 159 | 
            +
                    prompt = f"""
         | 
| 160 | 
            +
                    Analyze market trends:
         | 
| 161 | 
            +
                    Segment: {segment}
         | 
| 162 | 
            +
                    Context: {json.dumps(context)}
         | 
| 163 | 
            +
                    
         | 
| 164 | 
            +
                    Analyze trends in:
         | 
| 165 | 
            +
                    1. Technology
         | 
| 166 | 
            +
                    2. Customer behavior
         | 
| 167 | 
            +
                    3. Business models
         | 
| 168 | 
            +
                    4. Regulation
         | 
| 169 | 
            +
                    5. Market dynamics
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    Format as:
         | 
| 172 | 
            +
                    [Trend1]
         | 
| 173 | 
            +
                    Type: ...
         | 
| 174 | 
            +
                    Impact: ...
         | 
| 175 | 
            +
                    Timeline: ...
         | 
| 176 | 
            +
                    Adoption: ...
         | 
| 177 | 
            +
                    Potential: ...
         | 
| 178 | 
            +
                    """
         | 
| 179 | 
            +
                    
         | 
| 180 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 181 | 
            +
                    return self._parse_trend_analysis(response["answer"])
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                async def _analyze_opportunities(self,
         | 
| 184 | 
            +
                                               segment_analysis: Dict[str, Any],
         | 
| 185 | 
            +
                                               competitor_analysis: Dict[str, Any],
         | 
| 186 | 
            +
                                               trend_analysis: Dict[str, Any],
         | 
| 187 | 
            +
                                               context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 188 | 
            +
                    """Analyze market opportunities."""
         | 
| 189 | 
            +
                    prompt = f"""
         | 
| 190 | 
            +
                    Analyze market opportunities:
         | 
| 191 | 
            +
                    Segment: {json.dumps(segment_analysis)}
         | 
| 192 | 
            +
                    Competitors: {json.dumps(competitor_analysis)}
         | 
| 193 | 
            +
                    Trends: {json.dumps(trend_analysis)}
         | 
| 194 | 
            +
                    Context: {json.dumps(context)}
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    Identify opportunities in:
         | 
| 197 | 
            +
                    1. Unmet needs
         | 
| 198 | 
            +
                    2. Market gaps
         | 
| 199 | 
            +
                    3. Innovation potential
         | 
| 200 | 
            +
                    4. Scaling potential
         | 
| 201 | 
            +
                    5. Value creation
         | 
| 202 | 
            +
                    
         | 
| 203 | 
            +
                    Format as:
         | 
| 204 | 
            +
                    [Opportunity1]
         | 
| 205 | 
            +
                    Type: ...
         | 
| 206 | 
            +
                    Description: ...
         | 
| 207 | 
            +
                    Potential: ...
         | 
| 208 | 
            +
                    Requirements: ...
         | 
| 209 | 
            +
                    Timeline: ...
         | 
| 210 | 
            +
                    """
         | 
| 211 | 
            +
                    
         | 
| 212 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 213 | 
            +
                    return self._parse_opportunity_analysis(response["answer"])
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                async def _analyze_risks(self,
         | 
| 216 | 
            +
                                       segment_analysis: Dict[str, Any],
         | 
| 217 | 
            +
                                       competitor_analysis: Dict[str, Any],
         | 
| 218 | 
            +
                                       trend_analysis: Dict[str, Any],
         | 
| 219 | 
            +
                                       context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 220 | 
            +
                    """Analyze market risks."""
         | 
| 221 | 
            +
                    prompt = f"""
         | 
| 222 | 
            +
                    Analyze market risks:
         | 
| 223 | 
            +
                    Segment: {json.dumps(segment_analysis)}
         | 
| 224 | 
            +
                    Competitors: {json.dumps(competitor_analysis)}
         | 
| 225 | 
            +
                    Trends: {json.dumps(trend_analysis)}
         | 
| 226 | 
            +
                    Context: {json.dumps(context)}
         | 
| 227 | 
            +
                    
         | 
| 228 | 
            +
                    Analyze risks in:
         | 
| 229 | 
            +
                    1. Market dynamics
         | 
| 230 | 
            +
                    2. Competition
         | 
| 231 | 
            +
                    3. Technology
         | 
| 232 | 
            +
                    4. Regulation
         | 
| 233 | 
            +
                    5. Execution
         | 
| 234 | 
            +
                    
         | 
| 235 | 
            +
                    Format as:
         | 
| 236 | 
            +
                    [Risk1]
         | 
| 237 | 
            +
                    Type: ...
         | 
| 238 | 
            +
                    Description: ...
         | 
| 239 | 
            +
                    Impact: ...
         | 
| 240 | 
            +
                    Probability: ...
         | 
| 241 | 
            +
                    Mitigation: ...
         | 
| 242 | 
            +
                    """
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 245 | 
            +
                    return self._parse_risk_analysis(response["answer"])
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                def _calculate_market_score(self, analysis: Dict[str, Any]) -> float:
         | 
| 248 | 
            +
                    """Calculate market attractiveness score."""
         | 
| 249 | 
            +
                    weights = {
         | 
| 250 | 
            +
                        "size": 0.3,
         | 
| 251 | 
            +
                        "growth": 0.3,
         | 
| 252 | 
            +
                        "competition": 0.2,
         | 
| 253 | 
            +
                        "barriers": 0.1,
         | 
| 254 | 
            +
                        "dynamics": 0.1
         | 
| 255 | 
            +
                    }
         | 
| 256 | 
            +
                    
         | 
| 257 | 
            +
                    scores = {
         | 
| 258 | 
            +
                        "size": min(analysis.get("size", 0) / 1e9, 1.0),  # Normalize to 1B
         | 
| 259 | 
            +
                        "growth": min(analysis.get("growth", 0) / 30, 1.0),  # Normalize to 30%
         | 
| 260 | 
            +
                        "competition": 1.0 - min(len(analysis.get("competitors", [])) / 10, 1.0),
         | 
| 261 | 
            +
                        "barriers": 1.0 - min(len(analysis.get("barriers", [])) / 5, 1.0),
         | 
| 262 | 
            +
                        "dynamics": analysis.get("dynamics_score", 0.5)
         | 
| 263 | 
            +
                    }
         | 
| 264 | 
            +
                    
         | 
| 265 | 
            +
                    return sum(weights[k] * scores[k] for k in weights)
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                def _calculate_opportunity_score(self, analysis: Dict[str, Any]) -> float:
         | 
| 268 | 
            +
                    """Calculate opportunity attractiveness score."""
         | 
| 269 | 
            +
                    weights = {
         | 
| 270 | 
            +
                        "market_potential": 0.3,
         | 
| 271 | 
            +
                        "innovation_potential": 0.2,
         | 
| 272 | 
            +
                        "execution_feasibility": 0.2,
         | 
| 273 | 
            +
                        "competitive_advantage": 0.2,
         | 
| 274 | 
            +
                        "timing": 0.1
         | 
| 275 | 
            +
                    }
         | 
| 276 | 
            +
                    
         | 
| 277 | 
            +
                    scores = {
         | 
| 278 | 
            +
                        "market_potential": analysis.get("market_potential", 0.5),
         | 
| 279 | 
            +
                        "innovation_potential": analysis.get("innovation_potential", 0.5),
         | 
| 280 | 
            +
                        "execution_feasibility": analysis.get("execution_feasibility", 0.5),
         | 
| 281 | 
            +
                        "competitive_advantage": analysis.get("competitive_advantage", 0.5),
         | 
| 282 | 
            +
                        "timing": analysis.get("timing_score", 0.5)
         | 
| 283 | 
            +
                    }
         | 
| 284 | 
            +
                    
         | 
| 285 | 
            +
                    return sum(weights[k] * scores[k] for k in weights)
         | 
| 286 | 
            +
             | 
| 287 | 
            +
                def _calculate_risk_score(self, analysis: Dict[str, Any]) -> float:
         | 
| 288 | 
            +
                    """Calculate risk level score."""
         | 
| 289 | 
            +
                    weights = {
         | 
| 290 | 
            +
                        "market_risk": 0.2,
         | 
| 291 | 
            +
                        "competition_risk": 0.2,
         | 
| 292 | 
            +
                        "technology_risk": 0.2,
         | 
| 293 | 
            +
                        "regulatory_risk": 0.2,
         | 
| 294 | 
            +
                        "execution_risk": 0.2
         | 
| 295 | 
            +
                    }
         | 
| 296 | 
            +
                    
         | 
| 297 | 
            +
                    scores = {
         | 
| 298 | 
            +
                        "market_risk": analysis.get("market_risk", 0.5),
         | 
| 299 | 
            +
                        "competition_risk": analysis.get("competition_risk", 0.5),
         | 
| 300 | 
            +
                        "technology_risk": analysis.get("technology_risk", 0.5),
         | 
| 301 | 
            +
                        "regulatory_risk": analysis.get("regulatory_risk", 0.5),
         | 
| 302 | 
            +
                        "execution_risk": analysis.get("execution_risk", 0.5)
         | 
| 303 | 
            +
                    }
         | 
| 304 | 
            +
                    
         | 
| 305 | 
            +
                    return sum(weights[k] * scores[k] for k in weights)
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def get_market_insights(self) -> Dict[str, Any]:
         | 
| 308 | 
            +
                    """Get comprehensive market insights."""
         | 
| 309 | 
            +
                    return {
         | 
| 310 | 
            +
                        "segment_insights": {
         | 
| 311 | 
            +
                            segment: {
         | 
| 312 | 
            +
                                "size": s.size,
         | 
| 313 | 
            +
                                "growth_rate": s.growth_rate,
         | 
| 314 | 
            +
                                "cagr": s.cagr,
         | 
| 315 | 
            +
                                "opportunity_score": self._calculate_market_score({
         | 
| 316 | 
            +
                                    "size": s.size,
         | 
| 317 | 
            +
                                    "growth": s.growth_rate,
         | 
| 318 | 
            +
                                    "competitors": s.competition,
         | 
| 319 | 
            +
                                    "barriers": s.barriers
         | 
| 320 | 
            +
                                })
         | 
| 321 | 
            +
                            }
         | 
| 322 | 
            +
                            for segment, s in self.segments.items()
         | 
| 323 | 
            +
                        },
         | 
| 324 | 
            +
                        "competitor_insights": {
         | 
| 325 | 
            +
                            competitor: {
         | 
| 326 | 
            +
                                "market_share": c.market_share,
         | 
| 327 | 
            +
                                "strength_score": len(c.strengths) / (len(c.strengths) + len(c.weaknesses)),
         | 
| 328 | 
            +
                                "revenue": c.revenue,
         | 
| 329 | 
            +
                                "valuation": c.valuation
         | 
| 330 | 
            +
                            }
         | 
| 331 | 
            +
                            for competitor, c in self.competitors.items()
         | 
| 332 | 
            +
                        },
         | 
| 333 | 
            +
                        "trend_insights": [
         | 
| 334 | 
            +
                            {
         | 
| 335 | 
            +
                                "name": t.name,
         | 
| 336 | 
            +
                                "impact": t.impact,
         | 
| 337 | 
            +
                                "potential": t.market_potential,
         | 
| 338 | 
            +
                                "risk": t.risk_level
         | 
| 339 | 
            +
                            }
         | 
| 340 | 
            +
                            for t in self.trends
         | 
| 341 | 
            +
                        ]
         | 
| 342 | 
            +
                    }
         | 
    	
        reasoning/meta_learning.py
    ADDED
    
    | @@ -0,0 +1,412 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Meta-learning reasoning implementation with advanced adaptation capabilities."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Tuple, Callable
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from collections import defaultdict
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from datetime import datetime
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class MetaFeatureType(Enum):
         | 
| 15 | 
            +
                """Types of meta-features for learning."""
         | 
| 16 | 
            +
                PROBLEM_STRUCTURE = "problem_structure"
         | 
| 17 | 
            +
                SOLUTION_PATTERN = "solution_pattern"
         | 
| 18 | 
            +
                REASONING_STYLE = "reasoning_style"
         | 
| 19 | 
            +
                ERROR_PATTERN = "error_pattern"
         | 
| 20 | 
            +
                PERFORMANCE_METRIC = "performance_metric"
         | 
| 21 | 
            +
                ADAPTATION_SIGNAL = "adaptation_signal"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            @dataclass
         | 
| 24 | 
            +
            class MetaFeature:
         | 
| 25 | 
            +
                """Represents a meta-feature for learning."""
         | 
| 26 | 
            +
                type: MetaFeatureType
         | 
| 27 | 
            +
                name: str
         | 
| 28 | 
            +
                value: Any
         | 
| 29 | 
            +
                confidence: float
         | 
| 30 | 
            +
                timestamp: datetime
         | 
| 31 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            @dataclass
         | 
| 34 | 
            +
            class LearningEpisode:
         | 
| 35 | 
            +
                """Represents a learning episode."""
         | 
| 36 | 
            +
                id: str
         | 
| 37 | 
            +
                query: str
         | 
| 38 | 
            +
                features: List[MetaFeature]
         | 
| 39 | 
            +
                outcome: Dict[str, Any]
         | 
| 40 | 
            +
                performance: float
         | 
| 41 | 
            +
                timestamp: datetime
         | 
| 42 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            class MetaLearningStrategy(ReasoningStrategy):
         | 
| 45 | 
            +
                """
         | 
| 46 | 
            +
                Advanced Meta-Learning reasoning implementation with:
         | 
| 47 | 
            +
                - Dynamic strategy adaptation
         | 
| 48 | 
            +
                - Performance tracking
         | 
| 49 | 
            +
                - Pattern recognition
         | 
| 50 | 
            +
                - Automated optimization
         | 
| 51 | 
            +
                - Cross-episode learning
         | 
| 52 | 
            +
                """
         | 
| 53 | 
            +
                
         | 
| 54 | 
            +
                def __init__(self,
         | 
| 55 | 
            +
                             learning_rate: float = 0.1,
         | 
| 56 | 
            +
                             memory_size: int = 1000,
         | 
| 57 | 
            +
                             adaptation_threshold: float = 0.7,
         | 
| 58 | 
            +
                             exploration_rate: float = 0.2):
         | 
| 59 | 
            +
                    self.learning_rate = learning_rate
         | 
| 60 | 
            +
                    self.memory_size = memory_size
         | 
| 61 | 
            +
                    self.adaptation_threshold = adaptation_threshold
         | 
| 62 | 
            +
                    self.exploration_rate = exploration_rate
         | 
| 63 | 
            +
                    
         | 
| 64 | 
            +
                    # Learning components
         | 
| 65 | 
            +
                    self.episode_memory: List[LearningEpisode] = []
         | 
| 66 | 
            +
                    self.feature_patterns: Dict[str, Dict[str, float]] = defaultdict(lambda: defaultdict(float))
         | 
| 67 | 
            +
                    self.strategy_performance: Dict[str, List[float]] = defaultdict(list)
         | 
| 68 | 
            +
                    self.adaptation_history: List[Dict[str, Any]] = []
         | 
| 69 | 
            +
                    
         | 
| 70 | 
            +
                    # Performance tracking
         | 
| 71 | 
            +
                    self.success_rate: float = 0.0
         | 
| 72 | 
            +
                    self.adaptation_rate: float = 0.0
         | 
| 73 | 
            +
                    self.exploration_count: int = 0
         | 
| 74 | 
            +
                    
         | 
| 75 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 76 | 
            +
                    """Main reasoning method implementing meta-learning."""
         | 
| 77 | 
            +
                    try:
         | 
| 78 | 
            +
                        # Extract meta-features
         | 
| 79 | 
            +
                        features = await self._extract_meta_features(query, context)
         | 
| 80 | 
            +
                        
         | 
| 81 | 
            +
                        # Select optimal strategy
         | 
| 82 | 
            +
                        strategy = await self._select_strategy(features, context)
         | 
| 83 | 
            +
                        
         | 
| 84 | 
            +
                        # Apply strategy with adaptation
         | 
| 85 | 
            +
                        result = await self._apply_strategy(strategy, query, features, context)
         | 
| 86 | 
            +
                        
         | 
| 87 | 
            +
                        # Learn from episode
         | 
| 88 | 
            +
                        episode = self._create_episode(query, features, result)
         | 
| 89 | 
            +
                        self._learn_from_episode(episode)
         | 
| 90 | 
            +
                        
         | 
| 91 | 
            +
                        # Optimize performance
         | 
| 92 | 
            +
                        self._optimize_performance()
         | 
| 93 | 
            +
                        
         | 
| 94 | 
            +
                        return {
         | 
| 95 | 
            +
                            "success": True,
         | 
| 96 | 
            +
                            "answer": result["answer"],
         | 
| 97 | 
            +
                            "confidence": result["confidence"],
         | 
| 98 | 
            +
                            "meta_features": [self._feature_to_dict(f) for f in features],
         | 
| 99 | 
            +
                            "selected_strategy": strategy,
         | 
| 100 | 
            +
                            "adaptations": result["adaptations"],
         | 
| 101 | 
            +
                            "performance_metrics": result["performance_metrics"],
         | 
| 102 | 
            +
                            "meta_insights": result["meta_insights"]
         | 
| 103 | 
            +
                        }
         | 
| 104 | 
            +
                    except Exception as e:
         | 
| 105 | 
            +
                        logging.error(f"Error in meta-learning reasoning: {str(e)}")
         | 
| 106 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                async def _extract_meta_features(self, query: str, context: Dict[str, Any]) -> List[MetaFeature]:
         | 
| 109 | 
            +
                    """Extract meta-features from query and context."""
         | 
| 110 | 
            +
                    prompt = f"""
         | 
| 111 | 
            +
                    Extract meta-features for learning:
         | 
| 112 | 
            +
                    Query: {query}
         | 
| 113 | 
            +
                    Context: {json.dumps(context)}
         | 
| 114 | 
            +
                    
         | 
| 115 | 
            +
                    For each feature type:
         | 
| 116 | 
            +
                    1. Problem Structure
         | 
| 117 | 
            +
                    2. Solution Patterns
         | 
| 118 | 
            +
                    3. Reasoning Style
         | 
| 119 | 
            +
                    4. Error Patterns
         | 
| 120 | 
            +
                    5. Performance Metrics
         | 
| 121 | 
            +
                    6. Adaptation Signals
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    Format as:
         | 
| 124 | 
            +
                    [Type1]
         | 
| 125 | 
            +
                    Name: ...
         | 
| 126 | 
            +
                    Value: ...
         | 
| 127 | 
            +
                    Confidence: ...
         | 
| 128 | 
            +
                    Metadata: ...
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                    [Type2]
         | 
| 131 | 
            +
                    ...
         | 
| 132 | 
            +
                    """
         | 
| 133 | 
            +
                    
         | 
| 134 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 135 | 
            +
                    return self._parse_meta_features(response["answer"])
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                async def _select_strategy(self, features: List[MetaFeature], context: Dict[str, Any]) -> str:
         | 
| 138 | 
            +
                    """Select optimal reasoning strategy based on meta-features."""
         | 
| 139 | 
            +
                    prompt = f"""
         | 
| 140 | 
            +
                    Select optimal reasoning strategy:
         | 
| 141 | 
            +
                    Features: {json.dumps([self._feature_to_dict(f) for f in features])}
         | 
| 142 | 
            +
                    Context: {json.dumps(context)}
         | 
| 143 | 
            +
                    
         | 
| 144 | 
            +
                    Consider:
         | 
| 145 | 
            +
                    1. Past performance patterns
         | 
| 146 | 
            +
                    2. Feature relevance
         | 
| 147 | 
            +
                    3. Adaptation potential
         | 
| 148 | 
            +
                    4. Resource constraints
         | 
| 149 | 
            +
                    
         | 
| 150 | 
            +
                    Format as:
         | 
| 151 | 
            +
                    [Selection]
         | 
| 152 | 
            +
                    Strategy: ...
         | 
| 153 | 
            +
                    Rationale: ...
         | 
| 154 | 
            +
                    Confidence: ...
         | 
| 155 | 
            +
                    Adaptations: ...
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 159 | 
            +
                    return self._parse_strategy_selection(response["answer"])
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                async def _apply_strategy(self, strategy: str, query: str, features: List[MetaFeature], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 162 | 
            +
                    """Apply selected strategy with dynamic adaptation."""
         | 
| 163 | 
            +
                    prompt = f"""
         | 
| 164 | 
            +
                    Apply strategy with meta-learning:
         | 
| 165 | 
            +
                    Strategy: {strategy}
         | 
| 166 | 
            +
                    Query: {query}
         | 
| 167 | 
            +
                    Features: {json.dumps([self._feature_to_dict(f) for f in features])}
         | 
| 168 | 
            +
                    Context: {json.dumps(context)}
         | 
| 169 | 
            +
                    
         | 
| 170 | 
            +
                    Provide:
         | 
| 171 | 
            +
                    1. Main reasoning steps
         | 
| 172 | 
            +
                    2. Adaptation points
         | 
| 173 | 
            +
                    3. Performance metrics
         | 
| 174 | 
            +
                    4. Meta-insights
         | 
| 175 | 
            +
                    
         | 
| 176 | 
            +
                    Format as:
         | 
| 177 | 
            +
                    [Application]
         | 
| 178 | 
            +
                    Steps: ...
         | 
| 179 | 
            +
                    Adaptations: ...
         | 
| 180 | 
            +
                    Metrics: ...
         | 
| 181 | 
            +
                    Insights: ...
         | 
| 182 | 
            +
                    
         | 
| 183 | 
            +
                    [Result]
         | 
| 184 | 
            +
                    Answer: ...
         | 
| 185 | 
            +
                    Confidence: ...
         | 
| 186 | 
            +
                    """
         | 
| 187 | 
            +
                    
         | 
| 188 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 189 | 
            +
                    return self._parse_strategy_application(response["answer"])
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def _create_episode(self, query: str, features: List[MetaFeature], result: Dict[str, Any]) -> LearningEpisode:
         | 
| 192 | 
            +
                    """Create a learning episode from the current interaction."""
         | 
| 193 | 
            +
                    return LearningEpisode(
         | 
| 194 | 
            +
                        id=f"episode_{len(self.episode_memory)}",
         | 
| 195 | 
            +
                        query=query,
         | 
| 196 | 
            +
                        features=features,
         | 
| 197 | 
            +
                        outcome=result,
         | 
| 198 | 
            +
                        performance=result.get("confidence", 0.0),
         | 
| 199 | 
            +
                        timestamp=datetime.now(),
         | 
| 200 | 
            +
                        metadata={
         | 
| 201 | 
            +
                            "adaptations": result.get("adaptations", []),
         | 
| 202 | 
            +
                            "metrics": result.get("performance_metrics", {})
         | 
| 203 | 
            +
                        }
         | 
| 204 | 
            +
                    )
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def _learn_from_episode(self, episode: LearningEpisode):
         | 
| 207 | 
            +
                    """Learn from a completed episode."""
         | 
| 208 | 
            +
                    # Update episode memory
         | 
| 209 | 
            +
                    self.episode_memory.append(episode)
         | 
| 210 | 
            +
                    if len(self.episode_memory) > self.memory_size:
         | 
| 211 | 
            +
                        self.episode_memory.pop(0)
         | 
| 212 | 
            +
                    
         | 
| 213 | 
            +
                    # Update feature patterns
         | 
| 214 | 
            +
                    for feature in episode.features:
         | 
| 215 | 
            +
                        pattern_key = f"{feature.type.value}:{feature.name}"
         | 
| 216 | 
            +
                        self.feature_patterns[pattern_key]["count"] += 1
         | 
| 217 | 
            +
                        self.feature_patterns[pattern_key]["success"] += episode.performance
         | 
| 218 | 
            +
                    
         | 
| 219 | 
            +
                    # Update strategy performance
         | 
| 220 | 
            +
                    strategy = episode.metadata.get("selected_strategy", "default")
         | 
| 221 | 
            +
                    self.strategy_performance[strategy].append(episode.performance)
         | 
| 222 | 
            +
                    
         | 
| 223 | 
            +
                    # Track adaptations
         | 
| 224 | 
            +
                    self.adaptation_history.append({
         | 
| 225 | 
            +
                        "timestamp": episode.timestamp,
         | 
| 226 | 
            +
                        "adaptations": episode.metadata.get("adaptations", []),
         | 
| 227 | 
            +
                        "performance": episode.performance
         | 
| 228 | 
            +
                    })
         | 
| 229 | 
            +
                    
         | 
| 230 | 
            +
                    # Update performance metrics
         | 
| 231 | 
            +
                    self._update_performance_metrics(episode)
         | 
| 232 | 
            +
             | 
| 233 | 
            +
                def _optimize_performance(self):
         | 
| 234 | 
            +
                    """Optimize meta-learning performance."""
         | 
| 235 | 
            +
                    # Adjust learning rate
         | 
| 236 | 
            +
                    recent_performance = [e.performance for e in self.episode_memory[-10:]]
         | 
| 237 | 
            +
                    if recent_performance:
         | 
| 238 | 
            +
                        avg_performance = sum(recent_performance) / len(recent_performance)
         | 
| 239 | 
            +
                        if avg_performance > 0.8:
         | 
| 240 | 
            +
                            self.learning_rate *= 0.9  # Reduce learning rate when performing well
         | 
| 241 | 
            +
                        elif avg_performance < 0.5:
         | 
| 242 | 
            +
                            self.learning_rate *= 1.1  # Increase learning rate when performing poorly
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    # Adjust exploration rate
         | 
| 245 | 
            +
                    self.exploration_rate = max(0.1, self.exploration_rate * 0.995)  # Gradually reduce exploration
         | 
| 246 | 
            +
                    
         | 
| 247 | 
            +
                    # Prune ineffective patterns
         | 
| 248 | 
            +
                    for pattern, stats in list(self.feature_patterns.items()):
         | 
| 249 | 
            +
                        if stats["count"] > 10 and stats["success"] / stats["count"] < 0.3:
         | 
| 250 | 
            +
                            del self.feature_patterns[pattern]
         | 
| 251 | 
            +
                    
         | 
| 252 | 
            +
                    # Update adaptation threshold
         | 
| 253 | 
            +
                    recent_adaptations = [a["performance"] for a in self.adaptation_history[-10:]]
         | 
| 254 | 
            +
                    if recent_adaptations:
         | 
| 255 | 
            +
                        self.adaptation_threshold = sum(recent_adaptations) / len(recent_adaptations)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                def _update_performance_metrics(self, episode: LearningEpisode):
         | 
| 258 | 
            +
                    """Update performance tracking metrics."""
         | 
| 259 | 
            +
                    # Update success rate
         | 
| 260 | 
            +
                    self.success_rate = (self.success_rate * len(self.episode_memory) + episode.performance) / (len(self.episode_memory) + 1)
         | 
| 261 | 
            +
                    
         | 
| 262 | 
            +
                    # Update adaptation rate
         | 
| 263 | 
            +
                    adaptations = len(episode.metadata.get("adaptations", []))
         | 
| 264 | 
            +
                    self.adaptation_rate = (self.adaptation_rate * len(self.adaptation_history) + (adaptations > 0)) / (len(self.adaptation_history) + 1)
         | 
| 265 | 
            +
                    
         | 
| 266 | 
            +
                    # Track exploration
         | 
| 267 | 
            +
                    if episode.metadata.get("exploration", False):
         | 
| 268 | 
            +
                        self.exploration_count += 1
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                def _parse_meta_features(self, response: str) -> List[MetaFeature]:
         | 
| 271 | 
            +
                    """Parse meta-features from response."""
         | 
| 272 | 
            +
                    features = []
         | 
| 273 | 
            +
                    current_type = None
         | 
| 274 | 
            +
                    current_feature = None
         | 
| 275 | 
            +
                    
         | 
| 276 | 
            +
                    for line in response.split('\n'):
         | 
| 277 | 
            +
                        line = line.strip()
         | 
| 278 | 
            +
                        if not line:
         | 
| 279 | 
            +
                            continue
         | 
| 280 | 
            +
                            
         | 
| 281 | 
            +
                        if line.startswith('[Type'):
         | 
| 282 | 
            +
                            if current_feature:
         | 
| 283 | 
            +
                                features.append(current_feature)
         | 
| 284 | 
            +
                            current_feature = None
         | 
| 285 | 
            +
                            try:
         | 
| 286 | 
            +
                                type_str = line[1:-1].lower()
         | 
| 287 | 
            +
                                current_type = MetaFeatureType(type_str)
         | 
| 288 | 
            +
                            except ValueError:
         | 
| 289 | 
            +
                                current_type = None
         | 
| 290 | 
            +
                        elif current_type and line.startswith('Name:'):
         | 
| 291 | 
            +
                            current_feature = MetaFeature(
         | 
| 292 | 
            +
                                type=current_type,
         | 
| 293 | 
            +
                                name=line[5:].strip(),
         | 
| 294 | 
            +
                                value=None,
         | 
| 295 | 
            +
                                confidence=0.0,
         | 
| 296 | 
            +
                                timestamp=datetime.now(),
         | 
| 297 | 
            +
                                metadata={}
         | 
| 298 | 
            +
                            )
         | 
| 299 | 
            +
                        elif current_feature:
         | 
| 300 | 
            +
                            if line.startswith('Value:'):
         | 
| 301 | 
            +
                                current_feature.value = line[6:].strip()
         | 
| 302 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 303 | 
            +
                                try:
         | 
| 304 | 
            +
                                    current_feature.confidence = float(line[11:].strip())
         | 
| 305 | 
            +
                                except:
         | 
| 306 | 
            +
                                    pass
         | 
| 307 | 
            +
                            elif line.startswith('Metadata:'):
         | 
| 308 | 
            +
                                try:
         | 
| 309 | 
            +
                                    current_feature.metadata = json.loads(line[9:].strip())
         | 
| 310 | 
            +
                                except:
         | 
| 311 | 
            +
                                    pass
         | 
| 312 | 
            +
                    
         | 
| 313 | 
            +
                    if current_feature:
         | 
| 314 | 
            +
                        features.append(current_feature)
         | 
| 315 | 
            +
                    
         | 
| 316 | 
            +
                    return features
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def _parse_strategy_selection(self, response: str) -> str:
         | 
| 319 | 
            +
                    """Parse strategy selection from response."""
         | 
| 320 | 
            +
                    lines = response.split('\n')
         | 
| 321 | 
            +
                    strategy = "default"
         | 
| 322 | 
            +
                    
         | 
| 323 | 
            +
                    for line in lines:
         | 
| 324 | 
            +
                        if line.startswith('Strategy:'):
         | 
| 325 | 
            +
                            strategy = line[9:].strip()
         | 
| 326 | 
            +
                            break
         | 
| 327 | 
            +
                    
         | 
| 328 | 
            +
                    return strategy
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                def _parse_strategy_application(self, response: str) -> Dict[str, Any]:
         | 
| 331 | 
            +
                    """Parse strategy application results."""
         | 
| 332 | 
            +
                    result = {
         | 
| 333 | 
            +
                        "answer": "",
         | 
| 334 | 
            +
                        "confidence": 0.0,
         | 
| 335 | 
            +
                        "steps": [],
         | 
| 336 | 
            +
                        "adaptations": [],
         | 
| 337 | 
            +
                        "performance_metrics": {},
         | 
| 338 | 
            +
                        "meta_insights": []
         | 
| 339 | 
            +
                    }
         | 
| 340 | 
            +
                    
         | 
| 341 | 
            +
                    section = None
         | 
| 342 | 
            +
                    for line in response.split('\n'):
         | 
| 343 | 
            +
                        line = line.strip()
         | 
| 344 | 
            +
                        if not line:
         | 
| 345 | 
            +
                            continue
         | 
| 346 | 
            +
                            
         | 
| 347 | 
            +
                        if line.startswith('[Application]'):
         | 
| 348 | 
            +
                            section = "application"
         | 
| 349 | 
            +
                        elif line.startswith('[Result]'):
         | 
| 350 | 
            +
                            section = "result"
         | 
| 351 | 
            +
                        elif section == "application":
         | 
| 352 | 
            +
                            if line.startswith('Steps:'):
         | 
| 353 | 
            +
                                result["steps"] = [s.strip() for s in line[6:].split(',')]
         | 
| 354 | 
            +
                            elif line.startswith('Adaptations:'):
         | 
| 355 | 
            +
                                result["adaptations"] = [a.strip() for a in line[12:].split(',')]
         | 
| 356 | 
            +
                            elif line.startswith('Metrics:'):
         | 
| 357 | 
            +
                                try:
         | 
| 358 | 
            +
                                    result["performance_metrics"] = json.loads(line[8:].strip())
         | 
| 359 | 
            +
                                except:
         | 
| 360 | 
            +
                                    pass
         | 
| 361 | 
            +
                            elif line.startswith('Insights:'):
         | 
| 362 | 
            +
                                result["meta_insights"] = [i.strip() for i in line[9:].split(',')]
         | 
| 363 | 
            +
                        elif section == "result":
         | 
| 364 | 
            +
                            if line.startswith('Answer:'):
         | 
| 365 | 
            +
                                result["answer"] = line[7:].strip()
         | 
| 366 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 367 | 
            +
                                try:
         | 
| 368 | 
            +
                                    result["confidence"] = float(line[11:].strip())
         | 
| 369 | 
            +
                                except:
         | 
| 370 | 
            +
                                    result["confidence"] = 0.5
         | 
| 371 | 
            +
                    
         | 
| 372 | 
            +
                    return result
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                def _feature_to_dict(self, feature: MetaFeature) -> Dict[str, Any]:
         | 
| 375 | 
            +
                    """Convert feature to dictionary for serialization."""
         | 
| 376 | 
            +
                    return {
         | 
| 377 | 
            +
                        "type": feature.type.value,
         | 
| 378 | 
            +
                        "name": feature.name,
         | 
| 379 | 
            +
                        "value": feature.value,
         | 
| 380 | 
            +
                        "confidence": feature.confidence,
         | 
| 381 | 
            +
                        "timestamp": feature.timestamp.isoformat(),
         | 
| 382 | 
            +
                        "metadata": feature.metadata
         | 
| 383 | 
            +
                    }
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                def get_performance_metrics(self) -> Dict[str, Any]:
         | 
| 386 | 
            +
                    """Get current performance metrics."""
         | 
| 387 | 
            +
                    return {
         | 
| 388 | 
            +
                        "success_rate": self.success_rate,
         | 
| 389 | 
            +
                        "adaptation_rate": self.adaptation_rate,
         | 
| 390 | 
            +
                        "exploration_count": self.exploration_count,
         | 
| 391 | 
            +
                        "episode_count": len(self.episode_memory),
         | 
| 392 | 
            +
                        "pattern_count": len(self.feature_patterns),
         | 
| 393 | 
            +
                        "learning_rate": self.learning_rate,
         | 
| 394 | 
            +
                        "exploration_rate": self.exploration_rate
         | 
| 395 | 
            +
                    }
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                def get_top_patterns(self, n: int = 10) -> List[Tuple[str, float]]:
         | 
| 398 | 
            +
                    """Get top performing patterns."""
         | 
| 399 | 
            +
                    pattern_scores = []
         | 
| 400 | 
            +
                    for pattern, stats in self.feature_patterns.items():
         | 
| 401 | 
            +
                        if stats["count"] > 0:
         | 
| 402 | 
            +
                            score = stats["success"] / stats["count"]
         | 
| 403 | 
            +
                            pattern_scores.append((pattern, score))
         | 
| 404 | 
            +
                    
         | 
| 405 | 
            +
                    return sorted(pattern_scores, key=lambda x: x[1], reverse=True)[:n]
         | 
| 406 | 
            +
             | 
| 407 | 
            +
                def clear_memory(self):
         | 
| 408 | 
            +
                    """Clear learning memory."""
         | 
| 409 | 
            +
                    self.episode_memory.clear()
         | 
| 410 | 
            +
                    self.feature_patterns.clear()
         | 
| 411 | 
            +
                    self.strategy_performance.clear()
         | 
| 412 | 
            +
                    self.adaptation_history.clear()
         | 
    	
        reasoning/monetization.py
    ADDED
    
    | @@ -0,0 +1,278 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Advanced monetization strategies for venture optimization."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            @dataclass
         | 
| 13 | 
            +
            class MonetizationModel:
         | 
| 14 | 
            +
                """Monetization model configuration."""
         | 
| 15 | 
            +
                name: str
         | 
| 16 | 
            +
                type: str
         | 
| 17 | 
            +
                pricing_tiers: List[Dict[str, Any]]
         | 
| 18 | 
            +
                features: List[str]
         | 
| 19 | 
            +
                constraints: List[str]
         | 
| 20 | 
            +
                metrics: Dict[str, float]
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            @dataclass
         | 
| 23 | 
            +
            class RevenueStream:
         | 
| 24 | 
            +
                """Revenue stream configuration."""
         | 
| 25 | 
            +
                name: str
         | 
| 26 | 
            +
                type: str
         | 
| 27 | 
            +
                volume: float
         | 
| 28 | 
            +
                unit_economics: Dict[str, float]
         | 
| 29 | 
            +
                growth_rate: float
         | 
| 30 | 
            +
                churn_rate: float
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            class MonetizationOptimizer:
         | 
| 33 | 
            +
                """
         | 
| 34 | 
            +
                Advanced monetization optimization that:
         | 
| 35 | 
            +
                1. Designs pricing models
         | 
| 36 | 
            +
                2. Optimizes revenue streams
         | 
| 37 | 
            +
                3. Maximizes customer value
         | 
| 38 | 
            +
                4. Reduces churn
         | 
| 39 | 
            +
                5. Increases lifetime value
         | 
| 40 | 
            +
                """
         | 
| 41 | 
            +
                
         | 
| 42 | 
            +
                def __init__(self):
         | 
| 43 | 
            +
                    self.models: Dict[str, MonetizationModel] = {}
         | 
| 44 | 
            +
                    self.streams: Dict[str, RevenueStream] = {}
         | 
| 45 | 
            +
                    
         | 
| 46 | 
            +
                async def optimize_monetization(self,
         | 
| 47 | 
            +
                                              venture_type: str,
         | 
| 48 | 
            +
                                              context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 49 | 
            +
                    """Optimize monetization strategy."""
         | 
| 50 | 
            +
                    try:
         | 
| 51 | 
            +
                        # Design models
         | 
| 52 | 
            +
                        models = await self._design_models(venture_type, context)
         | 
| 53 | 
            +
                        
         | 
| 54 | 
            +
                        # Optimize pricing
         | 
| 55 | 
            +
                        pricing = await self._optimize_pricing(models, context)
         | 
| 56 | 
            +
                        
         | 
| 57 | 
            +
                        # Revenue optimization
         | 
| 58 | 
            +
                        revenue = await self._optimize_revenue(pricing, context)
         | 
| 59 | 
            +
                        
         | 
| 60 | 
            +
                        # Value optimization
         | 
| 61 | 
            +
                        value = await self._optimize_value(revenue, context)
         | 
| 62 | 
            +
                        
         | 
| 63 | 
            +
                        # Performance projections
         | 
| 64 | 
            +
                        projections = await self._project_performance(value, context)
         | 
| 65 | 
            +
                        
         | 
| 66 | 
            +
                        return {
         | 
| 67 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 68 | 
            +
                            "models": models,
         | 
| 69 | 
            +
                            "pricing": pricing,
         | 
| 70 | 
            +
                            "revenue": revenue,
         | 
| 71 | 
            +
                            "value": value,
         | 
| 72 | 
            +
                            "projections": projections
         | 
| 73 | 
            +
                        }
         | 
| 74 | 
            +
                    except Exception as e:
         | 
| 75 | 
            +
                        logging.error(f"Error in monetization optimization: {str(e)}")
         | 
| 76 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                async def _design_models(self,
         | 
| 79 | 
            +
                                       venture_type: str,
         | 
| 80 | 
            +
                                       context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 81 | 
            +
                    """Design monetization models."""
         | 
| 82 | 
            +
                    prompt = f"""
         | 
| 83 | 
            +
                    Design monetization models:
         | 
| 84 | 
            +
                    Venture: {venture_type}
         | 
| 85 | 
            +
                    Context: {json.dumps(context)}
         | 
| 86 | 
            +
                    
         | 
| 87 | 
            +
                    Design models for:
         | 
| 88 | 
            +
                    1. Subscription tiers
         | 
| 89 | 
            +
                    2. Usage-based pricing
         | 
| 90 | 
            +
                    3. Hybrid models
         | 
| 91 | 
            +
                    4. Enterprise pricing
         | 
| 92 | 
            +
                    5. Marketplace fees
         | 
| 93 | 
            +
                    
         | 
| 94 | 
            +
                    Format as:
         | 
| 95 | 
            +
                    [Model1]
         | 
| 96 | 
            +
                    Name: ...
         | 
| 97 | 
            +
                    Type: ...
         | 
| 98 | 
            +
                    Tiers: ...
         | 
| 99 | 
            +
                    Features: ...
         | 
| 100 | 
            +
                    Constraints: ...
         | 
| 101 | 
            +
                    """
         | 
| 102 | 
            +
                    
         | 
| 103 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 104 | 
            +
                    return self._parse_model_design(response["answer"])
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                async def _optimize_pricing(self,
         | 
| 107 | 
            +
                                          models: Dict[str, Any],
         | 
| 108 | 
            +
                                          context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 109 | 
            +
                    """Optimize pricing strategy."""
         | 
| 110 | 
            +
                    prompt = f"""
         | 
| 111 | 
            +
                    Optimize pricing strategy:
         | 
| 112 | 
            +
                    Models: {json.dumps(models)}
         | 
| 113 | 
            +
                    Context: {json.dumps(context)}
         | 
| 114 | 
            +
                    
         | 
| 115 | 
            +
                    Optimize for:
         | 
| 116 | 
            +
                    1. Market positioning
         | 
| 117 | 
            +
                    2. Value perception
         | 
| 118 | 
            +
                    3. Competitive dynamics
         | 
| 119 | 
            +
                    4. Customer segments
         | 
| 120 | 
            +
                    5. Growth potential
         | 
| 121 | 
            +
                    
         | 
| 122 | 
            +
                    Format as:
         | 
| 123 | 
            +
                    [Strategy1]
         | 
| 124 | 
            +
                    Model: ...
         | 
| 125 | 
            +
                    Positioning: ...
         | 
| 126 | 
            +
                    Value_Props: ...
         | 
| 127 | 
            +
                    Segments: ...
         | 
| 128 | 
            +
                    Growth: ...
         | 
| 129 | 
            +
                    """
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 132 | 
            +
                    return self._parse_pricing_strategy(response["answer"])
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                async def _optimize_revenue(self,
         | 
| 135 | 
            +
                                          pricing: Dict[str, Any],
         | 
| 136 | 
            +
                                          context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 137 | 
            +
                    """Optimize revenue streams."""
         | 
| 138 | 
            +
                    prompt = f"""
         | 
| 139 | 
            +
                    Optimize revenue streams:
         | 
| 140 | 
            +
                    Pricing: {json.dumps(pricing)}
         | 
| 141 | 
            +
                    Context: {json.dumps(context)}
         | 
| 142 | 
            +
                    
         | 
| 143 | 
            +
                    Optimize for:
         | 
| 144 | 
            +
                    1. Revenue mix
         | 
| 145 | 
            +
                    2. Growth drivers
         | 
| 146 | 
            +
                    3. Retention factors
         | 
| 147 | 
            +
                    4. Expansion potential
         | 
| 148 | 
            +
                    5. Risk mitigation
         | 
| 149 | 
            +
                    
         | 
| 150 | 
            +
                    Format as:
         | 
| 151 | 
            +
                    [Stream1]
         | 
| 152 | 
            +
                    Type: ...
         | 
| 153 | 
            +
                    Drivers: ...
         | 
| 154 | 
            +
                    Retention: ...
         | 
| 155 | 
            +
                    Expansion: ...
         | 
| 156 | 
            +
                    Risks: ...
         | 
| 157 | 
            +
                    """
         | 
| 158 | 
            +
                    
         | 
| 159 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 160 | 
            +
                    return self._parse_revenue_optimization(response["answer"])
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                async def _optimize_value(self,
         | 
| 163 | 
            +
                                        revenue: Dict[str, Any],
         | 
| 164 | 
            +
                                        context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 165 | 
            +
                    """Optimize customer value."""
         | 
| 166 | 
            +
                    prompt = f"""
         | 
| 167 | 
            +
                    Optimize customer value:
         | 
| 168 | 
            +
                    Revenue: {json.dumps(revenue)}
         | 
| 169 | 
            +
                    Context: {json.dumps(context)}
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    Optimize for:
         | 
| 172 | 
            +
                    1. Acquisition cost
         | 
| 173 | 
            +
                    2. Lifetime value
         | 
| 174 | 
            +
                    3. Churn reduction
         | 
| 175 | 
            +
                    4. Upsell potential
         | 
| 176 | 
            +
                    5. Network effects
         | 
| 177 | 
            +
                    
         | 
| 178 | 
            +
                    Format as:
         | 
| 179 | 
            +
                    [Value1]
         | 
| 180 | 
            +
                    Metric: ...
         | 
| 181 | 
            +
                    Strategy: ...
         | 
| 182 | 
            +
                    Potential: ...
         | 
| 183 | 
            +
                    Actions: ...
         | 
| 184 | 
            +
                    Timeline: ...
         | 
| 185 | 
            +
                    """
         | 
| 186 | 
            +
                    
         | 
| 187 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 188 | 
            +
                    return self._parse_value_optimization(response["answer"])
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                async def _project_performance(self,
         | 
| 191 | 
            +
                                             value: Dict[str, Any],
         | 
| 192 | 
            +
                                             context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 193 | 
            +
                    """Project monetization performance."""
         | 
| 194 | 
            +
                    prompt = f"""
         | 
| 195 | 
            +
                    Project performance:
         | 
| 196 | 
            +
                    Value: {json.dumps(value)}
         | 
| 197 | 
            +
                    Context: {json.dumps(context)}
         | 
| 198 | 
            +
                    
         | 
| 199 | 
            +
                    Project:
         | 
| 200 | 
            +
                    1. Revenue growth
         | 
| 201 | 
            +
                    2. Customer metrics
         | 
| 202 | 
            +
                    3. Unit economics
         | 
| 203 | 
            +
                    4. Profitability
         | 
| 204 | 
            +
                    5. Scale effects
         | 
| 205 | 
            +
                    
         | 
| 206 | 
            +
                    Format as:
         | 
| 207 | 
            +
                    [Projections]
         | 
| 208 | 
            +
                    Revenue: ...
         | 
| 209 | 
            +
                    Metrics: ...
         | 
| 210 | 
            +
                    Economics: ...
         | 
| 211 | 
            +
                    Profit: ...
         | 
| 212 | 
            +
                    Scale: ...
         | 
| 213 | 
            +
                    """
         | 
| 214 | 
            +
                    
         | 
| 215 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 216 | 
            +
                    return self._parse_performance_projections(response["answer"])
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                def _calculate_revenue_potential(self, model: MonetizationModel) -> float:
         | 
| 219 | 
            +
                    """Calculate revenue potential for model."""
         | 
| 220 | 
            +
                    base_potential = sum(
         | 
| 221 | 
            +
                        tier.get("price", 0) * tier.get("volume", 0)
         | 
| 222 | 
            +
                        for tier in model.pricing_tiers
         | 
| 223 | 
            +
                    )
         | 
| 224 | 
            +
                    
         | 
| 225 | 
            +
                    growth_factor = 1.0 + (model.metrics.get("growth_rate", 0) / 100)
         | 
| 226 | 
            +
                    retention_factor = 1.0 - (model.metrics.get("churn_rate", 0) / 100)
         | 
| 227 | 
            +
                    
         | 
| 228 | 
            +
                    return base_potential * growth_factor * retention_factor
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                def _calculate_customer_ltv(self, stream: RevenueStream) -> float:
         | 
| 231 | 
            +
                    """Calculate customer lifetime value."""
         | 
| 232 | 
            +
                    monthly_revenue = stream.volume * stream.unit_economics.get("arpu", 0)
         | 
| 233 | 
            +
                    churn_rate = stream.churn_rate / 100
         | 
| 234 | 
            +
                    discount_rate = 0.1  # 10% annual discount rate
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    if churn_rate > 0:
         | 
| 237 | 
            +
                        ltv = monthly_revenue / churn_rate
         | 
| 238 | 
            +
                    else:
         | 
| 239 | 
            +
                        ltv = monthly_revenue * 12  # Assume 1 year if no churn
         | 
| 240 | 
            +
                        
         | 
| 241 | 
            +
                    return ltv / (1 + discount_rate)
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                def get_monetization_metrics(self) -> Dict[str, Any]:
         | 
| 244 | 
            +
                    """Get comprehensive monetization metrics."""
         | 
| 245 | 
            +
                    return {
         | 
| 246 | 
            +
                        "model_metrics": {
         | 
| 247 | 
            +
                            model.name: {
         | 
| 248 | 
            +
                                "revenue_potential": self._calculate_revenue_potential(model),
         | 
| 249 | 
            +
                                "tier_count": len(model.pricing_tiers),
         | 
| 250 | 
            +
                                "feature_count": len(model.features),
         | 
| 251 | 
            +
                                "constraint_count": len(model.constraints)
         | 
| 252 | 
            +
                            }
         | 
| 253 | 
            +
                            for model in self.models.values()
         | 
| 254 | 
            +
                        },
         | 
| 255 | 
            +
                        "stream_metrics": {
         | 
| 256 | 
            +
                            stream.name: {
         | 
| 257 | 
            +
                                "monthly_revenue": stream.volume * stream.unit_economics.get("arpu", 0),
         | 
| 258 | 
            +
                                "ltv": self._calculate_customer_ltv(stream),
         | 
| 259 | 
            +
                                "growth_rate": stream.growth_rate,
         | 
| 260 | 
            +
                                "churn_rate": stream.churn_rate
         | 
| 261 | 
            +
                            }
         | 
| 262 | 
            +
                            for stream in self.streams.values()
         | 
| 263 | 
            +
                        },
         | 
| 264 | 
            +
                        "aggregate_metrics": {
         | 
| 265 | 
            +
                            "total_revenue_potential": sum(
         | 
| 266 | 
            +
                                self._calculate_revenue_potential(model)
         | 
| 267 | 
            +
                                for model in self.models.values()
         | 
| 268 | 
            +
                            ),
         | 
| 269 | 
            +
                            "average_ltv": np.mean([
         | 
| 270 | 
            +
                                self._calculate_customer_ltv(stream)
         | 
| 271 | 
            +
                                for stream in self.streams.values()
         | 
| 272 | 
            +
                            ]) if self.streams else 0,
         | 
| 273 | 
            +
                            "weighted_growth_rate": np.average(
         | 
| 274 | 
            +
                                [stream.growth_rate for stream in self.streams.values()],
         | 
| 275 | 
            +
                                weights=[stream.volume for stream in self.streams.values()]
         | 
| 276 | 
            +
                            ) if self.streams else 0
         | 
| 277 | 
            +
                        }
         | 
| 278 | 
            +
                    }
         | 
    	
        reasoning/multimodal.py
    ADDED
    
    | @@ -0,0 +1,268 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Multi-modal reasoning implementation."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .base import ReasoningStrategy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            class MultiModalReasoning(ReasoningStrategy):
         | 
| 10 | 
            +
                """Implements multi-modal reasoning across different types of information."""
         | 
| 11 | 
            +
                
         | 
| 12 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 13 | 
            +
                    try:
         | 
| 14 | 
            +
                        # Process different modalities
         | 
| 15 | 
            +
                        modalities = await self._process_modalities(query, context)
         | 
| 16 | 
            +
                        
         | 
| 17 | 
            +
                        # Cross-modal alignment
         | 
| 18 | 
            +
                        alignment = await self._cross_modal_alignment(modalities, context)
         | 
| 19 | 
            +
                        
         | 
| 20 | 
            +
                        # Integrated analysis
         | 
| 21 | 
            +
                        integration = await self._integrated_analysis(alignment, context)
         | 
| 22 | 
            +
                        
         | 
| 23 | 
            +
                        # Generate unified response
         | 
| 24 | 
            +
                        response = await self._generate_response(integration, context)
         | 
| 25 | 
            +
                        
         | 
| 26 | 
            +
                        return {
         | 
| 27 | 
            +
                            "success": True,
         | 
| 28 | 
            +
                            "answer": response["conclusion"],
         | 
| 29 | 
            +
                            "modalities": modalities,
         | 
| 30 | 
            +
                            "alignment": alignment,
         | 
| 31 | 
            +
                            "integration": integration,
         | 
| 32 | 
            +
                            "confidence": response["confidence"]
         | 
| 33 | 
            +
                        }
         | 
| 34 | 
            +
                    except Exception as e:
         | 
| 35 | 
            +
                        logging.error(f"Error in multi-modal reasoning: {str(e)}")
         | 
| 36 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                async def _process_modalities(self, query: str, context: Dict[str, Any]) -> Dict[str, List[Dict[str, Any]]]:
         | 
| 39 | 
            +
                    """Process query across different modalities."""
         | 
| 40 | 
            +
                    prompt = f"""
         | 
| 41 | 
            +
                    Process query across modalities:
         | 
| 42 | 
            +
                    Query: {query}
         | 
| 43 | 
            +
                    Context: {json.dumps(context)}
         | 
| 44 | 
            +
                    
         | 
| 45 | 
            +
                    For each modality extract:
         | 
| 46 | 
            +
                    1. [Type]: Modality type
         | 
| 47 | 
            +
                    2. [Content]: Relevant content
         | 
| 48 | 
            +
                    3. [Features]: Key features
         | 
| 49 | 
            +
                    4. [Quality]: Content quality
         | 
| 50 | 
            +
                    
         | 
| 51 | 
            +
                    Format as:
         | 
| 52 | 
            +
                    [M1]
         | 
| 53 | 
            +
                    Type: ...
         | 
| 54 | 
            +
                    Content: ...
         | 
| 55 | 
            +
                    Features: ...
         | 
| 56 | 
            +
                    Quality: ...
         | 
| 57 | 
            +
                    """
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 60 | 
            +
                    return self._parse_modalities(response["answer"])
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                async def _cross_modal_alignment(self, modalities: Dict[str, List[Dict[str, Any]]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 63 | 
            +
                    """Align information across different modalities."""
         | 
| 64 | 
            +
                    try:
         | 
| 65 | 
            +
                        # Extract modality types
         | 
| 66 | 
            +
                        modal_types = list(modalities.keys())
         | 
| 67 | 
            +
                        
         | 
| 68 | 
            +
                        # Initialize alignment results
         | 
| 69 | 
            +
                        alignments = []
         | 
| 70 | 
            +
                        
         | 
| 71 | 
            +
                        # Process each modality pair
         | 
| 72 | 
            +
                        for i in range(len(modal_types)):
         | 
| 73 | 
            +
                            for j in range(i + 1, len(modal_types)):
         | 
| 74 | 
            +
                                type1, type2 = modal_types[i], modal_types[j]
         | 
| 75 | 
            +
                                
         | 
| 76 | 
            +
                                # Get items from each modality
         | 
| 77 | 
            +
                                items1 = modalities[type1]
         | 
| 78 | 
            +
                                items2 = modalities[type2]
         | 
| 79 | 
            +
                                
         | 
| 80 | 
            +
                                # Find alignments between items
         | 
| 81 | 
            +
                                for item1 in items1:
         | 
| 82 | 
            +
                                    for item2 in items2:
         | 
| 83 | 
            +
                                        similarity = self._calculate_similarity(item1, item2)
         | 
| 84 | 
            +
                                        if similarity > 0.5:  # Threshold for alignment
         | 
| 85 | 
            +
                                            alignments.append({
         | 
| 86 | 
            +
                                                "type1": type1,
         | 
| 87 | 
            +
                                                "type2": type2,
         | 
| 88 | 
            +
                                                "item1": item1,
         | 
| 89 | 
            +
                                                "item2": item2,
         | 
| 90 | 
            +
                                                "similarity": similarity
         | 
| 91 | 
            +
                                            })
         | 
| 92 | 
            +
                        
         | 
| 93 | 
            +
                        # Sort alignments by similarity
         | 
| 94 | 
            +
                        alignments.sort(key=lambda x: x["similarity"], reverse=True)
         | 
| 95 | 
            +
                        
         | 
| 96 | 
            +
                        return alignments
         | 
| 97 | 
            +
                        
         | 
| 98 | 
            +
                    except Exception as e:
         | 
| 99 | 
            +
                        logging.error(f"Error in cross-modal alignment: {str(e)}")
         | 
| 100 | 
            +
                        return []
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                def _calculate_similarity(self, item1: Dict[str, Any], item2: Dict[str, Any]) -> float:
         | 
| 103 | 
            +
                    """Calculate similarity between two items from different modalities."""
         | 
| 104 | 
            +
                    try:
         | 
| 105 | 
            +
                        # Extract content from items
         | 
| 106 | 
            +
                        content1 = str(item1.get("content", ""))
         | 
| 107 | 
            +
                        content2 = str(item2.get("content", ""))
         | 
| 108 | 
            +
                        
         | 
| 109 | 
            +
                        # Calculate basic similarity (can be enhanced with more sophisticated methods)
         | 
| 110 | 
            +
                        common_words = set(content1.lower().split()) & set(content2.lower().split())
         | 
| 111 | 
            +
                        total_words = set(content1.lower().split()) | set(content2.lower().split())
         | 
| 112 | 
            +
                        
         | 
| 113 | 
            +
                        if not total_words:
         | 
| 114 | 
            +
                            return 0.0
         | 
| 115 | 
            +
                            
         | 
| 116 | 
            +
                        return len(common_words) / len(total_words)
         | 
| 117 | 
            +
                        
         | 
| 118 | 
            +
                    except Exception as e:
         | 
| 119 | 
            +
                        logging.error(f"Error calculating similarity: {str(e)}")
         | 
| 120 | 
            +
                        return 0.0
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                async def _integrated_analysis(self, alignment: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 123 | 
            +
                    prompt = f"""
         | 
| 124 | 
            +
                    Perform integrated multi-modal analysis:
         | 
| 125 | 
            +
                    Alignment: {json.dumps(alignment)}
         | 
| 126 | 
            +
                    Context: {json.dumps(context)}
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                    For each insight:
         | 
| 129 | 
            +
                    1. [Insight]: Key finding
         | 
| 130 | 
            +
                    2. [Sources]: Contributing modalities
         | 
| 131 | 
            +
                    3. [Support]: Supporting evidence
         | 
| 132 | 
            +
                    4. [Confidence]: Confidence level
         | 
| 133 | 
            +
                    
         | 
| 134 | 
            +
                    Format as:
         | 
| 135 | 
            +
                    [I1]
         | 
| 136 | 
            +
                    Insight: ...
         | 
| 137 | 
            +
                    Sources: ...
         | 
| 138 | 
            +
                    Support: ...
         | 
| 139 | 
            +
                    Confidence: ...
         | 
| 140 | 
            +
                    """
         | 
| 141 | 
            +
                    
         | 
| 142 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 143 | 
            +
                    return self._parse_integration(response["answer"])
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                async def _generate_response(self, integration: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 146 | 
            +
                    prompt = f"""
         | 
| 147 | 
            +
                    Generate unified multi-modal response:
         | 
| 148 | 
            +
                    Integration: {json.dumps(integration)}
         | 
| 149 | 
            +
                    Context: {json.dumps(context)}
         | 
| 150 | 
            +
                    
         | 
| 151 | 
            +
                    Provide:
         | 
| 152 | 
            +
                    1. Main conclusion
         | 
| 153 | 
            +
                    2. Modal contributions
         | 
| 154 | 
            +
                    3. Integration benefits
         | 
| 155 | 
            +
                    4. Confidence level (0-1)
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 159 | 
            +
                    return self._parse_response(response["answer"])
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def _parse_modalities(self, response: str) -> Dict[str, List[Dict[str, Any]]]:
         | 
| 162 | 
            +
                    """Parse modalities from response."""
         | 
| 163 | 
            +
                    modalities = {}
         | 
| 164 | 
            +
                    current_modality = None
         | 
| 165 | 
            +
                    
         | 
| 166 | 
            +
                    for line in response.split('\n'):
         | 
| 167 | 
            +
                        line = line.strip()
         | 
| 168 | 
            +
                        if not line:
         | 
| 169 | 
            +
                            continue
         | 
| 170 | 
            +
                            
         | 
| 171 | 
            +
                        if line.startswith('[M'):
         | 
| 172 | 
            +
                            if current_modality:
         | 
| 173 | 
            +
                                if current_modality["type"] not in modalities:
         | 
| 174 | 
            +
                                    modalities[current_modality["type"]] = []
         | 
| 175 | 
            +
                                modalities[current_modality["type"]].append(current_modality)
         | 
| 176 | 
            +
                            current_modality = {
         | 
| 177 | 
            +
                                "type": "",
         | 
| 178 | 
            +
                                "content": "",
         | 
| 179 | 
            +
                                "features": "",
         | 
| 180 | 
            +
                                "quality": ""
         | 
| 181 | 
            +
                            }
         | 
| 182 | 
            +
                        elif current_modality:
         | 
| 183 | 
            +
                            if line.startswith('Type:'):
         | 
| 184 | 
            +
                                current_modality["type"] = line[5:].strip()
         | 
| 185 | 
            +
                            elif line.startswith('Content:'):
         | 
| 186 | 
            +
                                current_modality["content"] = line[8:].strip()
         | 
| 187 | 
            +
                            elif line.startswith('Features:'):
         | 
| 188 | 
            +
                                current_modality["features"] = line[9:].strip()
         | 
| 189 | 
            +
                            elif line.startswith('Quality:'):
         | 
| 190 | 
            +
                                current_modality["quality"] = line[8:].strip()
         | 
| 191 | 
            +
                    
         | 
| 192 | 
            +
                    if current_modality:
         | 
| 193 | 
            +
                        if current_modality["type"] not in modalities:
         | 
| 194 | 
            +
                            modalities[current_modality["type"]] = []
         | 
| 195 | 
            +
                        modalities[current_modality["type"]].append(current_modality)
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    return modalities
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
         | 
| 200 | 
            +
                    """Parse integration from response."""
         | 
| 201 | 
            +
                    integration = []
         | 
| 202 | 
            +
                    current_insight = None
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    for line in response.split('\n'):
         | 
| 205 | 
            +
                        line = line.strip()
         | 
| 206 | 
            +
                        if not line:
         | 
| 207 | 
            +
                            continue
         | 
| 208 | 
            +
                            
         | 
| 209 | 
            +
                        if line.startswith('[I'):
         | 
| 210 | 
            +
                            if current_insight:
         | 
| 211 | 
            +
                                integration.append(current_insight)
         | 
| 212 | 
            +
                            current_insight = {
         | 
| 213 | 
            +
                                "insight": "",
         | 
| 214 | 
            +
                                "sources": "",
         | 
| 215 | 
            +
                                "support": "",
         | 
| 216 | 
            +
                                "confidence": 0.0
         | 
| 217 | 
            +
                            }
         | 
| 218 | 
            +
                        elif current_insight:
         | 
| 219 | 
            +
                            if line.startswith('Insight:'):
         | 
| 220 | 
            +
                                current_insight["insight"] = line[8:].strip()
         | 
| 221 | 
            +
                            elif line.startswith('Sources:'):
         | 
| 222 | 
            +
                                current_insight["sources"] = line[8:].strip()
         | 
| 223 | 
            +
                            elif line.startswith('Support:'):
         | 
| 224 | 
            +
                                current_insight["support"] = line[8:].strip()
         | 
| 225 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 226 | 
            +
                                try:
         | 
| 227 | 
            +
                                    current_insight["confidence"] = float(line[11:].strip())
         | 
| 228 | 
            +
                                except:
         | 
| 229 | 
            +
                                    pass
         | 
| 230 | 
            +
                    
         | 
| 231 | 
            +
                    if current_insight:
         | 
| 232 | 
            +
                        integration.append(current_insight)
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                    return integration
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                def _parse_response(self, response: str) -> Dict[str, Any]:
         | 
| 237 | 
            +
                    """Parse response from response."""
         | 
| 238 | 
            +
                    response_dict = {
         | 
| 239 | 
            +
                        "conclusion": "",
         | 
| 240 | 
            +
                        "modal_contributions": [],
         | 
| 241 | 
            +
                        "integration_benefits": [],
         | 
| 242 | 
            +
                        "confidence": 0.0
         | 
| 243 | 
            +
                    }
         | 
| 244 | 
            +
                    
         | 
| 245 | 
            +
                    mode = None
         | 
| 246 | 
            +
                    for line in response.split('\n'):
         | 
| 247 | 
            +
                        line = line.strip()
         | 
| 248 | 
            +
                        if not line:
         | 
| 249 | 
            +
                            continue
         | 
| 250 | 
            +
                            
         | 
| 251 | 
            +
                        if line.startswith('Conclusion:'):
         | 
| 252 | 
            +
                            response_dict["conclusion"] = line[11:].strip()
         | 
| 253 | 
            +
                        elif line.startswith('Modal Contributions:'):
         | 
| 254 | 
            +
                            mode = "modal"
         | 
| 255 | 
            +
                        elif line.startswith('Integration Benefits:'):
         | 
| 256 | 
            +
                            mode = "integration"
         | 
| 257 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 258 | 
            +
                            try:
         | 
| 259 | 
            +
                                response_dict["confidence"] = float(line[11:].strip())
         | 
| 260 | 
            +
                            except:
         | 
| 261 | 
            +
                                response_dict["confidence"] = 0.5
         | 
| 262 | 
            +
                            mode = None
         | 
| 263 | 
            +
                        elif mode == "modal" and line.startswith('- '):
         | 
| 264 | 
            +
                            response_dict["modal_contributions"].append(line[2:].strip())
         | 
| 265 | 
            +
                        elif mode == "integration" and line.startswith('- '):
         | 
| 266 | 
            +
                            response_dict["integration_benefits"].append(line[2:].strip())
         | 
| 267 | 
            +
                    
         | 
| 268 | 
            +
                    return response_dict
         | 
    	
        reasoning/neurosymbolic.py
    ADDED
    
    | @@ -0,0 +1,264 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Neurosymbolic reasoning implementation."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .base import ReasoningStrategy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            class NeurosymbolicReasoning(ReasoningStrategy):
         | 
| 10 | 
            +
                """Implements neurosymbolic reasoning combining neural and symbolic approaches."""
         | 
| 11 | 
            +
                
         | 
| 12 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 13 | 
            +
                    try:
         | 
| 14 | 
            +
                        # Neural processing
         | 
| 15 | 
            +
                        neural_features = await self._neural_processing(query, context)
         | 
| 16 | 
            +
                        
         | 
| 17 | 
            +
                        # Symbolic reasoning
         | 
| 18 | 
            +
                        symbolic_rules = await self._symbolic_reasoning(neural_features, context)
         | 
| 19 | 
            +
                        
         | 
| 20 | 
            +
                        # Integration
         | 
| 21 | 
            +
                        integrated = await self._neurosymbolic_integration(neural_features, symbolic_rules, context)
         | 
| 22 | 
            +
                        
         | 
| 23 | 
            +
                        # Final inference
         | 
| 24 | 
            +
                        conclusion = await self._final_inference(integrated, context)
         | 
| 25 | 
            +
                        
         | 
| 26 | 
            +
                        return {
         | 
| 27 | 
            +
                            "success": True,
         | 
| 28 | 
            +
                            "answer": conclusion["answer"],
         | 
| 29 | 
            +
                            "neural_features": neural_features,
         | 
| 30 | 
            +
                            "symbolic_rules": symbolic_rules,
         | 
| 31 | 
            +
                            "integrated_reasoning": integrated,
         | 
| 32 | 
            +
                            "confidence": conclusion["confidence"],
         | 
| 33 | 
            +
                            "explanation": conclusion["explanation"]
         | 
| 34 | 
            +
                        }
         | 
| 35 | 
            +
                    except Exception as e:
         | 
| 36 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                async def _neural_processing(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 39 | 
            +
                    prompt = f"""
         | 
| 40 | 
            +
                    Extract neural features from query:
         | 
| 41 | 
            +
                    Query: {query}
         | 
| 42 | 
            +
                    Context: {json.dumps(context)}
         | 
| 43 | 
            +
                    
         | 
| 44 | 
            +
                    For each feature:
         | 
| 45 | 
            +
                    1. [Type]: Feature type
         | 
| 46 | 
            +
                    2. [Value]: Extracted value
         | 
| 47 | 
            +
                    3. [Confidence]: Extraction confidence
         | 
| 48 | 
            +
                    4. [Relations]: Related concepts
         | 
| 49 | 
            +
                    
         | 
| 50 | 
            +
                    Format as:
         | 
| 51 | 
            +
                    [F1]
         | 
| 52 | 
            +
                    Type: ...
         | 
| 53 | 
            +
                    Value: ...
         | 
| 54 | 
            +
                    Confidence: ...
         | 
| 55 | 
            +
                    Relations: ...
         | 
| 56 | 
            +
                    """
         | 
| 57 | 
            +
                    
         | 
| 58 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 59 | 
            +
                    return self._parse_features(response["answer"])
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                async def _symbolic_reasoning(self, features: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 62 | 
            +
                    prompt = f"""
         | 
| 63 | 
            +
                    Generate symbolic rules from features:
         | 
| 64 | 
            +
                    Features: {json.dumps(features)}
         | 
| 65 | 
            +
                    Context: {json.dumps(context)}
         | 
| 66 | 
            +
                    
         | 
| 67 | 
            +
                    For each rule:
         | 
| 68 | 
            +
                    1. [Condition]: Rule condition
         | 
| 69 | 
            +
                    2. [Implication]: What it implies
         | 
| 70 | 
            +
                    3. [Certainty]: Rule certainty
         | 
| 71 | 
            +
                    4. [Source]: Derivation source
         | 
| 72 | 
            +
                    
         | 
| 73 | 
            +
                    Format as:
         | 
| 74 | 
            +
                    [R1]
         | 
| 75 | 
            +
                    Condition: ...
         | 
| 76 | 
            +
                    Implication: ...
         | 
| 77 | 
            +
                    Certainty: ...
         | 
| 78 | 
            +
                    Source: ...
         | 
| 79 | 
            +
                    """
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 82 | 
            +
                    return self._parse_rules(response["answer"])
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                async def _neurosymbolic_integration(self, features: List[Dict[str, Any]], rules: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 85 | 
            +
                    prompt = f"""
         | 
| 86 | 
            +
                    Integrate neural and symbolic components:
         | 
| 87 | 
            +
                    Features: {json.dumps(features)}
         | 
| 88 | 
            +
                    Rules: {json.dumps(rules)}
         | 
| 89 | 
            +
                    Context: {json.dumps(context)}
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
                    For each integration:
         | 
| 92 | 
            +
                    1. [Components]: What is being integrated
         | 
| 93 | 
            +
                    2. [Method]: How they are combined
         | 
| 94 | 
            +
                    3. [Result]: Integration outcome
         | 
| 95 | 
            +
                    4. [Confidence]: Integration confidence
         | 
| 96 | 
            +
                    
         | 
| 97 | 
            +
                    Format as:
         | 
| 98 | 
            +
                    [I1]
         | 
| 99 | 
            +
                    Components: ...
         | 
| 100 | 
            +
                    Method: ...
         | 
| 101 | 
            +
                    Result: ...
         | 
| 102 | 
            +
                    Confidence: ...
         | 
| 103 | 
            +
                    """
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 106 | 
            +
                    return self._parse_integration(response["answer"])
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                async def _final_inference(self, integrated: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 109 | 
            +
                    prompt = f"""
         | 
| 110 | 
            +
                    Draw final conclusions from integrated reasoning:
         | 
| 111 | 
            +
                    Integrated: {json.dumps(integrated)}
         | 
| 112 | 
            +
                    Context: {json.dumps(context)}
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                    Provide:
         | 
| 115 | 
            +
                    1. Final answer/conclusion
         | 
| 116 | 
            +
                    2. Confidence level (0-1)
         | 
| 117 | 
            +
                    3. Explanation of reasoning
         | 
| 118 | 
            +
                    4. Key factors considered
         | 
| 119 | 
            +
                    """
         | 
| 120 | 
            +
                    
         | 
| 121 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 122 | 
            +
                    return self._parse_conclusion(response["answer"])
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                def _parse_features(self, response: str) -> List[Dict[str, Any]]:
         | 
| 125 | 
            +
                    """Parse neural features from response."""
         | 
| 126 | 
            +
                    features = []
         | 
| 127 | 
            +
                    current = None
         | 
| 128 | 
            +
                    
         | 
| 129 | 
            +
                    for line in response.split('\n'):
         | 
| 130 | 
            +
                        line = line.strip()
         | 
| 131 | 
            +
                        if not line:
         | 
| 132 | 
            +
                            continue
         | 
| 133 | 
            +
                            
         | 
| 134 | 
            +
                        if line.startswith('[F'):
         | 
| 135 | 
            +
                            if current:
         | 
| 136 | 
            +
                                features.append(current)
         | 
| 137 | 
            +
                            current = {
         | 
| 138 | 
            +
                                "type": "",
         | 
| 139 | 
            +
                                "value": "",
         | 
| 140 | 
            +
                                "confidence": 0.0,
         | 
| 141 | 
            +
                                "relations": []
         | 
| 142 | 
            +
                            }
         | 
| 143 | 
            +
                        elif current:
         | 
| 144 | 
            +
                            if line.startswith('Type:'):
         | 
| 145 | 
            +
                                current["type"] = line[5:].strip()
         | 
| 146 | 
            +
                            elif line.startswith('Value:'):
         | 
| 147 | 
            +
                                current["value"] = line[6:].strip()
         | 
| 148 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 149 | 
            +
                                try:
         | 
| 150 | 
            +
                                    current["confidence"] = float(line[11:].strip())
         | 
| 151 | 
            +
                                except:
         | 
| 152 | 
            +
                                    pass
         | 
| 153 | 
            +
                            elif line.startswith('Relations:'):
         | 
| 154 | 
            +
                                current["relations"] = [r.strip() for r in line[10:].split(',')]
         | 
| 155 | 
            +
                    
         | 
| 156 | 
            +
                    if current:
         | 
| 157 | 
            +
                        features.append(current)
         | 
| 158 | 
            +
                    
         | 
| 159 | 
            +
                    return features
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                def _parse_rules(self, response: str) -> List[Dict[str, Any]]:
         | 
| 162 | 
            +
                    """Parse symbolic rules from response."""
         | 
| 163 | 
            +
                    rules = []
         | 
| 164 | 
            +
                    current = None
         | 
| 165 | 
            +
                    
         | 
| 166 | 
            +
                    for line in response.split('\n'):
         | 
| 167 | 
            +
                        line = line.strip()
         | 
| 168 | 
            +
                        if not line:
         | 
| 169 | 
            +
                            continue
         | 
| 170 | 
            +
                            
         | 
| 171 | 
            +
                        if line.startswith('[R'):
         | 
| 172 | 
            +
                            if current:
         | 
| 173 | 
            +
                                rules.append(current)
         | 
| 174 | 
            +
                            current = {
         | 
| 175 | 
            +
                                "condition": "",
         | 
| 176 | 
            +
                                "implication": "",
         | 
| 177 | 
            +
                                "certainty": 0.0,
         | 
| 178 | 
            +
                                "source": ""
         | 
| 179 | 
            +
                            }
         | 
| 180 | 
            +
                        elif current:
         | 
| 181 | 
            +
                            if line.startswith('Condition:'):
         | 
| 182 | 
            +
                                current["condition"] = line[10:].strip()
         | 
| 183 | 
            +
                            elif line.startswith('Implication:'):
         | 
| 184 | 
            +
                                current["implication"] = line[12:].strip()
         | 
| 185 | 
            +
                            elif line.startswith('Certainty:'):
         | 
| 186 | 
            +
                                try:
         | 
| 187 | 
            +
                                    current["certainty"] = float(line[10:].strip())
         | 
| 188 | 
            +
                                except:
         | 
| 189 | 
            +
                                    pass
         | 
| 190 | 
            +
                            elif line.startswith('Source:'):
         | 
| 191 | 
            +
                                current["source"] = line[7:].strip()
         | 
| 192 | 
            +
                    
         | 
| 193 | 
            +
                    if current:
         | 
| 194 | 
            +
                        rules.append(current)
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    return rules
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                def _parse_integration(self, response: str) -> List[Dict[str, Any]]:
         | 
| 199 | 
            +
                    """Parse integration results from response."""
         | 
| 200 | 
            +
                    integrations = []
         | 
| 201 | 
            +
                    current = None
         | 
| 202 | 
            +
                    
         | 
| 203 | 
            +
                    for line in response.split('\n'):
         | 
| 204 | 
            +
                        line = line.strip()
         | 
| 205 | 
            +
                        if not line:
         | 
| 206 | 
            +
                            continue
         | 
| 207 | 
            +
                            
         | 
| 208 | 
            +
                        if line.startswith('[I'):
         | 
| 209 | 
            +
                            if current:
         | 
| 210 | 
            +
                                integrations.append(current)
         | 
| 211 | 
            +
                            current = {
         | 
| 212 | 
            +
                                "components": "",
         | 
| 213 | 
            +
                                "method": "",
         | 
| 214 | 
            +
                                "result": "",
         | 
| 215 | 
            +
                                "confidence": 0.0
         | 
| 216 | 
            +
                            }
         | 
| 217 | 
            +
                        elif current:
         | 
| 218 | 
            +
                            if line.startswith('Components:'):
         | 
| 219 | 
            +
                                current["components"] = line[11:].strip()
         | 
| 220 | 
            +
                            elif line.startswith('Method:'):
         | 
| 221 | 
            +
                                current["method"] = line[7:].strip()
         | 
| 222 | 
            +
                            elif line.startswith('Result:'):
         | 
| 223 | 
            +
                                current["result"] = line[7:].strip()
         | 
| 224 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 225 | 
            +
                                try:
         | 
| 226 | 
            +
                                    current["confidence"] = float(line[11:].strip())
         | 
| 227 | 
            +
                                except:
         | 
| 228 | 
            +
                                    pass
         | 
| 229 | 
            +
                    
         | 
| 230 | 
            +
                    if current:
         | 
| 231 | 
            +
                        integrations.append(current)
         | 
| 232 | 
            +
                    
         | 
| 233 | 
            +
                    return integrations
         | 
| 234 | 
            +
             | 
| 235 | 
            +
                def _parse_conclusion(self, response: str) -> Dict[str, Any]:
         | 
| 236 | 
            +
                    """Parse final conclusion from response."""
         | 
| 237 | 
            +
                    conclusion = {
         | 
| 238 | 
            +
                        "answer": "",
         | 
| 239 | 
            +
                        "confidence": 0.0,
         | 
| 240 | 
            +
                        "explanation": "",
         | 
| 241 | 
            +
                        "factors": []
         | 
| 242 | 
            +
                    }
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    mode = None
         | 
| 245 | 
            +
                    for line in response.split('\n'):
         | 
| 246 | 
            +
                        line = line.strip()
         | 
| 247 | 
            +
                        if not line:
         | 
| 248 | 
            +
                            continue
         | 
| 249 | 
            +
                            
         | 
| 250 | 
            +
                        if line.startswith('Answer:'):
         | 
| 251 | 
            +
                            conclusion["answer"] = line[7:].strip()
         | 
| 252 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 253 | 
            +
                            try:
         | 
| 254 | 
            +
                                conclusion["confidence"] = float(line[11:].strip())
         | 
| 255 | 
            +
                            except:
         | 
| 256 | 
            +
                                conclusion["confidence"] = 0.5
         | 
| 257 | 
            +
                        elif line.startswith('Explanation:'):
         | 
| 258 | 
            +
                            conclusion["explanation"] = line[12:].strip()
         | 
| 259 | 
            +
                        elif line.startswith('Factors:'):
         | 
| 260 | 
            +
                            mode = "factors"
         | 
| 261 | 
            +
                        elif mode == "factors" and line.startswith('- '):
         | 
| 262 | 
            +
                            conclusion["factors"].append(line[2:].strip())
         | 
| 263 | 
            +
                    
         | 
| 264 | 
            +
                    return conclusion
         | 
    	
        reasoning/portfolio_optimization.py
    ADDED
    
    | @@ -0,0 +1,352 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Advanced portfolio optimization for venture strategies."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            @dataclass
         | 
| 13 | 
            +
            class VentureMetrics:
         | 
| 14 | 
            +
                """Venture performance metrics."""
         | 
| 15 | 
            +
                revenue: float
         | 
| 16 | 
            +
                profit: float
         | 
| 17 | 
            +
                growth_rate: float
         | 
| 18 | 
            +
                risk_score: float
         | 
| 19 | 
            +
                resource_usage: Dict[str, float]
         | 
| 20 | 
            +
                synergy_score: float
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            @dataclass
         | 
| 23 | 
            +
            class ResourceAllocation:
         | 
| 24 | 
            +
                """Resource allocation configuration."""
         | 
| 25 | 
            +
                venture_id: str
         | 
| 26 | 
            +
                resources: Dict[str, float]
         | 
| 27 | 
            +
                constraints: List[str]
         | 
| 28 | 
            +
                dependencies: List[str]
         | 
| 29 | 
            +
                priority: float
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            class PortfolioOptimizer:
         | 
| 32 | 
            +
                """
         | 
| 33 | 
            +
                Advanced portfolio optimization that:
         | 
| 34 | 
            +
                1. Optimizes venture mix
         | 
| 35 | 
            +
                2. Allocates resources
         | 
| 36 | 
            +
                3. Manages risks
         | 
| 37 | 
            +
                4. Maximizes synergies
         | 
| 38 | 
            +
                5. Balances growth
         | 
| 39 | 
            +
                """
         | 
| 40 | 
            +
                
         | 
| 41 | 
            +
                def __init__(self):
         | 
| 42 | 
            +
                    self.ventures: Dict[str, VentureMetrics] = {}
         | 
| 43 | 
            +
                    self.allocations: Dict[str, ResourceAllocation] = {}
         | 
| 44 | 
            +
                    
         | 
| 45 | 
            +
                async def optimize_portfolio(self,
         | 
| 46 | 
            +
                                           ventures: List[str],
         | 
| 47 | 
            +
                                           context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 48 | 
            +
                    """Optimize venture portfolio."""
         | 
| 49 | 
            +
                    try:
         | 
| 50 | 
            +
                        # Analyze ventures
         | 
| 51 | 
            +
                        analysis = await self._analyze_ventures(ventures, context)
         | 
| 52 | 
            +
                        
         | 
| 53 | 
            +
                        # Optimize allocation
         | 
| 54 | 
            +
                        allocation = await self._optimize_allocation(analysis, context)
         | 
| 55 | 
            +
                        
         | 
| 56 | 
            +
                        # Risk optimization
         | 
| 57 | 
            +
                        risk = await self._optimize_risk(allocation, context)
         | 
| 58 | 
            +
                        
         | 
| 59 | 
            +
                        # Synergy optimization
         | 
| 60 | 
            +
                        synergy = await self._optimize_synergies(risk, context)
         | 
| 61 | 
            +
                        
         | 
| 62 | 
            +
                        # Performance projections
         | 
| 63 | 
            +
                        projections = await self._project_performance(synergy, context)
         | 
| 64 | 
            +
                        
         | 
| 65 | 
            +
                        return {
         | 
| 66 | 
            +
                            "success": projections["annual_profit"] >= 1_000_000,
         | 
| 67 | 
            +
                            "analysis": analysis,
         | 
| 68 | 
            +
                            "allocation": allocation,
         | 
| 69 | 
            +
                            "risk": risk,
         | 
| 70 | 
            +
                            "synergy": synergy,
         | 
| 71 | 
            +
                            "projections": projections
         | 
| 72 | 
            +
                        }
         | 
| 73 | 
            +
                    except Exception as e:
         | 
| 74 | 
            +
                        logging.error(f"Error in portfolio optimization: {str(e)}")
         | 
| 75 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                async def _analyze_ventures(self,
         | 
| 78 | 
            +
                                          ventures: List[str],
         | 
| 79 | 
            +
                                          context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 80 | 
            +
                    """Analyze venture characteristics."""
         | 
| 81 | 
            +
                    prompt = f"""
         | 
| 82 | 
            +
                    Analyze ventures:
         | 
| 83 | 
            +
                    Ventures: {json.dumps(ventures)}
         | 
| 84 | 
            +
                    Context: {json.dumps(context)}
         | 
| 85 | 
            +
                    
         | 
| 86 | 
            +
                    Analyze:
         | 
| 87 | 
            +
                    1. Performance metrics
         | 
| 88 | 
            +
                    2. Resource requirements
         | 
| 89 | 
            +
                    3. Risk factors
         | 
| 90 | 
            +
                    4. Growth potential
         | 
| 91 | 
            +
                    5. Synergy opportunities
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
                    Format as:
         | 
| 94 | 
            +
                    [Venture1]
         | 
| 95 | 
            +
                    Metrics: ...
         | 
| 96 | 
            +
                    Resources: ...
         | 
| 97 | 
            +
                    Risks: ...
         | 
| 98 | 
            +
                    Growth: ...
         | 
| 99 | 
            +
                    Synergies: ...
         | 
| 100 | 
            +
                    """
         | 
| 101 | 
            +
                    
         | 
| 102 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 103 | 
            +
                    return self._parse_venture_analysis(response["answer"])
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                async def _optimize_allocation(self,
         | 
| 106 | 
            +
                                             analysis: Dict[str, Any],
         | 
| 107 | 
            +
                                             context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 108 | 
            +
                    """Optimize resource allocation."""
         | 
| 109 | 
            +
                    prompt = f"""
         | 
| 110 | 
            +
                    Optimize resource allocation:
         | 
| 111 | 
            +
                    Analysis: {json.dumps(analysis)}
         | 
| 112 | 
            +
                    Context: {json.dumps(context)}
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                    Optimize for:
         | 
| 115 | 
            +
                    1. Resource efficiency
         | 
| 116 | 
            +
                    2. Growth potential
         | 
| 117 | 
            +
                    3. Risk balance
         | 
| 118 | 
            +
                    4. Synergy capture
         | 
| 119 | 
            +
                    5. Constraint satisfaction
         | 
| 120 | 
            +
                    
         | 
| 121 | 
            +
                    Format as:
         | 
| 122 | 
            +
                    [Allocation1]
         | 
| 123 | 
            +
                    Venture: ...
         | 
| 124 | 
            +
                    Resources: ...
         | 
| 125 | 
            +
                    Constraints: ...
         | 
| 126 | 
            +
                    Dependencies: ...
         | 
| 127 | 
            +
                    Priority: ...
         | 
| 128 | 
            +
                    """
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 131 | 
            +
                    return self._parse_allocation_optimization(response["answer"])
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                async def _optimize_risk(self,
         | 
| 134 | 
            +
                                       allocation: Dict[str, Any],
         | 
| 135 | 
            +
                                       context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 136 | 
            +
                    """Optimize risk management."""
         | 
| 137 | 
            +
                    prompt = f"""
         | 
| 138 | 
            +
                    Optimize risk management:
         | 
| 139 | 
            +
                    Allocation: {json.dumps(allocation)}
         | 
| 140 | 
            +
                    Context: {json.dumps(context)}
         | 
| 141 | 
            +
                    
         | 
| 142 | 
            +
                    Optimize for:
         | 
| 143 | 
            +
                    1. Risk diversification
         | 
| 144 | 
            +
                    2. Exposure limits
         | 
| 145 | 
            +
                    3. Correlation management
         | 
| 146 | 
            +
                    4. Hedging strategies
         | 
| 147 | 
            +
                    5. Contingency planning
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                    Format as:
         | 
| 150 | 
            +
                    [Risk1]
         | 
| 151 | 
            +
                    Type: ...
         | 
| 152 | 
            +
                    Exposure: ...
         | 
| 153 | 
            +
                    Mitigation: ...
         | 
| 154 | 
            +
                    Contingency: ...
         | 
| 155 | 
            +
                    Impact: ...
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 159 | 
            +
                    return self._parse_risk_optimization(response["answer"])
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                async def _optimize_synergies(self,
         | 
| 162 | 
            +
                                            risk: Dict[str, Any],
         | 
| 163 | 
            +
                                            context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 164 | 
            +
                    """Optimize portfolio synergies."""
         | 
| 165 | 
            +
                    prompt = f"""
         | 
| 166 | 
            +
                    Optimize synergies:
         | 
| 167 | 
            +
                    Risk: {json.dumps(risk)}
         | 
| 168 | 
            +
                    Context: {json.dumps(context)}
         | 
| 169 | 
            +
                    
         | 
| 170 | 
            +
                    Optimize for:
         | 
| 171 | 
            +
                    1. Resource sharing
         | 
| 172 | 
            +
                    2. Knowledge transfer
         | 
| 173 | 
            +
                    3. Market leverage
         | 
| 174 | 
            +
                    4. Technology reuse
         | 
| 175 | 
            +
                    5. Customer cross-sell
         | 
| 176 | 
            +
                    
         | 
| 177 | 
            +
                    Format as:
         | 
| 178 | 
            +
                    [Synergy1]
         | 
| 179 | 
            +
                    Type: ...
         | 
| 180 | 
            +
                    Ventures: ...
         | 
| 181 | 
            +
                    Potential: ...
         | 
| 182 | 
            +
                    Requirements: ...
         | 
| 183 | 
            +
                    Timeline: ...
         | 
| 184 | 
            +
                    """
         | 
| 185 | 
            +
                    
         | 
| 186 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 187 | 
            +
                    return self._parse_synergy_optimization(response["answer"])
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                async def _project_performance(self,
         | 
| 190 | 
            +
                                             synergy: Dict[str, Any],
         | 
| 191 | 
            +
                                             context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 192 | 
            +
                    """Project portfolio performance."""
         | 
| 193 | 
            +
                    prompt = f"""
         | 
| 194 | 
            +
                    Project performance:
         | 
| 195 | 
            +
                    Synergy: {json.dumps(synergy)}
         | 
| 196 | 
            +
                    Context: {json.dumps(context)}
         | 
| 197 | 
            +
                    
         | 
| 198 | 
            +
                    Project:
         | 
| 199 | 
            +
                    1. Revenue growth
         | 
| 200 | 
            +
                    2. Profit margins
         | 
| 201 | 
            +
                    3. Resource utilization
         | 
| 202 | 
            +
                    4. Risk metrics
         | 
| 203 | 
            +
                    5. Synergy capture
         | 
| 204 | 
            +
                    
         | 
| 205 | 
            +
                    Format as:
         | 
| 206 | 
            +
                    [Projections]
         | 
| 207 | 
            +
                    Revenue: ...
         | 
| 208 | 
            +
                    Profit: ...
         | 
| 209 | 
            +
                    Resources: ...
         | 
| 210 | 
            +
                    Risk: ...
         | 
| 211 | 
            +
                    Synergies: ...
         | 
| 212 | 
            +
                    """
         | 
| 213 | 
            +
                    
         | 
| 214 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 215 | 
            +
                    return self._parse_performance_projections(response["answer"])
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                def _calculate_portfolio_metrics(self) -> Dict[str, float]:
         | 
| 218 | 
            +
                    """Calculate comprehensive portfolio metrics."""
         | 
| 219 | 
            +
                    if not self.ventures:
         | 
| 220 | 
            +
                        return {
         | 
| 221 | 
            +
                            "total_revenue": 0.0,
         | 
| 222 | 
            +
                            "total_profit": 0.0,
         | 
| 223 | 
            +
                            "avg_growth": 0.0,
         | 
| 224 | 
            +
                            "avg_risk": 0.0,
         | 
| 225 | 
            +
                            "resource_efficiency": 0.0,
         | 
| 226 | 
            +
                            "synergy_capture": 0.0
         | 
| 227 | 
            +
                        }
         | 
| 228 | 
            +
                    
         | 
| 229 | 
            +
                    metrics = {
         | 
| 230 | 
            +
                        "total_revenue": sum(v.revenue for v in self.ventures.values()),
         | 
| 231 | 
            +
                        "total_profit": sum(v.profit for v in self.ventures.values()),
         | 
| 232 | 
            +
                        "avg_growth": np.mean([v.growth_rate for v in self.ventures.values()]),
         | 
| 233 | 
            +
                        "avg_risk": np.mean([v.risk_score for v in self.ventures.values()]),
         | 
| 234 | 
            +
                        "resource_efficiency": self._calculate_resource_efficiency(),
         | 
| 235 | 
            +
                        "synergy_capture": np.mean([v.synergy_score for v in self.ventures.values()])
         | 
| 236 | 
            +
                    }
         | 
| 237 | 
            +
                    
         | 
| 238 | 
            +
                    return metrics
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                def _calculate_resource_efficiency(self) -> float:
         | 
| 241 | 
            +
                    """Calculate resource utilization efficiency."""
         | 
| 242 | 
            +
                    if not self.ventures or not self.allocations:
         | 
| 243 | 
            +
                        return 0.0
         | 
| 244 | 
            +
                    
         | 
| 245 | 
            +
                    total_resources = defaultdict(float)
         | 
| 246 | 
            +
                    used_resources = defaultdict(float)
         | 
| 247 | 
            +
                    
         | 
| 248 | 
            +
                    # Sum up total and used resources
         | 
| 249 | 
            +
                    for venture_id, allocation in self.allocations.items():
         | 
| 250 | 
            +
                        for resource, amount in allocation.resources.items():
         | 
| 251 | 
            +
                            total_resources[resource] += amount
         | 
| 252 | 
            +
                            if venture_id in self.ventures:
         | 
| 253 | 
            +
                                used_resources[resource] += (
         | 
| 254 | 
            +
                                    amount * self.ventures[venture_id].resource_usage.get(resource, 0)
         | 
| 255 | 
            +
                                )
         | 
| 256 | 
            +
                    
         | 
| 257 | 
            +
                    # Calculate efficiency for each resource
         | 
| 258 | 
            +
                    efficiencies = []
         | 
| 259 | 
            +
                    for resource in total_resources:
         | 
| 260 | 
            +
                        if total_resources[resource] > 0:
         | 
| 261 | 
            +
                            efficiency = used_resources[resource] / total_resources[resource]
         | 
| 262 | 
            +
                            efficiencies.append(efficiency)
         | 
| 263 | 
            +
                    
         | 
| 264 | 
            +
                    return np.mean(efficiencies) if efficiencies else 0.0
         | 
| 265 | 
            +
             | 
| 266 | 
            +
                def get_portfolio_insights(self) -> Dict[str, Any]:
         | 
| 267 | 
            +
                    """Get comprehensive portfolio insights."""
         | 
| 268 | 
            +
                    metrics = self._calculate_portfolio_metrics()
         | 
| 269 | 
            +
                    
         | 
| 270 | 
            +
                    return {
         | 
| 271 | 
            +
                        "portfolio_metrics": metrics,
         | 
| 272 | 
            +
                        "venture_metrics": {
         | 
| 273 | 
            +
                            venture_id: {
         | 
| 274 | 
            +
                                "revenue": v.revenue,
         | 
| 275 | 
            +
                                "profit": v.profit,
         | 
| 276 | 
            +
                                "growth_rate": v.growth_rate,
         | 
| 277 | 
            +
                                "risk_score": v.risk_score,
         | 
| 278 | 
            +
                                "synergy_score": v.synergy_score
         | 
| 279 | 
            +
                            }
         | 
| 280 | 
            +
                            for venture_id, v in self.ventures.items()
         | 
| 281 | 
            +
                        },
         | 
| 282 | 
            +
                        "resource_allocation": {
         | 
| 283 | 
            +
                            venture_id: {
         | 
| 284 | 
            +
                                "resources": a.resources,
         | 
| 285 | 
            +
                                "priority": a.priority,
         | 
| 286 | 
            +
                                "constraints": len(a.constraints),
         | 
| 287 | 
            +
                                "dependencies": len(a.dependencies)
         | 
| 288 | 
            +
                            }
         | 
| 289 | 
            +
                            for venture_id, a in self.allocations.items()
         | 
| 290 | 
            +
                        },
         | 
| 291 | 
            +
                        "risk_profile": {
         | 
| 292 | 
            +
                            "portfolio_risk": metrics["avg_risk"],
         | 
| 293 | 
            +
                            "risk_concentration": self._calculate_risk_concentration(),
         | 
| 294 | 
            +
                            "risk_correlation": self._calculate_risk_correlation()
         | 
| 295 | 
            +
                        },
         | 
| 296 | 
            +
                        "optimization_opportunities": self._identify_optimization_opportunities()
         | 
| 297 | 
            +
                    }
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                def _calculate_risk_concentration(self) -> float:
         | 
| 300 | 
            +
                    """Calculate risk concentration in portfolio."""
         | 
| 301 | 
            +
                    if not self.ventures:
         | 
| 302 | 
            +
                        return 0.0
         | 
| 303 | 
            +
                    
         | 
| 304 | 
            +
                    risk_weights = [v.risk_score for v in self.ventures.values()]
         | 
| 305 | 
            +
                    return np.std(risk_weights) if len(risk_weights) > 1 else 0.0
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def _calculate_risk_correlation(self) -> float:
         | 
| 308 | 
            +
                    """Calculate risk correlation between ventures."""
         | 
| 309 | 
            +
                    if len(self.ventures) < 2:
         | 
| 310 | 
            +
                        return 0.0
         | 
| 311 | 
            +
                    
         | 
| 312 | 
            +
                    # Create correlation matrix of risk scores and resource usage
         | 
| 313 | 
            +
                    venture_metrics = [
         | 
| 314 | 
            +
                        [v.risk_score] + list(v.resource_usage.values())
         | 
| 315 | 
            +
                        for v in self.ventures.values()
         | 
| 316 | 
            +
                    ]
         | 
| 317 | 
            +
                    
         | 
| 318 | 
            +
                    correlation_matrix = np.corrcoef(venture_metrics)
         | 
| 319 | 
            +
                    return np.mean(correlation_matrix[np.triu_indices_from(correlation_matrix, k=1)])
         | 
| 320 | 
            +
             | 
| 321 | 
            +
                def _identify_optimization_opportunities(self) -> List[Dict[str, Any]]:
         | 
| 322 | 
            +
                    """Identify portfolio optimization opportunities."""
         | 
| 323 | 
            +
                    opportunities = []
         | 
| 324 | 
            +
                    
         | 
| 325 | 
            +
                    # Resource optimization opportunities
         | 
| 326 | 
            +
                    resource_efficiency = self._calculate_resource_efficiency()
         | 
| 327 | 
            +
                    if resource_efficiency < 0.8:
         | 
| 328 | 
            +
                        opportunities.append({
         | 
| 329 | 
            +
                            "type": "resource_optimization",
         | 
| 330 | 
            +
                            "potential": 1.0 - resource_efficiency,
         | 
| 331 | 
            +
                            "description": "Improve resource utilization efficiency"
         | 
| 332 | 
            +
                        })
         | 
| 333 | 
            +
                    
         | 
| 334 | 
            +
                    # Risk optimization opportunities
         | 
| 335 | 
            +
                    risk_concentration = self._calculate_risk_concentration()
         | 
| 336 | 
            +
                    if risk_concentration > 0.2:
         | 
| 337 | 
            +
                        opportunities.append({
         | 
| 338 | 
            +
                            "type": "risk_diversification",
         | 
| 339 | 
            +
                            "potential": risk_concentration,
         | 
| 340 | 
            +
                            "description": "Reduce risk concentration"
         | 
| 341 | 
            +
                        })
         | 
| 342 | 
            +
                    
         | 
| 343 | 
            +
                    # Synergy optimization opportunities
         | 
| 344 | 
            +
                    avg_synergy = np.mean([v.synergy_score for v in self.ventures.values()]) if self.ventures else 0
         | 
| 345 | 
            +
                    if avg_synergy < 0.7:
         | 
| 346 | 
            +
                        opportunities.append({
         | 
| 347 | 
            +
                            "type": "synergy_capture",
         | 
| 348 | 
            +
                            "potential": 1.0 - avg_synergy,
         | 
| 349 | 
            +
                            "description": "Increase synergy capture"
         | 
| 350 | 
            +
                        })
         | 
| 351 | 
            +
                    
         | 
| 352 | 
            +
                    return opportunities
         | 
    	
        reasoning/quantum.py
    ADDED
    
    | @@ -0,0 +1,353 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Quantum-inspired reasoning implementations."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            from .base import ReasoningStrategy
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            class QuantumReasoning(ReasoningStrategy):
         | 
| 10 | 
            +
                """Implements quantum-inspired reasoning using superposition and entanglement principles."""
         | 
| 11 | 
            +
                
         | 
| 12 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 13 | 
            +
                    try:
         | 
| 14 | 
            +
                        # Create superposition of possibilities
         | 
| 15 | 
            +
                        superposition = await self._create_superposition(query, context)
         | 
| 16 | 
            +
                        
         | 
| 17 | 
            +
                        # Analyze entanglements
         | 
| 18 | 
            +
                        entanglements = await self._analyze_entanglements(superposition, context)
         | 
| 19 | 
            +
                        
         | 
| 20 | 
            +
                        # Perform quantum interference
         | 
| 21 | 
            +
                        interference = await self._quantum_interference(superposition, entanglements, context)
         | 
| 22 | 
            +
                        
         | 
| 23 | 
            +
                        # Collapse to solution
         | 
| 24 | 
            +
                        solution = await self._collapse_to_solution(interference, context)
         | 
| 25 | 
            +
                        
         | 
| 26 | 
            +
                        return {
         | 
| 27 | 
            +
                            "success": True,
         | 
| 28 | 
            +
                            "answer": solution["conclusion"],
         | 
| 29 | 
            +
                            "superposition": superposition,
         | 
| 30 | 
            +
                            "entanglements": entanglements,
         | 
| 31 | 
            +
                            "interference_patterns": interference,
         | 
| 32 | 
            +
                            "measurement": solution["measurement"],
         | 
| 33 | 
            +
                            "confidence": solution["confidence"]
         | 
| 34 | 
            +
                        }
         | 
| 35 | 
            +
                    except Exception as e:
         | 
| 36 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                async def _create_superposition(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 39 | 
            +
                    prompt = f"""
         | 
| 40 | 
            +
                    Create superposition of possible solutions:
         | 
| 41 | 
            +
                    Query: {query}
         | 
| 42 | 
            +
                    Context: {json.dumps(context)}
         | 
| 43 | 
            +
                    
         | 
| 44 | 
            +
                    For each possibility state:
         | 
| 45 | 
            +
                    1. [State]: Description of possibility
         | 
| 46 | 
            +
                    2. [Amplitude]: Relative strength (0-1)
         | 
| 47 | 
            +
                    3. [Phase]: Relationship to other states
         | 
| 48 | 
            +
                    4. [Basis]: Underlying assumptions
         | 
| 49 | 
            +
                    
         | 
| 50 | 
            +
                    Format as:
         | 
| 51 | 
            +
                    [S1]
         | 
| 52 | 
            +
                    State: ...
         | 
| 53 | 
            +
                    Amplitude: ...
         | 
| 54 | 
            +
                    Phase: ...
         | 
| 55 | 
            +
                    Basis: ...
         | 
| 56 | 
            +
                    """
         | 
| 57 | 
            +
                    
         | 
| 58 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 59 | 
            +
                    return self._parse_superposition(response["answer"])
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                async def _analyze_entanglements(self, superposition: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 62 | 
            +
                    prompt = f"""
         | 
| 63 | 
            +
                    Analyze entanglements between possibilities:
         | 
| 64 | 
            +
                    Superposition: {json.dumps(superposition)}
         | 
| 65 | 
            +
                    Context: {json.dumps(context)}
         | 
| 66 | 
            +
                    
         | 
| 67 | 
            +
                    For each entanglement describe:
         | 
| 68 | 
            +
                    1. [States]: Entangled states
         | 
| 69 | 
            +
                    2. [Type]: Nature of entanglement
         | 
| 70 | 
            +
                    3. [Strength]: Correlation strength
         | 
| 71 | 
            +
                    4. [Impact]: Effect on outcomes
         | 
| 72 | 
            +
                    
         | 
| 73 | 
            +
                    Format as:
         | 
| 74 | 
            +
                    [E1]
         | 
| 75 | 
            +
                    States: ...
         | 
| 76 | 
            +
                    Type: ...
         | 
| 77 | 
            +
                    Strength: ...
         | 
| 78 | 
            +
                    Impact: ...
         | 
| 79 | 
            +
                    """
         | 
| 80 | 
            +
                    
         | 
| 81 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 82 | 
            +
                    return self._parse_entanglements(response["answer"])
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                async def _quantum_interference(self, superposition: List[Dict[str, Any]], entanglements: List[Dict[str, Any]], context: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 85 | 
            +
                    prompt = f"""
         | 
| 86 | 
            +
                    Calculate quantum interference patterns:
         | 
| 87 | 
            +
                    Superposition: {json.dumps(superposition)}
         | 
| 88 | 
            +
                    Entanglements: {json.dumps(entanglements)}
         | 
| 89 | 
            +
                    Context: {json.dumps(context)}
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
                    For each interference pattern:
         | 
| 92 | 
            +
                    1. [Pattern]: Description
         | 
| 93 | 
            +
                    2. [Amplitude]: Combined strength
         | 
| 94 | 
            +
                    3. [Phase]: Combined phase
         | 
| 95 | 
            +
                    4. [Effect]: Impact on solution space
         | 
| 96 | 
            +
                    
         | 
| 97 | 
            +
                    Format as:
         | 
| 98 | 
            +
                    [I1]
         | 
| 99 | 
            +
                    Pattern: ...
         | 
| 100 | 
            +
                    Amplitude: ...
         | 
| 101 | 
            +
                    Phase: ...
         | 
| 102 | 
            +
                    Effect: ...
         | 
| 103 | 
            +
                    """
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 106 | 
            +
                    return self._parse_interference(response["answer"])
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                async def _collapse_to_solution(self, interference: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 109 | 
            +
                    prompt = f"""
         | 
| 110 | 
            +
                    Collapse quantum state to final solution:
         | 
| 111 | 
            +
                    Interference: {json.dumps(interference)}
         | 
| 112 | 
            +
                    Context: {json.dumps(context)}
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                    Provide:
         | 
| 115 | 
            +
                    1. Final measured state
         | 
| 116 | 
            +
                    2. Measurement confidence
         | 
| 117 | 
            +
                    3. Key quantum effects utilized
         | 
| 118 | 
            +
                    4. Overall conclusion
         | 
| 119 | 
            +
                    5. Confidence level (0-1)
         | 
| 120 | 
            +
                    """
         | 
| 121 | 
            +
                    
         | 
| 122 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 123 | 
            +
                    return self._parse_collapse(response["answer"])
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def _parse_superposition(self, response: str) -> List[Dict[str, Any]]:
         | 
| 126 | 
            +
                    """Parse superposition states from response."""
         | 
| 127 | 
            +
                    superposition = []
         | 
| 128 | 
            +
                    current_state = None
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                    for line in response.split('\n'):
         | 
| 131 | 
            +
                        line = line.strip()
         | 
| 132 | 
            +
                        if not line:
         | 
| 133 | 
            +
                            continue
         | 
| 134 | 
            +
                            
         | 
| 135 | 
            +
                        if line.startswith('[S'):
         | 
| 136 | 
            +
                            if current_state:
         | 
| 137 | 
            +
                                superposition.append(current_state)
         | 
| 138 | 
            +
                            current_state = {
         | 
| 139 | 
            +
                                "state": "",
         | 
| 140 | 
            +
                                "amplitude": 0.0,
         | 
| 141 | 
            +
                                "phase": "",
         | 
| 142 | 
            +
                                "basis": ""
         | 
| 143 | 
            +
                            }
         | 
| 144 | 
            +
                        elif current_state:
         | 
| 145 | 
            +
                            if line.startswith('State:'):
         | 
| 146 | 
            +
                                current_state["state"] = line[6:].strip()
         | 
| 147 | 
            +
                            elif line.startswith('Amplitude:'):
         | 
| 148 | 
            +
                                try:
         | 
| 149 | 
            +
                                    current_state["amplitude"] = float(line[10:].strip())
         | 
| 150 | 
            +
                                except:
         | 
| 151 | 
            +
                                    pass
         | 
| 152 | 
            +
                            elif line.startswith('Phase:'):
         | 
| 153 | 
            +
                                current_state["phase"] = line[6:].strip()
         | 
| 154 | 
            +
                            elif line.startswith('Basis:'):
         | 
| 155 | 
            +
                                current_state["basis"] = line[6:].strip()
         | 
| 156 | 
            +
                    
         | 
| 157 | 
            +
                    if current_state:
         | 
| 158 | 
            +
                        superposition.append(current_state)
         | 
| 159 | 
            +
                    
         | 
| 160 | 
            +
                    return superposition
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def _parse_entanglements(self, response: str) -> List[Dict[str, Any]]:
         | 
| 163 | 
            +
                    """Parse entanglements from response."""
         | 
| 164 | 
            +
                    entanglements = []
         | 
| 165 | 
            +
                    current_entanglement = None
         | 
| 166 | 
            +
                    
         | 
| 167 | 
            +
                    for line in response.split('\n'):
         | 
| 168 | 
            +
                        line = line.strip()
         | 
| 169 | 
            +
                        if not line:
         | 
| 170 | 
            +
                            continue
         | 
| 171 | 
            +
                            
         | 
| 172 | 
            +
                        if line.startswith('[E'):
         | 
| 173 | 
            +
                            if current_entanglement:
         | 
| 174 | 
            +
                                entanglements.append(current_entanglement)
         | 
| 175 | 
            +
                            current_entanglement = {
         | 
| 176 | 
            +
                                "states": "",
         | 
| 177 | 
            +
                                "type": "",
         | 
| 178 | 
            +
                                "strength": 0.0,
         | 
| 179 | 
            +
                                "impact": ""
         | 
| 180 | 
            +
                            }
         | 
| 181 | 
            +
                        elif current_entanglement:
         | 
| 182 | 
            +
                            if line.startswith('States:'):
         | 
| 183 | 
            +
                                current_entanglement["states"] = line[7:].strip()
         | 
| 184 | 
            +
                            elif line.startswith('Type:'):
         | 
| 185 | 
            +
                                current_entanglement["type"] = line[5:].strip()
         | 
| 186 | 
            +
                            elif line.startswith('Strength:'):
         | 
| 187 | 
            +
                                try:
         | 
| 188 | 
            +
                                    current_entanglement["strength"] = float(line[9:].strip())
         | 
| 189 | 
            +
                                except:
         | 
| 190 | 
            +
                                    pass
         | 
| 191 | 
            +
                            elif line.startswith('Impact:'):
         | 
| 192 | 
            +
                                current_entanglement["impact"] = line[7:].strip()
         | 
| 193 | 
            +
                    
         | 
| 194 | 
            +
                    if current_entanglement:
         | 
| 195 | 
            +
                        entanglements.append(current_entanglement)
         | 
| 196 | 
            +
                    
         | 
| 197 | 
            +
                    return entanglements
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                def _parse_interference(self, response: str) -> List[Dict[str, Any]]:
         | 
| 200 | 
            +
                    """Parse interference patterns from response."""
         | 
| 201 | 
            +
                    interference = []
         | 
| 202 | 
            +
                    current_pattern = None
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    for line in response.split('\n'):
         | 
| 205 | 
            +
                        line = line.strip()
         | 
| 206 | 
            +
                        if not line:
         | 
| 207 | 
            +
                            continue
         | 
| 208 | 
            +
                            
         | 
| 209 | 
            +
                        if line.startswith('[I'):
         | 
| 210 | 
            +
                            if current_pattern:
         | 
| 211 | 
            +
                                interference.append(current_pattern)
         | 
| 212 | 
            +
                            current_pattern = {
         | 
| 213 | 
            +
                                "pattern": "",
         | 
| 214 | 
            +
                                "amplitude": 0.0,
         | 
| 215 | 
            +
                                "phase": "",
         | 
| 216 | 
            +
                                "effect": ""
         | 
| 217 | 
            +
                            }
         | 
| 218 | 
            +
                        elif current_pattern:
         | 
| 219 | 
            +
                            if line.startswith('Pattern:'):
         | 
| 220 | 
            +
                                current_pattern["pattern"] = line[8:].strip()
         | 
| 221 | 
            +
                            elif line.startswith('Amplitude:'):
         | 
| 222 | 
            +
                                try:
         | 
| 223 | 
            +
                                    current_pattern["amplitude"] = float(line[10:].strip())
         | 
| 224 | 
            +
                                except:
         | 
| 225 | 
            +
                                    pass
         | 
| 226 | 
            +
                            elif line.startswith('Phase:'):
         | 
| 227 | 
            +
                                current_pattern["phase"] = line[6:].strip()
         | 
| 228 | 
            +
                            elif line.startswith('Effect:'):
         | 
| 229 | 
            +
                                current_pattern["effect"] = line[7:].strip()
         | 
| 230 | 
            +
                    
         | 
| 231 | 
            +
                    if current_pattern:
         | 
| 232 | 
            +
                        interference.append(current_pattern)
         | 
| 233 | 
            +
                    
         | 
| 234 | 
            +
                    return interference
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                def _parse_collapse(self, response: str) -> Dict[str, Any]:
         | 
| 237 | 
            +
                    """Parse collapse to solution from response."""
         | 
| 238 | 
            +
                    collapse = {
         | 
| 239 | 
            +
                        "measurement": "",
         | 
| 240 | 
            +
                        "confidence": 0.0,
         | 
| 241 | 
            +
                        "quantum_effects": [],
         | 
| 242 | 
            +
                        "conclusion": ""
         | 
| 243 | 
            +
                    }
         | 
| 244 | 
            +
                    
         | 
| 245 | 
            +
                    mode = None
         | 
| 246 | 
            +
                    for line in response.split('\n'):
         | 
| 247 | 
            +
                        line = line.strip()
         | 
| 248 | 
            +
                        if not line:
         | 
| 249 | 
            +
                            continue
         | 
| 250 | 
            +
                            
         | 
| 251 | 
            +
                        if line.startswith('Measurement:'):
         | 
| 252 | 
            +
                            collapse["measurement"] = line[12:].strip()
         | 
| 253 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 254 | 
            +
                            try:
         | 
| 255 | 
            +
                                collapse["confidence"] = float(line[11:].strip())
         | 
| 256 | 
            +
                            except:
         | 
| 257 | 
            +
                                collapse["confidence"] = 0.5
         | 
| 258 | 
            +
                        elif line.startswith('Quantum Effects:'):
         | 
| 259 | 
            +
                            mode = "effects"
         | 
| 260 | 
            +
                        elif mode == "effects" and line.startswith('- '):
         | 
| 261 | 
            +
                            collapse["quantum_effects"].append(line[2:].strip())
         | 
| 262 | 
            +
                        elif line.startswith('Conclusion:'):
         | 
| 263 | 
            +
                            collapse["conclusion"] = line[11:].strip()
         | 
| 264 | 
            +
                    
         | 
| 265 | 
            +
                    return collapse
         | 
| 266 | 
            +
             | 
| 267 | 
            +
             | 
| 268 | 
            +
            class QuantumInspiredStrategy(ReasoningStrategy):
         | 
| 269 | 
            +
                """Implements Quantum-Inspired reasoning."""
         | 
| 270 | 
            +
                
         | 
| 271 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 272 | 
            +
                    try:
         | 
| 273 | 
            +
                        # Create a clean context for serialization
         | 
| 274 | 
            +
                        clean_context = {k: v for k, v in context.items() if k != "groq_api"}
         | 
| 275 | 
            +
                        
         | 
| 276 | 
            +
                        prompt = f"""
         | 
| 277 | 
            +
                        You are a meta-learning reasoning system that adapts its approach based on problem characteristics.
         | 
| 278 | 
            +
                        
         | 
| 279 | 
            +
                        Problem Type: 
         | 
| 280 | 
            +
                        Query: {query}
         | 
| 281 | 
            +
                        Context: {json.dumps(clean_context)}
         | 
| 282 | 
            +
                        
         | 
| 283 | 
            +
                        Analyze this problem using meta-learning principles. Structure your response EXACTLY as follows:
         | 
| 284 | 
            +
             | 
| 285 | 
            +
                        PROBLEM ANALYSIS:
         | 
| 286 | 
            +
                        - [First key aspect or complexity factor]
         | 
| 287 | 
            +
                        - [Second key aspect or complexity factor]
         | 
| 288 | 
            +
                        - [Third key aspect or complexity factor]
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                        SOLUTION PATHS:
         | 
| 291 | 
            +
                        - Path 1: [Specific solution approach]
         | 
| 292 | 
            +
                        - Path 2: [Alternative solution approach]
         | 
| 293 | 
            +
                        - Path 3: [Another alternative approach]
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                        META INSIGHTS:
         | 
| 296 | 
            +
                        - Learning 1: [Key insight about the problem space]
         | 
| 297 | 
            +
                        - Learning 2: [Key insight about solution approaches]
         | 
| 298 | 
            +
                        - Learning 3: [Key insight about trade-offs]
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                        CONCLUSION:
         | 
| 301 | 
            +
                        [Final synthesized solution incorporating meta-learnings]
         | 
| 302 | 
            +
                        """
         | 
| 303 | 
            +
                        
         | 
| 304 | 
            +
                        response = await context["groq_api"].predict(prompt)
         | 
| 305 | 
            +
                        
         | 
| 306 | 
            +
                        if not response["success"]:
         | 
| 307 | 
            +
                            return response
         | 
| 308 | 
            +
                            
         | 
| 309 | 
            +
                        # Parse response into components
         | 
| 310 | 
            +
                        lines = response["answer"].split("\n")
         | 
| 311 | 
            +
                        problem_analysis = []
         | 
| 312 | 
            +
                        solution_paths = []
         | 
| 313 | 
            +
                        meta_insights = []
         | 
| 314 | 
            +
                        conclusion = ""
         | 
| 315 | 
            +
                        
         | 
| 316 | 
            +
                        section = None
         | 
| 317 | 
            +
                        for line in lines:
         | 
| 318 | 
            +
                            line = line.strip()
         | 
| 319 | 
            +
                            if not line:
         | 
| 320 | 
            +
                                continue
         | 
| 321 | 
            +
                                
         | 
| 322 | 
            +
                            if "PROBLEM ANALYSIS:" in line:
         | 
| 323 | 
            +
                                section = "analysis"
         | 
| 324 | 
            +
                            elif "SOLUTION PATHS:" in line:
         | 
| 325 | 
            +
                                section = "paths"
         | 
| 326 | 
            +
                            elif "META INSIGHTS:" in line:
         | 
| 327 | 
            +
                                section = "insights"
         | 
| 328 | 
            +
                            elif "CONCLUSION:" in line:
         | 
| 329 | 
            +
                                section = "conclusion"
         | 
| 330 | 
            +
                            elif line.startswith("-"):
         | 
| 331 | 
            +
                                content = line.lstrip("- ").strip()
         | 
| 332 | 
            +
                                if section == "analysis":
         | 
| 333 | 
            +
                                    problem_analysis.append(content)
         | 
| 334 | 
            +
                                elif section == "paths":
         | 
| 335 | 
            +
                                    solution_paths.append(content)
         | 
| 336 | 
            +
                                elif section == "insights":
         | 
| 337 | 
            +
                                    meta_insights.append(content)
         | 
| 338 | 
            +
                            elif section == "conclusion":
         | 
| 339 | 
            +
                                conclusion += line + " "
         | 
| 340 | 
            +
                        
         | 
| 341 | 
            +
                        return {
         | 
| 342 | 
            +
                            "success": True,
         | 
| 343 | 
            +
                            "problem_analysis": problem_analysis,
         | 
| 344 | 
            +
                            "solution_paths": solution_paths,
         | 
| 345 | 
            +
                            "meta_insights": meta_insights,
         | 
| 346 | 
            +
                            "conclusion": conclusion.strip(),
         | 
| 347 | 
            +
                            # Add standard fields for compatibility
         | 
| 348 | 
            +
                            "reasoning_path": problem_analysis + solution_paths + meta_insights,
         | 
| 349 | 
            +
                            "conclusion": conclusion.strip()
         | 
| 350 | 
            +
                        }
         | 
| 351 | 
            +
                        
         | 
| 352 | 
            +
                    except Exception as e:
         | 
| 353 | 
            +
                        return {"success": False, "error": str(e)}
         | 
    	
        reasoning/recursive.py
    ADDED
    
    | @@ -0,0 +1,566 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Recursive reasoning implementation with advanced decomposition and synthesis."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Tuple, Callable
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class SubproblemType(Enum):
         | 
| 15 | 
            +
                """Types of subproblems in recursive reasoning."""
         | 
| 16 | 
            +
                ATOMIC = "atomic"
         | 
| 17 | 
            +
                COMPOSITE = "composite"
         | 
| 18 | 
            +
                PARALLEL = "parallel"
         | 
| 19 | 
            +
                SEQUENTIAL = "sequential"
         | 
| 20 | 
            +
                CONDITIONAL = "conditional"
         | 
| 21 | 
            +
                ITERATIVE = "iterative"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            class SolutionStatus(Enum):
         | 
| 24 | 
            +
                """Status of subproblem solutions."""
         | 
| 25 | 
            +
                PENDING = "pending"
         | 
| 26 | 
            +
                IN_PROGRESS = "in_progress"
         | 
| 27 | 
            +
                SOLVED = "solved"
         | 
| 28 | 
            +
                FAILED = "failed"
         | 
| 29 | 
            +
                BLOCKED = "blocked"
         | 
| 30 | 
            +
                OPTIMIZING = "optimizing"
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            @dataclass
         | 
| 33 | 
            +
            class Subproblem:
         | 
| 34 | 
            +
                """Represents a subproblem in recursive reasoning."""
         | 
| 35 | 
            +
                id: str
         | 
| 36 | 
            +
                type: SubproblemType
         | 
| 37 | 
            +
                query: str
         | 
| 38 | 
            +
                context: Dict[str, Any]
         | 
| 39 | 
            +
                parent_id: Optional[str]
         | 
| 40 | 
            +
                children: List[str]
         | 
| 41 | 
            +
                status: SolutionStatus
         | 
| 42 | 
            +
                solution: Optional[Dict[str, Any]]
         | 
| 43 | 
            +
                confidence: float
         | 
| 44 | 
            +
                dependencies: List[str]
         | 
| 45 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            @dataclass
         | 
| 48 | 
            +
            class RecursiveStep:
         | 
| 49 | 
            +
                """Represents a step in recursive reasoning."""
         | 
| 50 | 
            +
                id: str
         | 
| 51 | 
            +
                subproblem_id: str
         | 
| 52 | 
            +
                action: str
         | 
| 53 | 
            +
                timestamp: datetime
         | 
| 54 | 
            +
                result: Optional[Dict[str, Any]]
         | 
| 55 | 
            +
                metrics: Dict[str, float]
         | 
| 56 | 
            +
                metadata: Dict[str, Any] = field(default_factory=dict)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            class RecursiveReasoning(ReasoningStrategy):
         | 
| 59 | 
            +
                """
         | 
| 60 | 
            +
                Advanced Recursive Reasoning implementation with:
         | 
| 61 | 
            +
                - Dynamic problem decomposition
         | 
| 62 | 
            +
                - Parallel subproblem solving
         | 
| 63 | 
            +
                - Solution synthesis
         | 
| 64 | 
            +
                - Cycle detection
         | 
| 65 | 
            +
                - Optimization strategies
         | 
| 66 | 
            +
                """
         | 
| 67 | 
            +
                
         | 
| 68 | 
            +
                def __init__(self,
         | 
| 69 | 
            +
                             max_depth: int = 5,
         | 
| 70 | 
            +
                             min_confidence: float = 0.7,
         | 
| 71 | 
            +
                             parallel_threshold: int = 3,
         | 
| 72 | 
            +
                             optimization_rounds: int = 2):
         | 
| 73 | 
            +
                    self.max_depth = max_depth
         | 
| 74 | 
            +
                    self.min_confidence = min_confidence
         | 
| 75 | 
            +
                    self.parallel_threshold = parallel_threshold
         | 
| 76 | 
            +
                    self.optimization_rounds = optimization_rounds
         | 
| 77 | 
            +
                    
         | 
| 78 | 
            +
                    # Problem tracking
         | 
| 79 | 
            +
                    self.subproblems: Dict[str, Subproblem] = {}
         | 
| 80 | 
            +
                    self.steps: List[RecursiveStep] = []
         | 
| 81 | 
            +
                    self.solution_cache: Dict[str, Dict[str, Any]] = {}
         | 
| 82 | 
            +
                    self.cycle_detection: Set[str] = set()
         | 
| 83 | 
            +
                    
         | 
| 84 | 
            +
                    # Performance metrics
         | 
| 85 | 
            +
                    self.depth_distribution: Dict[int, int] = defaultdict(int)
         | 
| 86 | 
            +
                    self.type_distribution: Dict[SubproblemType, int] = defaultdict(int)
         | 
| 87 | 
            +
                    self.success_rate: Dict[SubproblemType, float] = defaultdict(float)
         | 
| 88 | 
            +
                    
         | 
| 89 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 90 | 
            +
                    """Main reasoning method implementing recursive reasoning."""
         | 
| 91 | 
            +
                    try:
         | 
| 92 | 
            +
                        # Initialize root problem
         | 
| 93 | 
            +
                        root = await self._initialize_problem(query, context)
         | 
| 94 | 
            +
                        self.subproblems[root.id] = root
         | 
| 95 | 
            +
                        
         | 
| 96 | 
            +
                        # Recursively solve
         | 
| 97 | 
            +
                        solution = await self._solve_recursive(root.id, depth=0)
         | 
| 98 | 
            +
                        
         | 
| 99 | 
            +
                        # Optimize solution
         | 
| 100 | 
            +
                        optimized = await self._optimize_solution(solution, root, context)
         | 
| 101 | 
            +
                        
         | 
| 102 | 
            +
                        # Update metrics
         | 
| 103 | 
            +
                        self._update_metrics(root.id)
         | 
| 104 | 
            +
                        
         | 
| 105 | 
            +
                        return {
         | 
| 106 | 
            +
                            "success": True,
         | 
| 107 | 
            +
                            "answer": optimized["answer"],
         | 
| 108 | 
            +
                            "confidence": optimized["confidence"],
         | 
| 109 | 
            +
                            "decomposition": self._get_problem_tree(root.id),
         | 
| 110 | 
            +
                            "solution_trace": self._get_solution_trace(root.id),
         | 
| 111 | 
            +
                            "performance_metrics": self._get_performance_metrics(),
         | 
| 112 | 
            +
                            "meta_insights": optimized["meta_insights"]
         | 
| 113 | 
            +
                        }
         | 
| 114 | 
            +
                    except Exception as e:
         | 
| 115 | 
            +
                        logging.error(f"Error in recursive reasoning: {str(e)}")
         | 
| 116 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                async def _initialize_problem(self, query: str, context: Dict[str, Any]) -> Subproblem:
         | 
| 119 | 
            +
                    """Initialize the root problem."""
         | 
| 120 | 
            +
                    prompt = f"""
         | 
| 121 | 
            +
                    Initialize recursive reasoning problem:
         | 
| 122 | 
            +
                    Query: {query}
         | 
| 123 | 
            +
                    Context: {json.dumps(context)}
         | 
| 124 | 
            +
                    
         | 
| 125 | 
            +
                    Analyze for:
         | 
| 126 | 
            +
                    1. Problem type classification
         | 
| 127 | 
            +
                    2. Initial decomposition strategy
         | 
| 128 | 
            +
                    3. Key dependencies
         | 
| 129 | 
            +
                    4. Solution approach
         | 
| 130 | 
            +
                    
         | 
| 131 | 
            +
                    Format as:
         | 
| 132 | 
            +
                    [Problem]
         | 
| 133 | 
            +
                    Type: ...
         | 
| 134 | 
            +
                    Strategy: ...
         | 
| 135 | 
            +
                    Dependencies: ...
         | 
| 136 | 
            +
                    Approach: ...
         | 
| 137 | 
            +
                    """
         | 
| 138 | 
            +
                    
         | 
| 139 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 140 | 
            +
                    return self._parse_problem_init(response["answer"], query, context)
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                async def _decompose_problem(self, problem: Subproblem, context: Dict[str, Any]) -> List[Subproblem]:
         | 
| 143 | 
            +
                    """Decompose a problem into subproblems."""
         | 
| 144 | 
            +
                    prompt = f"""
         | 
| 145 | 
            +
                    Decompose problem into subproblems:
         | 
| 146 | 
            +
                    Problem: {json.dumps(self._problem_to_dict(problem))}
         | 
| 147 | 
            +
                    Context: {json.dumps(context)}
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                    For each subproblem specify:
         | 
| 150 | 
            +
                    1. [Type]: {" | ".join([t.value for t in SubproblemType])}
         | 
| 151 | 
            +
                    2. [Query]: Specific question
         | 
| 152 | 
            +
                    3. [Dependencies]: Required solutions
         | 
| 153 | 
            +
                    4. [Approach]: Solution strategy
         | 
| 154 | 
            +
                    
         | 
| 155 | 
            +
                    Format as:
         | 
| 156 | 
            +
                    [S1]
         | 
| 157 | 
            +
                    Type: ...
         | 
| 158 | 
            +
                    Query: ...
         | 
| 159 | 
            +
                    Dependencies: ...
         | 
| 160 | 
            +
                    Approach: ...
         | 
| 161 | 
            +
                    """
         | 
| 162 | 
            +
                    
         | 
| 163 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 164 | 
            +
                    return self._parse_subproblems(response["answer"], problem.id, context)
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                async def _solve_recursive(self, problem_id: str, depth: int) -> Dict[str, Any]:
         | 
| 167 | 
            +
                    """Recursively solve a problem and its subproblems."""
         | 
| 168 | 
            +
                    if depth > self.max_depth:
         | 
| 169 | 
            +
                        return {"success": False, "error": "Maximum recursion depth exceeded"}
         | 
| 170 | 
            +
                        
         | 
| 171 | 
            +
                    if problem_id in self.cycle_detection:
         | 
| 172 | 
            +
                        return {"success": False, "error": "Cycle detected in recursive solving"}
         | 
| 173 | 
            +
                        
         | 
| 174 | 
            +
                    problem = self.subproblems[problem_id]
         | 
| 175 | 
            +
                    self.cycle_detection.add(problem_id)
         | 
| 176 | 
            +
                    self.depth_distribution[depth] += 1
         | 
| 177 | 
            +
                    
         | 
| 178 | 
            +
                    try:
         | 
| 179 | 
            +
                        # Check cache
         | 
| 180 | 
            +
                        cache_key = f"{problem.query}:{json.dumps(problem.context)}"
         | 
| 181 | 
            +
                        if cache_key in self.solution_cache:
         | 
| 182 | 
            +
                            return self.solution_cache[cache_key]
         | 
| 183 | 
            +
                        
         | 
| 184 | 
            +
                        # Check if atomic
         | 
| 185 | 
            +
                        if problem.type == SubproblemType.ATOMIC:
         | 
| 186 | 
            +
                            solution = await self._solve_atomic(problem)
         | 
| 187 | 
            +
                        else:
         | 
| 188 | 
            +
                            # Decompose
         | 
| 189 | 
            +
                            subproblems = await self._decompose_problem(problem, problem.context)
         | 
| 190 | 
            +
                            for sub in subproblems:
         | 
| 191 | 
            +
                                self.subproblems[sub.id] = sub
         | 
| 192 | 
            +
                                problem.children.append(sub.id)
         | 
| 193 | 
            +
                            
         | 
| 194 | 
            +
                            # Solve subproblems
         | 
| 195 | 
            +
                            if problem.type == SubproblemType.PARALLEL and len(subproblems) >= self.parallel_threshold:
         | 
| 196 | 
            +
                                # Solve in parallel
         | 
| 197 | 
            +
                                tasks = [self._solve_recursive(sub.id, depth + 1) for sub in subproblems]
         | 
| 198 | 
            +
                                subsolutions = await asyncio.gather(*tasks)
         | 
| 199 | 
            +
                            else:
         | 
| 200 | 
            +
                                # Solve sequentially
         | 
| 201 | 
            +
                                subsolutions = []
         | 
| 202 | 
            +
                                for sub in subproblems:
         | 
| 203 | 
            +
                                    subsolution = await self._solve_recursive(sub.id, depth + 1)
         | 
| 204 | 
            +
                                    subsolutions.append(subsolution)
         | 
| 205 | 
            +
                            
         | 
| 206 | 
            +
                            # Synthesize solutions
         | 
| 207 | 
            +
                            solution = await self._synthesize_solutions(subsolutions, problem, problem.context)
         | 
| 208 | 
            +
                        
         | 
| 209 | 
            +
                        # Cache solution
         | 
| 210 | 
            +
                        self.solution_cache[cache_key] = solution
         | 
| 211 | 
            +
                        problem.solution = solution
         | 
| 212 | 
            +
                        problem.status = SolutionStatus.SOLVED if solution["success"] else SolutionStatus.FAILED
         | 
| 213 | 
            +
                        
         | 
| 214 | 
            +
                        return solution
         | 
| 215 | 
            +
                        
         | 
| 216 | 
            +
                    finally:
         | 
| 217 | 
            +
                        self.cycle_detection.remove(problem_id)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                async def _solve_atomic(self, problem: Subproblem) -> Dict[str, Any]:
         | 
| 220 | 
            +
                    """Solve an atomic problem."""
         | 
| 221 | 
            +
                    prompt = f"""
         | 
| 222 | 
            +
                    Solve atomic problem:
         | 
| 223 | 
            +
                    Problem: {json.dumps(self._problem_to_dict(problem))}
         | 
| 224 | 
            +
                    
         | 
| 225 | 
            +
                    Provide:
         | 
| 226 | 
            +
                    1. Direct solution
         | 
| 227 | 
            +
                    2. Confidence level
         | 
| 228 | 
            +
                    3. Supporting evidence
         | 
| 229 | 
            +
                    4. Alternative approaches
         | 
| 230 | 
            +
                    
         | 
| 231 | 
            +
                    Format as:
         | 
| 232 | 
            +
                    [Solution]
         | 
| 233 | 
            +
                    Answer: ...
         | 
| 234 | 
            +
                    Confidence: ...
         | 
| 235 | 
            +
                    Evidence: ...
         | 
| 236 | 
            +
                    Alternatives: ...
         | 
| 237 | 
            +
                    """
         | 
| 238 | 
            +
                    
         | 
| 239 | 
            +
                    response = await problem.context["groq_api"].predict(prompt)
         | 
| 240 | 
            +
                    solution = self._parse_atomic_solution(response["answer"])
         | 
| 241 | 
            +
                    
         | 
| 242 | 
            +
                    self._record_step(RecursiveStep(
         | 
| 243 | 
            +
                        id=f"step_{len(self.steps)}",
         | 
| 244 | 
            +
                        subproblem_id=problem.id,
         | 
| 245 | 
            +
                        action="atomic_solve",
         | 
| 246 | 
            +
                        timestamp=datetime.now(),
         | 
| 247 | 
            +
                        result=solution,
         | 
| 248 | 
            +
                        metrics={"confidence": solution.get("confidence", 0.0)},
         | 
| 249 | 
            +
                        metadata={}
         | 
| 250 | 
            +
                    ))
         | 
| 251 | 
            +
                    
         | 
| 252 | 
            +
                    return solution
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                async def _synthesize_solutions(self, subsolutions: List[Dict[str, Any]], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 255 | 
            +
                    """Synthesize solutions from subproblems."""
         | 
| 256 | 
            +
                    prompt = f"""
         | 
| 257 | 
            +
                    Synthesize solutions:
         | 
| 258 | 
            +
                    Problem: {json.dumps(self._problem_to_dict(problem))}
         | 
| 259 | 
            +
                    Solutions: {json.dumps(subsolutions)}
         | 
| 260 | 
            +
                    Context: {json.dumps(context)}
         | 
| 261 | 
            +
                    
         | 
| 262 | 
            +
                    Provide:
         | 
| 263 | 
            +
                    1. Integrated solution
         | 
| 264 | 
            +
                    2. Confidence assessment
         | 
| 265 | 
            +
                    3. Integration method
         | 
| 266 | 
            +
                    4. Quality metrics
         | 
| 267 | 
            +
                    
         | 
| 268 | 
            +
                    Format as:
         | 
| 269 | 
            +
                    [Synthesis]
         | 
| 270 | 
            +
                    Solution: ...
         | 
| 271 | 
            +
                    Confidence: ...
         | 
| 272 | 
            +
                    Method: ...
         | 
| 273 | 
            +
                    Metrics: ...
         | 
| 274 | 
            +
                    """
         | 
| 275 | 
            +
                    
         | 
| 276 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 277 | 
            +
                    synthesis = self._parse_synthesis(response["answer"])
         | 
| 278 | 
            +
                    
         | 
| 279 | 
            +
                    self._record_step(RecursiveStep(
         | 
| 280 | 
            +
                        id=f"step_{len(self.steps)}",
         | 
| 281 | 
            +
                        subproblem_id=problem.id,
         | 
| 282 | 
            +
                        action="synthesize",
         | 
| 283 | 
            +
                        timestamp=datetime.now(),
         | 
| 284 | 
            +
                        result=synthesis,
         | 
| 285 | 
            +
                        metrics={"confidence": synthesis.get("confidence", 0.0)},
         | 
| 286 | 
            +
                        metadata={"num_subsolutions": len(subsolutions)}
         | 
| 287 | 
            +
                    ))
         | 
| 288 | 
            +
                    
         | 
| 289 | 
            +
                    return synthesis
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                async def _optimize_solution(self, solution: Dict[str, Any], problem: Subproblem, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 292 | 
            +
                    """Optimize the final solution."""
         | 
| 293 | 
            +
                    prompt = f"""
         | 
| 294 | 
            +
                    Optimize recursive solution:
         | 
| 295 | 
            +
                    Original: {json.dumps(solution)}
         | 
| 296 | 
            +
                    Problem: {json.dumps(self._problem_to_dict(problem))}
         | 
| 297 | 
            +
                    Context: {json.dumps(context)}
         | 
| 298 | 
            +
                    
         | 
| 299 | 
            +
                    Optimize for:
         | 
| 300 | 
            +
                    1. Completeness
         | 
| 301 | 
            +
                    2. Consistency
         | 
| 302 | 
            +
                    3. Efficiency
         | 
| 303 | 
            +
                    4. Clarity
         | 
| 304 | 
            +
                    
         | 
| 305 | 
            +
                    Format as:
         | 
| 306 | 
            +
                    [Optimization]
         | 
| 307 | 
            +
                    Answer: ...
         | 
| 308 | 
            +
                    Improvements: ...
         | 
| 309 | 
            +
                    Metrics: ...
         | 
| 310 | 
            +
                    Insights: ...
         | 
| 311 | 
            +
                    """
         | 
| 312 | 
            +
                    
         | 
| 313 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 314 | 
            +
                    return self._parse_optimization(response["answer"])
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                def _update_metrics(self, root_id: str):
         | 
| 317 | 
            +
                    """Update performance metrics."""
         | 
| 318 | 
            +
                    def update_recursive(problem_id: str):
         | 
| 319 | 
            +
                        problem = self.subproblems[problem_id]
         | 
| 320 | 
            +
                        self.type_distribution[problem.type] += 1
         | 
| 321 | 
            +
                        
         | 
| 322 | 
            +
                        if problem.status == SolutionStatus.SOLVED:
         | 
| 323 | 
            +
                            self.success_rate[problem.type] = (
         | 
| 324 | 
            +
                                self.success_rate[problem.type] * (self.type_distribution[problem.type] - 1) +
         | 
| 325 | 
            +
                                problem.confidence
         | 
| 326 | 
            +
                            ) / self.type_distribution[problem.type]
         | 
| 327 | 
            +
                        
         | 
| 328 | 
            +
                        for child_id in problem.children:
         | 
| 329 | 
            +
                            update_recursive(child_id)
         | 
| 330 | 
            +
                    
         | 
| 331 | 
            +
                    update_recursive(root_id)
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                def _get_problem_tree(self, root_id: str) -> Dict[str, Any]:
         | 
| 334 | 
            +
                    """Get the problem decomposition tree."""
         | 
| 335 | 
            +
                    def build_tree(problem_id: str) -> Dict[str, Any]:
         | 
| 336 | 
            +
                        problem = self.subproblems[problem_id]
         | 
| 337 | 
            +
                        return {
         | 
| 338 | 
            +
                            "id": problem.id,
         | 
| 339 | 
            +
                            "type": problem.type.value,
         | 
| 340 | 
            +
                            "query": problem.query,
         | 
| 341 | 
            +
                            "status": problem.status.value,
         | 
| 342 | 
            +
                            "confidence": problem.confidence,
         | 
| 343 | 
            +
                            "children": [build_tree(child_id) for child_id in problem.children]
         | 
| 344 | 
            +
                        }
         | 
| 345 | 
            +
                    
         | 
| 346 | 
            +
                    return build_tree(root_id)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                def _get_solution_trace(self, root_id: str) -> List[Dict[str, Any]]:
         | 
| 349 | 
            +
                    """Get the solution trace for a problem."""
         | 
| 350 | 
            +
                    return [self._step_to_dict(step) for step in self.steps 
         | 
| 351 | 
            +
                            if step.subproblem_id == root_id or 
         | 
| 352 | 
            +
                            any(step.subproblem_id == sub_id for sub_id in self.subproblems[root_id].children)]
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                def _get_performance_metrics(self) -> Dict[str, Any]:
         | 
| 355 | 
            +
                    """Get current performance metrics."""
         | 
| 356 | 
            +
                    return {
         | 
| 357 | 
            +
                        "depth_distribution": dict(self.depth_distribution),
         | 
| 358 | 
            +
                        "type_distribution": {t.value: c for t, c in self.type_distribution.items()},
         | 
| 359 | 
            +
                        "success_rate": {t.value: r for t, r in self.success_rate.items()},
         | 
| 360 | 
            +
                        "cache_hits": len(self.solution_cache),
         | 
| 361 | 
            +
                        "total_steps": len(self.steps)
         | 
| 362 | 
            +
                    }
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                def _record_step(self, step: RecursiveStep):
         | 
| 365 | 
            +
                    """Record a reasoning step."""
         | 
| 366 | 
            +
                    self.steps.append(step)
         | 
| 367 | 
            +
             | 
| 368 | 
            +
                def _parse_problem_init(self, response: str, query: str, context: Dict[str, Any]) -> Subproblem:
         | 
| 369 | 
            +
                    """Parse initial problem configuration."""
         | 
| 370 | 
            +
                    problem_type = SubproblemType.COMPOSITE  # default
         | 
| 371 | 
            +
                    dependencies = []
         | 
| 372 | 
            +
                    metadata = {}
         | 
| 373 | 
            +
                    
         | 
| 374 | 
            +
                    for line in response.split('\n'):
         | 
| 375 | 
            +
                        line = line.strip()
         | 
| 376 | 
            +
                        if line.startswith('Type:'):
         | 
| 377 | 
            +
                            try:
         | 
| 378 | 
            +
                                problem_type = SubproblemType(line[5:].strip().lower())
         | 
| 379 | 
            +
                            except ValueError:
         | 
| 380 | 
            +
                                pass
         | 
| 381 | 
            +
                        elif line.startswith('Dependencies:'):
         | 
| 382 | 
            +
                            dependencies = [d.strip() for d in line[13:].split(',')]
         | 
| 383 | 
            +
                        elif line.startswith('Strategy:') or line.startswith('Approach:'):
         | 
| 384 | 
            +
                            metadata["strategy"] = line.split(':', 1)[1].strip()
         | 
| 385 | 
            +
                    
         | 
| 386 | 
            +
                    return Subproblem(
         | 
| 387 | 
            +
                        id="root",
         | 
| 388 | 
            +
                        type=problem_type,
         | 
| 389 | 
            +
                        query=query,
         | 
| 390 | 
            +
                        context=context,
         | 
| 391 | 
            +
                        parent_id=None,
         | 
| 392 | 
            +
                        children=[],
         | 
| 393 | 
            +
                        status=SolutionStatus.PENDING,
         | 
| 394 | 
            +
                        solution=None,
         | 
| 395 | 
            +
                        confidence=0.0,
         | 
| 396 | 
            +
                        dependencies=dependencies,
         | 
| 397 | 
            +
                        metadata=metadata
         | 
| 398 | 
            +
                    )
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                def _parse_subproblems(self, response: str, parent_id: str, context: Dict[str, Any]) -> List[Subproblem]:
         | 
| 401 | 
            +
                    """Parse subproblems from response."""
         | 
| 402 | 
            +
                    subproblems = []
         | 
| 403 | 
            +
                    current = None
         | 
| 404 | 
            +
                    
         | 
| 405 | 
            +
                    for line in response.split('\n'):
         | 
| 406 | 
            +
                        line = line.strip()
         | 
| 407 | 
            +
                        if not line:
         | 
| 408 | 
            +
                            continue
         | 
| 409 | 
            +
                            
         | 
| 410 | 
            +
                        if line.startswith('[S'):
         | 
| 411 | 
            +
                            if current:
         | 
| 412 | 
            +
                                subproblems.append(current)
         | 
| 413 | 
            +
                            current = None
         | 
| 414 | 
            +
                        elif line.startswith('Type:'):
         | 
| 415 | 
            +
                            try:
         | 
| 416 | 
            +
                                problem_type = SubproblemType(line[5:].strip().lower())
         | 
| 417 | 
            +
                                current = Subproblem(
         | 
| 418 | 
            +
                                    id=f"{parent_id}_{len(subproblems)}",
         | 
| 419 | 
            +
                                    type=problem_type,
         | 
| 420 | 
            +
                                    query="",
         | 
| 421 | 
            +
                                    context=context,
         | 
| 422 | 
            +
                                    parent_id=parent_id,
         | 
| 423 | 
            +
                                    children=[],
         | 
| 424 | 
            +
                                    status=SolutionStatus.PENDING,
         | 
| 425 | 
            +
                                    solution=None,
         | 
| 426 | 
            +
                                    confidence=0.0,
         | 
| 427 | 
            +
                                    dependencies=[],
         | 
| 428 | 
            +
                                    metadata={}
         | 
| 429 | 
            +
                                )
         | 
| 430 | 
            +
                            except ValueError:
         | 
| 431 | 
            +
                                current = None
         | 
| 432 | 
            +
                        elif current:
         | 
| 433 | 
            +
                            if line.startswith('Query:'):
         | 
| 434 | 
            +
                                current.query = line[6:].strip()
         | 
| 435 | 
            +
                            elif line.startswith('Dependencies:'):
         | 
| 436 | 
            +
                                current.dependencies = [d.strip() for d in line[13:].split(',')]
         | 
| 437 | 
            +
                            elif line.startswith('Approach:'):
         | 
| 438 | 
            +
                                current.metadata["approach"] = line[9:].strip()
         | 
| 439 | 
            +
                    
         | 
| 440 | 
            +
                    if current:
         | 
| 441 | 
            +
                        subproblems.append(current)
         | 
| 442 | 
            +
                    
         | 
| 443 | 
            +
                    return subproblems
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                def _parse_atomic_solution(self, response: str) -> Dict[str, Any]:
         | 
| 446 | 
            +
                    """Parse atomic solution from response."""
         | 
| 447 | 
            +
                    solution = {
         | 
| 448 | 
            +
                        "success": True,
         | 
| 449 | 
            +
                        "answer": "",
         | 
| 450 | 
            +
                        "confidence": 0.0,
         | 
| 451 | 
            +
                        "evidence": [],
         | 
| 452 | 
            +
                        "alternatives": []
         | 
| 453 | 
            +
                    }
         | 
| 454 | 
            +
                    
         | 
| 455 | 
            +
                    for line in response.split('\n'):
         | 
| 456 | 
            +
                        line = line.strip()
         | 
| 457 | 
            +
                        if line.startswith('Answer:'):
         | 
| 458 | 
            +
                            solution["answer"] = line[7:].strip()
         | 
| 459 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 460 | 
            +
                            try:
         | 
| 461 | 
            +
                                solution["confidence"] = float(line[11:].strip())
         | 
| 462 | 
            +
                            except:
         | 
| 463 | 
            +
                                pass
         | 
| 464 | 
            +
                        elif line.startswith('Evidence:'):
         | 
| 465 | 
            +
                            solution["evidence"] = [e.strip() for e in line[9:].split(',')]
         | 
| 466 | 
            +
                        elif line.startswith('Alternatives:'):
         | 
| 467 | 
            +
                            solution["alternatives"] = [a.strip() for a in line[13:].split(',')]
         | 
| 468 | 
            +
                    
         | 
| 469 | 
            +
                    return solution
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                def _parse_synthesis(self, response: str) -> Dict[str, Any]:
         | 
| 472 | 
            +
                    """Parse synthesis result from response."""
         | 
| 473 | 
            +
                    synthesis = {
         | 
| 474 | 
            +
                        "success": True,
         | 
| 475 | 
            +
                        "solution": "",
         | 
| 476 | 
            +
                        "confidence": 0.0,
         | 
| 477 | 
            +
                        "method": "",
         | 
| 478 | 
            +
                        "metrics": {}
         | 
| 479 | 
            +
                    }
         | 
| 480 | 
            +
                    
         | 
| 481 | 
            +
                    for line in response.split('\n'):
         | 
| 482 | 
            +
                        line = line.strip()
         | 
| 483 | 
            +
                        if line.startswith('Solution:'):
         | 
| 484 | 
            +
                            synthesis["solution"] = line[9:].strip()
         | 
| 485 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 486 | 
            +
                            try:
         | 
| 487 | 
            +
                                synthesis["confidence"] = float(line[11:].strip())
         | 
| 488 | 
            +
                            except:
         | 
| 489 | 
            +
                                pass
         | 
| 490 | 
            +
                        elif line.startswith('Method:'):
         | 
| 491 | 
            +
                            synthesis["method"] = line[7:].strip()
         | 
| 492 | 
            +
                        elif line.startswith('Metrics:'):
         | 
| 493 | 
            +
                            try:
         | 
| 494 | 
            +
                                synthesis["metrics"] = json.loads(line[8:].strip())
         | 
| 495 | 
            +
                            except:
         | 
| 496 | 
            +
                                pass
         | 
| 497 | 
            +
                    
         | 
| 498 | 
            +
                    return synthesis
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                def _parse_optimization(self, response: str) -> Dict[str, Any]:
         | 
| 501 | 
            +
                    """Parse optimization result from response."""
         | 
| 502 | 
            +
                    optimization = {
         | 
| 503 | 
            +
                        "answer": "",
         | 
| 504 | 
            +
                        "confidence": 0.0,
         | 
| 505 | 
            +
                        "improvements": [],
         | 
| 506 | 
            +
                        "metrics": {},
         | 
| 507 | 
            +
                        "meta_insights": []
         | 
| 508 | 
            +
                    }
         | 
| 509 | 
            +
                    
         | 
| 510 | 
            +
                    for line in response.split('\n'):
         | 
| 511 | 
            +
                        line = line.strip()
         | 
| 512 | 
            +
                        if line.startswith('Answer:'):
         | 
| 513 | 
            +
                            optimization["answer"] = line[7:].strip()
         | 
| 514 | 
            +
                        elif line.startswith('Improvements:'):
         | 
| 515 | 
            +
                            optimization["improvements"] = [i.strip() for i in line[13:].split(',')]
         | 
| 516 | 
            +
                        elif line.startswith('Metrics:'):
         | 
| 517 | 
            +
                            try:
         | 
| 518 | 
            +
                                optimization["metrics"] = json.loads(line[8:].strip())
         | 
| 519 | 
            +
                            except:
         | 
| 520 | 
            +
                                pass
         | 
| 521 | 
            +
                        elif line.startswith('Insights:'):
         | 
| 522 | 
            +
                            optimization["meta_insights"] = [i.strip() for i in line[9:].split(',')]
         | 
| 523 | 
            +
                    
         | 
| 524 | 
            +
                    return optimization
         | 
| 525 | 
            +
             | 
| 526 | 
            +
                def _problem_to_dict(self, problem: Subproblem) -> Dict[str, Any]:
         | 
| 527 | 
            +
                    """Convert problem to dictionary for serialization."""
         | 
| 528 | 
            +
                    return {
         | 
| 529 | 
            +
                        "id": problem.id,
         | 
| 530 | 
            +
                        "type": problem.type.value,
         | 
| 531 | 
            +
                        "query": problem.query,
         | 
| 532 | 
            +
                        "parent_id": problem.parent_id,
         | 
| 533 | 
            +
                        "children": problem.children,
         | 
| 534 | 
            +
                        "status": problem.status.value,
         | 
| 535 | 
            +
                        "confidence": problem.confidence,
         | 
| 536 | 
            +
                        "dependencies": problem.dependencies,
         | 
| 537 | 
            +
                        "metadata": problem.metadata
         | 
| 538 | 
            +
                    }
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                def _step_to_dict(self, step: RecursiveStep) -> Dict[str, Any]:
         | 
| 541 | 
            +
                    """Convert step to dictionary for serialization."""
         | 
| 542 | 
            +
                    return {
         | 
| 543 | 
            +
                        "id": step.id,
         | 
| 544 | 
            +
                        "subproblem_id": step.subproblem_id,
         | 
| 545 | 
            +
                        "action": step.action,
         | 
| 546 | 
            +
                        "timestamp": step.timestamp.isoformat(),
         | 
| 547 | 
            +
                        "result": step.result,
         | 
| 548 | 
            +
                        "metrics": step.metrics,
         | 
| 549 | 
            +
                        "metadata": step.metadata
         | 
| 550 | 
            +
                    }
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                def clear_cache(self):
         | 
| 553 | 
            +
                    """Clear solution cache."""
         | 
| 554 | 
            +
                    self.solution_cache.clear()
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                def get_statistics(self) -> Dict[str, Any]:
         | 
| 557 | 
            +
                    """Get detailed statistics about the reasoning process."""
         | 
| 558 | 
            +
                    return {
         | 
| 559 | 
            +
                        "total_problems": len(self.subproblems),
         | 
| 560 | 
            +
                        "total_steps": len(self.steps),
         | 
| 561 | 
            +
                        "cache_size": len(self.solution_cache),
         | 
| 562 | 
            +
                        "type_distribution": dict(self.type_distribution),
         | 
| 563 | 
            +
                        "depth_distribution": dict(self.depth_distribution),
         | 
| 564 | 
            +
                        "success_rates": dict(self.success_rate),
         | 
| 565 | 
            +
                        "average_confidence": sum(p.confidence for p in self.subproblems.values()) / len(self.subproblems) if self.subproblems else 0.0
         | 
| 566 | 
            +
                    }
         | 
    	
        reasoning/specialized.py
    ADDED
    
    | @@ -0,0 +1,313 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Specialized reasoning strategies for specific domains and tasks."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Callable
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class CodeRewriteStrategy(ReasoningStrategy):
         | 
| 15 | 
            +
                """
         | 
| 16 | 
            +
                Advanced code rewriting strategy that:
         | 
| 17 | 
            +
                1. Analyzes code structure and patterns
         | 
| 18 | 
            +
                2. Identifies refactoring opportunities
         | 
| 19 | 
            +
                3. Maintains code semantics
         | 
| 20 | 
            +
                4. Optimizes code quality
         | 
| 21 | 
            +
                5. Ensures backward compatibility
         | 
| 22 | 
            +
                """
         | 
| 23 | 
            +
                
         | 
| 24 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 25 | 
            +
                    """Rewrite code while preserving functionality."""
         | 
| 26 | 
            +
                    try:
         | 
| 27 | 
            +
                        # Analyze code
         | 
| 28 | 
            +
                        analysis = await self._analyze_code(query, context)
         | 
| 29 | 
            +
                        
         | 
| 30 | 
            +
                        # Generate rewrite plan
         | 
| 31 | 
            +
                        plan = await self._generate_rewrite_plan(analysis, context)
         | 
| 32 | 
            +
                        
         | 
| 33 | 
            +
                        # Execute rewrites
         | 
| 34 | 
            +
                        rewrites = await self._execute_rewrites(plan, context)
         | 
| 35 | 
            +
                        
         | 
| 36 | 
            +
                        # Validate changes
         | 
| 37 | 
            +
                        validation = await self._validate_changes(rewrites, context)
         | 
| 38 | 
            +
                        
         | 
| 39 | 
            +
                        return {
         | 
| 40 | 
            +
                            "success": validation["success"],
         | 
| 41 | 
            +
                            "rewrites": rewrites,
         | 
| 42 | 
            +
                            "validation": validation,
         | 
| 43 | 
            +
                            "metrics": {
         | 
| 44 | 
            +
                                "quality_improvement": validation.get("quality_score", 0.0),
         | 
| 45 | 
            +
                                "semantic_preservation": validation.get("semantic_score", 0.0)
         | 
| 46 | 
            +
                            }
         | 
| 47 | 
            +
                        }
         | 
| 48 | 
            +
                    except Exception as e:
         | 
| 49 | 
            +
                        logging.error(f"Error in code rewrite: {str(e)}")
         | 
| 50 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            class SecurityAuditStrategy(ReasoningStrategy):
         | 
| 53 | 
            +
                """
         | 
| 54 | 
            +
                Advanced security audit strategy that:
         | 
| 55 | 
            +
                1. Identifies security vulnerabilities
         | 
| 56 | 
            +
                2. Analyzes attack vectors
         | 
| 57 | 
            +
                3. Recommends security fixes
         | 
| 58 | 
            +
                4. Validates security measures
         | 
| 59 | 
            +
                5. Monitors security state
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                
         | 
| 62 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 63 | 
            +
                    """Perform security audit and generate recommendations."""
         | 
| 64 | 
            +
                    try:
         | 
| 65 | 
            +
                        # Scan for vulnerabilities
         | 
| 66 | 
            +
                        vulnerabilities = await self._scan_vulnerabilities(query, context)
         | 
| 67 | 
            +
                        
         | 
| 68 | 
            +
                        # Analyze risks
         | 
| 69 | 
            +
                        risks = await self._analyze_risks(vulnerabilities, context)
         | 
| 70 | 
            +
                        
         | 
| 71 | 
            +
                        # Generate fixes
         | 
| 72 | 
            +
                        fixes = await self._generate_fixes(risks, context)
         | 
| 73 | 
            +
                        
         | 
| 74 | 
            +
                        # Validate security
         | 
| 75 | 
            +
                        validation = await self._validate_security(fixes, context)
         | 
| 76 | 
            +
                        
         | 
| 77 | 
            +
                        return {
         | 
| 78 | 
            +
                            "success": True,
         | 
| 79 | 
            +
                            "vulnerabilities": vulnerabilities,
         | 
| 80 | 
            +
                            "risks": risks,
         | 
| 81 | 
            +
                            "fixes": fixes,
         | 
| 82 | 
            +
                            "validation": validation
         | 
| 83 | 
            +
                        }
         | 
| 84 | 
            +
                    except Exception as e:
         | 
| 85 | 
            +
                        logging.error(f"Error in security audit: {str(e)}")
         | 
| 86 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            class PerformanceOptimizationStrategy(ReasoningStrategy):
         | 
| 89 | 
            +
                """
         | 
| 90 | 
            +
                Advanced performance optimization strategy that:
         | 
| 91 | 
            +
                1. Profiles code performance
         | 
| 92 | 
            +
                2. Identifies bottlenecks
         | 
| 93 | 
            +
                3. Generates optimizations
         | 
| 94 | 
            +
                4. Measures improvements
         | 
| 95 | 
            +
                5. Validates optimizations
         | 
| 96 | 
            +
                """
         | 
| 97 | 
            +
                
         | 
| 98 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 99 | 
            +
                    """Optimize code performance."""
         | 
| 100 | 
            +
                    try:
         | 
| 101 | 
            +
                        # Profile performance
         | 
| 102 | 
            +
                        profile = await self._profile_performance(query, context)
         | 
| 103 | 
            +
                        
         | 
| 104 | 
            +
                        # Identify bottlenecks
         | 
| 105 | 
            +
                        bottlenecks = await self._identify_bottlenecks(profile, context)
         | 
| 106 | 
            +
                        
         | 
| 107 | 
            +
                        # Generate optimizations
         | 
| 108 | 
            +
                        optimizations = await self._generate_optimizations(bottlenecks, context)
         | 
| 109 | 
            +
                        
         | 
| 110 | 
            +
                        # Measure improvements
         | 
| 111 | 
            +
                        measurements = await self._measure_improvements(optimizations, context)
         | 
| 112 | 
            +
                        
         | 
| 113 | 
            +
                        return {
         | 
| 114 | 
            +
                            "success": measurements["success"],
         | 
| 115 | 
            +
                            "profile": profile,
         | 
| 116 | 
            +
                            "bottlenecks": bottlenecks,
         | 
| 117 | 
            +
                            "optimizations": optimizations,
         | 
| 118 | 
            +
                            "improvements": measurements
         | 
| 119 | 
            +
                        }
         | 
| 120 | 
            +
                    except Exception as e:
         | 
| 121 | 
            +
                        logging.error(f"Error in performance optimization: {str(e)}")
         | 
| 122 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 123 | 
            +
             | 
| 124 | 
            +
            class TestGenerationStrategy(ReasoningStrategy):
         | 
| 125 | 
            +
                """
         | 
| 126 | 
            +
                Advanced test generation strategy that:
         | 
| 127 | 
            +
                1. Analyzes code coverage
         | 
| 128 | 
            +
                2. Generates test cases
         | 
| 129 | 
            +
                3. Creates test fixtures
         | 
| 130 | 
            +
                4. Validates test quality
         | 
| 131 | 
            +
                5. Maintains test suite
         | 
| 132 | 
            +
                """
         | 
| 133 | 
            +
                
         | 
| 134 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 135 | 
            +
                    """Generate comprehensive test suite."""
         | 
| 136 | 
            +
                    try:
         | 
| 137 | 
            +
                        # Analyze coverage
         | 
| 138 | 
            +
                        coverage = await self._analyze_coverage(query, context)
         | 
| 139 | 
            +
                        
         | 
| 140 | 
            +
                        # Generate test cases
         | 
| 141 | 
            +
                        test_cases = await self._generate_test_cases(coverage, context)
         | 
| 142 | 
            +
                        
         | 
| 143 | 
            +
                        # Create fixtures
         | 
| 144 | 
            +
                        fixtures = await self._create_fixtures(test_cases, context)
         | 
| 145 | 
            +
                        
         | 
| 146 | 
            +
                        # Validate tests
         | 
| 147 | 
            +
                        validation = await self._validate_tests(test_cases, fixtures, context)
         | 
| 148 | 
            +
                        
         | 
| 149 | 
            +
                        return {
         | 
| 150 | 
            +
                            "success": validation["success"],
         | 
| 151 | 
            +
                            "test_cases": test_cases,
         | 
| 152 | 
            +
                            "fixtures": fixtures,
         | 
| 153 | 
            +
                            "validation": validation,
         | 
| 154 | 
            +
                            "metrics": {
         | 
| 155 | 
            +
                                "coverage": coverage.get("percentage", 0.0),
         | 
| 156 | 
            +
                                "quality_score": validation.get("quality_score", 0.0)
         | 
| 157 | 
            +
                            }
         | 
| 158 | 
            +
                        }
         | 
| 159 | 
            +
                    except Exception as e:
         | 
| 160 | 
            +
                        logging.error(f"Error in test generation: {str(e)}")
         | 
| 161 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 162 | 
            +
             | 
| 163 | 
            +
            class DocumentationStrategy(ReasoningStrategy):
         | 
| 164 | 
            +
                """
         | 
| 165 | 
            +
                Advanced documentation strategy that:
         | 
| 166 | 
            +
                1. Analyzes code structure
         | 
| 167 | 
            +
                2. Generates documentation
         | 
| 168 | 
            +
                3. Maintains consistency
         | 
| 169 | 
            +
                4. Updates references
         | 
| 170 | 
            +
                5. Validates completeness
         | 
| 171 | 
            +
                """
         | 
| 172 | 
            +
                
         | 
| 173 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 174 | 
            +
                    """Generate and maintain documentation."""
         | 
| 175 | 
            +
                    try:
         | 
| 176 | 
            +
                        # Analyze structure
         | 
| 177 | 
            +
                        structure = await self._analyze_structure(query, context)
         | 
| 178 | 
            +
                        
         | 
| 179 | 
            +
                        # Generate documentation
         | 
| 180 | 
            +
                        documentation = await self._generate_documentation(structure, context)
         | 
| 181 | 
            +
                        
         | 
| 182 | 
            +
                        # Update references
         | 
| 183 | 
            +
                        references = await self._update_references(documentation, context)
         | 
| 184 | 
            +
                        
         | 
| 185 | 
            +
                        # Validate completeness
         | 
| 186 | 
            +
                        validation = await self._validate_documentation(documentation, references, context)
         | 
| 187 | 
            +
                        
         | 
| 188 | 
            +
                        return {
         | 
| 189 | 
            +
                            "success": validation["success"],
         | 
| 190 | 
            +
                            "documentation": documentation,
         | 
| 191 | 
            +
                            "references": references,
         | 
| 192 | 
            +
                            "validation": validation,
         | 
| 193 | 
            +
                            "metrics": {
         | 
| 194 | 
            +
                                "completeness": validation.get("completeness_score", 0.0),
         | 
| 195 | 
            +
                                "consistency": validation.get("consistency_score", 0.0)
         | 
| 196 | 
            +
                            }
         | 
| 197 | 
            +
                        }
         | 
| 198 | 
            +
                    except Exception as e:
         | 
| 199 | 
            +
                        logging.error(f"Error in documentation: {str(e)}")
         | 
| 200 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 201 | 
            +
             | 
| 202 | 
            +
            class APIDesignStrategy(ReasoningStrategy):
         | 
| 203 | 
            +
                """
         | 
| 204 | 
            +
                Advanced API design strategy that:
         | 
| 205 | 
            +
                1. Analyzes requirements
         | 
| 206 | 
            +
                2. Designs API structure
         | 
| 207 | 
            +
                3. Generates specifications
         | 
| 208 | 
            +
                4. Validates design
         | 
| 209 | 
            +
                5. Maintains versioning
         | 
| 210 | 
            +
                """
         | 
| 211 | 
            +
                
         | 
| 212 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 213 | 
            +
                    """Design and validate API."""
         | 
| 214 | 
            +
                    try:
         | 
| 215 | 
            +
                        # Analyze requirements
         | 
| 216 | 
            +
                        requirements = await self._analyze_requirements(query, context)
         | 
| 217 | 
            +
                        
         | 
| 218 | 
            +
                        # Design structure
         | 
| 219 | 
            +
                        design = await self._design_structure(requirements, context)
         | 
| 220 | 
            +
                        
         | 
| 221 | 
            +
                        # Generate specs
         | 
| 222 | 
            +
                        specs = await self._generate_specs(design, context)
         | 
| 223 | 
            +
                        
         | 
| 224 | 
            +
                        # Validate design
         | 
| 225 | 
            +
                        validation = await self._validate_design(specs, context)
         | 
| 226 | 
            +
                        
         | 
| 227 | 
            +
                        return {
         | 
| 228 | 
            +
                            "success": validation["success"],
         | 
| 229 | 
            +
                            "requirements": requirements,
         | 
| 230 | 
            +
                            "design": design,
         | 
| 231 | 
            +
                            "specs": specs,
         | 
| 232 | 
            +
                            "validation": validation
         | 
| 233 | 
            +
                        }
         | 
| 234 | 
            +
                    except Exception as e:
         | 
| 235 | 
            +
                        logging.error(f"Error in API design: {str(e)}")
         | 
| 236 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 237 | 
            +
             | 
| 238 | 
            +
            class DependencyManagementStrategy(ReasoningStrategy):
         | 
| 239 | 
            +
                """
         | 
| 240 | 
            +
                Advanced dependency management strategy that:
         | 
| 241 | 
            +
                1. Analyzes dependencies
         | 
| 242 | 
            +
                2. Resolves conflicts
         | 
| 243 | 
            +
                3. Optimizes versions
         | 
| 244 | 
            +
                4. Ensures compatibility
         | 
| 245 | 
            +
                5. Maintains security
         | 
| 246 | 
            +
                """
         | 
| 247 | 
            +
                
         | 
| 248 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 249 | 
            +
                    """Manage and optimize dependencies."""
         | 
| 250 | 
            +
                    try:
         | 
| 251 | 
            +
                        # Analyze dependencies
         | 
| 252 | 
            +
                        analysis = await self._analyze_dependencies(query, context)
         | 
| 253 | 
            +
                        
         | 
| 254 | 
            +
                        # Resolve conflicts
         | 
| 255 | 
            +
                        resolution = await self._resolve_conflicts(analysis, context)
         | 
| 256 | 
            +
                        
         | 
| 257 | 
            +
                        # Optimize versions
         | 
| 258 | 
            +
                        optimization = await self._optimize_versions(resolution, context)
         | 
| 259 | 
            +
                        
         | 
| 260 | 
            +
                        # Validate compatibility
         | 
| 261 | 
            +
                        validation = await self._validate_compatibility(optimization, context)
         | 
| 262 | 
            +
                        
         | 
| 263 | 
            +
                        return {
         | 
| 264 | 
            +
                            "success": validation["success"],
         | 
| 265 | 
            +
                            "analysis": analysis,
         | 
| 266 | 
            +
                            "resolution": resolution,
         | 
| 267 | 
            +
                            "optimization": optimization,
         | 
| 268 | 
            +
                            "validation": validation
         | 
| 269 | 
            +
                        }
         | 
| 270 | 
            +
                    except Exception as e:
         | 
| 271 | 
            +
                        logging.error(f"Error in dependency management: {str(e)}")
         | 
| 272 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 273 | 
            +
             | 
| 274 | 
            +
            class CodeReviewStrategy(ReasoningStrategy):
         | 
| 275 | 
            +
                """
         | 
| 276 | 
            +
                Advanced code review strategy that:
         | 
| 277 | 
            +
                1. Analyzes code quality
         | 
| 278 | 
            +
                2. Identifies issues
         | 
| 279 | 
            +
                3. Suggests improvements
         | 
| 280 | 
            +
                4. Tracks changes
         | 
| 281 | 
            +
                5. Validates fixes
         | 
| 282 | 
            +
                """
         | 
| 283 | 
            +
                
         | 
| 284 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 285 | 
            +
                    """Perform comprehensive code review."""
         | 
| 286 | 
            +
                    try:
         | 
| 287 | 
            +
                        # Analyze quality
         | 
| 288 | 
            +
                        quality = await self._analyze_quality(query, context)
         | 
| 289 | 
            +
                        
         | 
| 290 | 
            +
                        # Identify issues
         | 
| 291 | 
            +
                        issues = await self._identify_issues(quality, context)
         | 
| 292 | 
            +
                        
         | 
| 293 | 
            +
                        # Generate suggestions
         | 
| 294 | 
            +
                        suggestions = await self._generate_suggestions(issues, context)
         | 
| 295 | 
            +
                        
         | 
| 296 | 
            +
                        # Track changes
         | 
| 297 | 
            +
                        tracking = await self._track_changes(suggestions, context)
         | 
| 298 | 
            +
                        
         | 
| 299 | 
            +
                        return {
         | 
| 300 | 
            +
                            "success": True,
         | 
| 301 | 
            +
                            "quality": quality,
         | 
| 302 | 
            +
                            "issues": issues,
         | 
| 303 | 
            +
                            "suggestions": suggestions,
         | 
| 304 | 
            +
                            "tracking": tracking,
         | 
| 305 | 
            +
                            "metrics": {
         | 
| 306 | 
            +
                                "quality_score": quality.get("score", 0.0),
         | 
| 307 | 
            +
                                "issues_found": len(issues),
         | 
| 308 | 
            +
                                "suggestions_made": len(suggestions)
         | 
| 309 | 
            +
                            }
         | 
| 310 | 
            +
                        }
         | 
| 311 | 
            +
                    except Exception as e:
         | 
| 312 | 
            +
                        logging.error(f"Error in code review: {str(e)}")
         | 
| 313 | 
            +
                        return {"success": False, "error": str(e)}
         | 
    	
        reasoning/tree_of_thoughts.py
    ADDED
    
    | @@ -0,0 +1,513 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Tree of Thoughts reasoning implementation with advanced tree exploration."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            import heapq
         | 
| 9 | 
            +
            from collections import defaultdict
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            from .base import ReasoningStrategy
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            class NodeType(Enum):
         | 
| 14 | 
            +
                """Types of nodes in the thought tree."""
         | 
| 15 | 
            +
                ROOT = "root"
         | 
| 16 | 
            +
                HYPOTHESIS = "hypothesis"
         | 
| 17 | 
            +
                EVIDENCE = "evidence"
         | 
| 18 | 
            +
                ANALYSIS = "analysis"
         | 
| 19 | 
            +
                SYNTHESIS = "synthesis"
         | 
| 20 | 
            +
                EVALUATION = "evaluation"
         | 
| 21 | 
            +
                CONCLUSION = "conclusion"
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            @dataclass
         | 
| 24 | 
            +
            class TreeNode:
         | 
| 25 | 
            +
                """Represents a node in the thought tree."""
         | 
| 26 | 
            +
                id: str
         | 
| 27 | 
            +
                type: NodeType
         | 
| 28 | 
            +
                content: str
         | 
| 29 | 
            +
                confidence: float
         | 
| 30 | 
            +
                children: List['TreeNode']
         | 
| 31 | 
            +
                parent: Optional['TreeNode']
         | 
| 32 | 
            +
                metadata: Dict[str, Any]
         | 
| 33 | 
            +
                depth: int
         | 
| 34 | 
            +
                evaluation_score: float = 0.0
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            class TreeOfThoughtsStrategy(ReasoningStrategy):
         | 
| 37 | 
            +
                """
         | 
| 38 | 
            +
                Advanced Tree of Thoughts reasoning implementation with:
         | 
| 39 | 
            +
                - Beam search for path exploration
         | 
| 40 | 
            +
                - Dynamic node evaluation
         | 
| 41 | 
            +
                - Pruning strategies
         | 
| 42 | 
            +
                - Path optimization
         | 
| 43 | 
            +
                - Meta-learning from tree patterns
         | 
| 44 | 
            +
                """
         | 
| 45 | 
            +
                
         | 
| 46 | 
            +
                def __init__(self, 
         | 
| 47 | 
            +
                             max_depth: int = 5,
         | 
| 48 | 
            +
                             beam_width: int = 3,
         | 
| 49 | 
            +
                             min_confidence: float = 0.6,
         | 
| 50 | 
            +
                             exploration_factor: float = 0.3,
         | 
| 51 | 
            +
                             prune_threshold: float = 0.4):
         | 
| 52 | 
            +
                    self.max_depth = max_depth
         | 
| 53 | 
            +
                    self.beam_width = beam_width
         | 
| 54 | 
            +
                    self.min_confidence = min_confidence
         | 
| 55 | 
            +
                    self.exploration_factor = exploration_factor
         | 
| 56 | 
            +
                    self.prune_threshold = prune_threshold
         | 
| 57 | 
            +
                    self.node_history: Dict[str, TreeNode] = {}
         | 
| 58 | 
            +
                    self.path_patterns: Dict[str, float] = defaultdict(float)
         | 
| 59 | 
            +
                    
         | 
| 60 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 61 | 
            +
                    """Main reasoning method implementing tree of thoughts."""
         | 
| 62 | 
            +
                    try:
         | 
| 63 | 
            +
                        # Initialize root node
         | 
| 64 | 
            +
                        root = await self._create_root_node(query, context)
         | 
| 65 | 
            +
                        
         | 
| 66 | 
            +
                        # Build and explore tree
         | 
| 67 | 
            +
                        tree = await self._build_tree(root, context)
         | 
| 68 | 
            +
                        
         | 
| 69 | 
            +
                        # Find best paths
         | 
| 70 | 
            +
                        paths = await self._find_best_paths(tree, context)
         | 
| 71 | 
            +
                        
         | 
| 72 | 
            +
                        # Synthesize conclusion
         | 
| 73 | 
            +
                        conclusion = await self._synthesize_conclusion(paths, context)
         | 
| 74 | 
            +
                        
         | 
| 75 | 
            +
                        # Update history and patterns
         | 
| 76 | 
            +
                        self._update_history(tree)
         | 
| 77 | 
            +
                        self._update_patterns(paths)
         | 
| 78 | 
            +
                        
         | 
| 79 | 
            +
                        return {
         | 
| 80 | 
            +
                            "success": True,
         | 
| 81 | 
            +
                            "answer": conclusion["answer"],
         | 
| 82 | 
            +
                            "confidence": conclusion["confidence"],
         | 
| 83 | 
            +
                            "tree": self._tree_to_dict(tree),
         | 
| 84 | 
            +
                            "best_paths": [self._path_to_dict(p) for p in paths],
         | 
| 85 | 
            +
                            "reasoning_trace": conclusion["trace"],
         | 
| 86 | 
            +
                            "meta_insights": conclusion["meta_insights"]
         | 
| 87 | 
            +
                        }
         | 
| 88 | 
            +
                    except Exception as e:
         | 
| 89 | 
            +
                        logging.error(f"Error in tree of thoughts reasoning: {str(e)}")
         | 
| 90 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                async def _create_root_node(self, query: str, context: Dict[str, Any]) -> TreeNode:
         | 
| 93 | 
            +
                    """Create the root node of the thought tree."""
         | 
| 94 | 
            +
                    prompt = f"""
         | 
| 95 | 
            +
                    Initialize root thought node for query:
         | 
| 96 | 
            +
                    Query: {query}
         | 
| 97 | 
            +
                    Context: {json.dumps(context)}
         | 
| 98 | 
            +
                    
         | 
| 99 | 
            +
                    Provide:
         | 
| 100 | 
            +
                    1. Initial problem decomposition
         | 
| 101 | 
            +
                    2. Key aspects to explore
         | 
| 102 | 
            +
                    3. Evaluation criteria
         | 
| 103 | 
            +
                    4. Success metrics
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
                    Format as:
         | 
| 106 | 
            +
                    [Root]
         | 
| 107 | 
            +
                    Decomposition: ...
         | 
| 108 | 
            +
                    Aspects: ...
         | 
| 109 | 
            +
                    Criteria: ...
         | 
| 110 | 
            +
                    Metrics: ...
         | 
| 111 | 
            +
                    """
         | 
| 112 | 
            +
                    
         | 
| 113 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 114 | 
            +
                    return self._parse_root_node(response["answer"], query)
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                async def _build_tree(self, root: TreeNode, context: Dict[str, Any]) -> TreeNode:
         | 
| 117 | 
            +
                    """Build and explore the thought tree."""
         | 
| 118 | 
            +
                    # Initialize beam with root
         | 
| 119 | 
            +
                    beam = [(root.evaluation_score, root)]
         | 
| 120 | 
            +
                    visited: Set[str] = set()
         | 
| 121 | 
            +
                    
         | 
| 122 | 
            +
                    for depth in range(self.max_depth):
         | 
| 123 | 
            +
                        next_beam = []
         | 
| 124 | 
            +
                        
         | 
| 125 | 
            +
                        for _, node in beam:
         | 
| 126 | 
            +
                            if node.id in visited:
         | 
| 127 | 
            +
                                continue
         | 
| 128 | 
            +
                                
         | 
| 129 | 
            +
                            visited.add(node.id)
         | 
| 130 | 
            +
                            
         | 
| 131 | 
            +
                            # Generate child nodes
         | 
| 132 | 
            +
                            children = await self._generate_children(node, context)
         | 
| 133 | 
            +
                            
         | 
| 134 | 
            +
                            # Evaluate and filter children
         | 
| 135 | 
            +
                            evaluated_children = await self._evaluate_nodes(children, context)
         | 
| 136 | 
            +
                            
         | 
| 137 | 
            +
                            # Add to beam
         | 
| 138 | 
            +
                            for child in evaluated_children:
         | 
| 139 | 
            +
                                if child.evaluation_score > self.prune_threshold:
         | 
| 140 | 
            +
                                    next_beam.append((child.evaluation_score, child))
         | 
| 141 | 
            +
                                    node.children.append(child)
         | 
| 142 | 
            +
                        
         | 
| 143 | 
            +
                        # Select best nodes for next iteration
         | 
| 144 | 
            +
                        beam = heapq.nlargest(self.beam_width, next_beam, key=lambda x: x[0])
         | 
| 145 | 
            +
                        
         | 
| 146 | 
            +
                        if not beam:
         | 
| 147 | 
            +
                            break
         | 
| 148 | 
            +
                    
         | 
| 149 | 
            +
                    return root
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                async def _generate_children(self, parent: TreeNode, context: Dict[str, Any]) -> List[TreeNode]:
         | 
| 152 | 
            +
                    """Generate child nodes for a given parent."""
         | 
| 153 | 
            +
                    prompt = f"""
         | 
| 154 | 
            +
                    Generate child thoughts for node:
         | 
| 155 | 
            +
                    Parent: {json.dumps(self._node_to_dict(parent))}
         | 
| 156 | 
            +
                    Context: {json.dumps(context)}
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    For each child provide:
         | 
| 159 | 
            +
                    1. [Type]: {" | ".join([t.value for t in NodeType if t != NodeType.ROOT])}
         | 
| 160 | 
            +
                    2. [Content]: Main thought
         | 
| 161 | 
            +
                    3. [Confidence]: 0-1 score
         | 
| 162 | 
            +
                    4. [Rationale]: Why this follows from parent
         | 
| 163 | 
            +
                    5. [Potential]: Future exploration potential
         | 
| 164 | 
            +
                    
         | 
| 165 | 
            +
                    Format as:
         | 
| 166 | 
            +
                    [C1]
         | 
| 167 | 
            +
                    Type: ...
         | 
| 168 | 
            +
                    Content: ...
         | 
| 169 | 
            +
                    Confidence: ...
         | 
| 170 | 
            +
                    Rationale: ...
         | 
| 171 | 
            +
                    Potential: ...
         | 
| 172 | 
            +
                    """
         | 
| 173 | 
            +
                    
         | 
| 174 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 175 | 
            +
                    return self._parse_child_nodes(response["answer"], parent)
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                async def _evaluate_nodes(self, nodes: List[TreeNode], context: Dict[str, Any]) -> List[TreeNode]:
         | 
| 178 | 
            +
                    """Evaluate a list of nodes."""
         | 
| 179 | 
            +
                    prompt = f"""
         | 
| 180 | 
            +
                    Evaluate thought nodes:
         | 
| 181 | 
            +
                    Nodes: {json.dumps([self._node_to_dict(n) for n in nodes])}
         | 
| 182 | 
            +
                    Context: {json.dumps(context)}
         | 
| 183 | 
            +
                    
         | 
| 184 | 
            +
                    For each node evaluate:
         | 
| 185 | 
            +
                    1. Logical coherence
         | 
| 186 | 
            +
                    2. Evidence support
         | 
| 187 | 
            +
                    3. Novelty value
         | 
| 188 | 
            +
                    4. Exploration potential
         | 
| 189 | 
            +
                    
         | 
| 190 | 
            +
                    Format as:
         | 
| 191 | 
            +
                    [N1]
         | 
| 192 | 
            +
                    Coherence: 0-1
         | 
| 193 | 
            +
                    Evidence: 0-1
         | 
| 194 | 
            +
                    Novelty: 0-1
         | 
| 195 | 
            +
                    Potential: 0-1
         | 
| 196 | 
            +
                    Overall: 0-1
         | 
| 197 | 
            +
                    """
         | 
| 198 | 
            +
                    
         | 
| 199 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 200 | 
            +
                    return self._apply_evaluations(nodes, response["answer"])
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                async def _find_best_paths(self, root: TreeNode, context: Dict[str, Any]) -> List[List[TreeNode]]:
         | 
| 203 | 
            +
                    """Find the best paths through the tree."""
         | 
| 204 | 
            +
                    paths = []
         | 
| 205 | 
            +
                    current_path = [root]
         | 
| 206 | 
            +
                    
         | 
| 207 | 
            +
                    def dfs(node: TreeNode, path: List[TreeNode]):
         | 
| 208 | 
            +
                        if not node.children:
         | 
| 209 | 
            +
                            paths.append(path[:])
         | 
| 210 | 
            +
                            return
         | 
| 211 | 
            +
                            
         | 
| 212 | 
            +
                        # Sort children by score
         | 
| 213 | 
            +
                        sorted_children = sorted(node.children, key=lambda x: x.evaluation_score, reverse=True)
         | 
| 214 | 
            +
                        
         | 
| 215 | 
            +
                        # Explore top paths
         | 
| 216 | 
            +
                        for child in sorted_children[:self.beam_width]:
         | 
| 217 | 
            +
                            path.append(child)
         | 
| 218 | 
            +
                            dfs(child, path)
         | 
| 219 | 
            +
                            path.pop()
         | 
| 220 | 
            +
                    
         | 
| 221 | 
            +
                    dfs(root, current_path)
         | 
| 222 | 
            +
                    
         | 
| 223 | 
            +
                    # Evaluate complete paths
         | 
| 224 | 
            +
                    evaluated_paths = await self._evaluate_paths(paths, context)
         | 
| 225 | 
            +
                    
         | 
| 226 | 
            +
                    # Return top paths
         | 
| 227 | 
            +
                    return sorted(evaluated_paths, key=lambda p: sum(n.evaluation_score for n in p), reverse=True)[:self.beam_width]
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                async def _synthesize_conclusion(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 230 | 
            +
                    """Synthesize final conclusion from best paths."""
         | 
| 231 | 
            +
                    prompt = f"""
         | 
| 232 | 
            +
                    Synthesize conclusion from thought paths:
         | 
| 233 | 
            +
                    Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
         | 
| 234 | 
            +
                    Context: {json.dumps(context)}
         | 
| 235 | 
            +
                    
         | 
| 236 | 
            +
                    Provide:
         | 
| 237 | 
            +
                    1. Main conclusion
         | 
| 238 | 
            +
                    2. Confidence level
         | 
| 239 | 
            +
                    3. Reasoning trace
         | 
| 240 | 
            +
                    4. Supporting evidence
         | 
| 241 | 
            +
                    5. Alternative perspectives
         | 
| 242 | 
            +
                    6. Meta-insights
         | 
| 243 | 
            +
                    
         | 
| 244 | 
            +
                    Format as:
         | 
| 245 | 
            +
                    [Conclusion]
         | 
| 246 | 
            +
                    Answer: ...
         | 
| 247 | 
            +
                    Confidence: ...
         | 
| 248 | 
            +
                    Trace: ...
         | 
| 249 | 
            +
                    Evidence: ...
         | 
| 250 | 
            +
                    Alternatives: ...
         | 
| 251 | 
            +
                    
         | 
| 252 | 
            +
                    [Meta]
         | 
| 253 | 
            +
                    Insights: ...
         | 
| 254 | 
            +
                    Patterns: ...
         | 
| 255 | 
            +
                    """
         | 
| 256 | 
            +
                    
         | 
| 257 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 258 | 
            +
                    return self._parse_conclusion(response["answer"])
         | 
| 259 | 
            +
             | 
| 260 | 
            +
                def _parse_root_node(self, response: str, query: str) -> TreeNode:
         | 
| 261 | 
            +
                    """Parse root node from response."""
         | 
| 262 | 
            +
                    root = TreeNode(
         | 
| 263 | 
            +
                        id="root",
         | 
| 264 | 
            +
                        type=NodeType.ROOT,
         | 
| 265 | 
            +
                        content=query,
         | 
| 266 | 
            +
                        confidence=1.0,
         | 
| 267 | 
            +
                        children=[],
         | 
| 268 | 
            +
                        parent=None,
         | 
| 269 | 
            +
                        metadata={},
         | 
| 270 | 
            +
                        depth=0
         | 
| 271 | 
            +
                    )
         | 
| 272 | 
            +
                    
         | 
| 273 | 
            +
                    for line in response.split('\n'):
         | 
| 274 | 
            +
                        line = line.strip()
         | 
| 275 | 
            +
                        if line.startswith('Decomposition:'):
         | 
| 276 | 
            +
                            root.metadata["decomposition"] = line[14:].strip()
         | 
| 277 | 
            +
                        elif line.startswith('Aspects:'):
         | 
| 278 | 
            +
                            root.metadata["aspects"] = [a.strip() for a in line[8:].split(',')]
         | 
| 279 | 
            +
                        elif line.startswith('Criteria:'):
         | 
| 280 | 
            +
                            root.metadata["criteria"] = [c.strip() for c in line[9:].split(',')]
         | 
| 281 | 
            +
                        elif line.startswith('Metrics:'):
         | 
| 282 | 
            +
                            root.metadata["metrics"] = [m.strip() for m in line[8:].split(',')]
         | 
| 283 | 
            +
                    
         | 
| 284 | 
            +
                    return root
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                def _parse_child_nodes(self, response: str, parent: TreeNode) -> List[TreeNode]:
         | 
| 287 | 
            +
                    """Parse child nodes from response."""
         | 
| 288 | 
            +
                    children = []
         | 
| 289 | 
            +
                    current = None
         | 
| 290 | 
            +
                    
         | 
| 291 | 
            +
                    for line in response.split('\n'):
         | 
| 292 | 
            +
                        line = line.strip()
         | 
| 293 | 
            +
                        if not line:
         | 
| 294 | 
            +
                            continue
         | 
| 295 | 
            +
                            
         | 
| 296 | 
            +
                        if line.startswith('[C'):
         | 
| 297 | 
            +
                            if current:
         | 
| 298 | 
            +
                                children.append(current)
         | 
| 299 | 
            +
                            current = None
         | 
| 300 | 
            +
                        elif line.startswith('Type:'):
         | 
| 301 | 
            +
                            type_str = line[5:].strip()
         | 
| 302 | 
            +
                            try:
         | 
| 303 | 
            +
                                node_type = NodeType(type_str.lower())
         | 
| 304 | 
            +
                                current = TreeNode(
         | 
| 305 | 
            +
                                    id=f"{parent.id}_{len(children)}",
         | 
| 306 | 
            +
                                    type=node_type,
         | 
| 307 | 
            +
                                    content="",
         | 
| 308 | 
            +
                                    confidence=0.0,
         | 
| 309 | 
            +
                                    children=[],
         | 
| 310 | 
            +
                                    parent=parent,
         | 
| 311 | 
            +
                                    metadata={},
         | 
| 312 | 
            +
                                    depth=parent.depth + 1
         | 
| 313 | 
            +
                                )
         | 
| 314 | 
            +
                            except ValueError:
         | 
| 315 | 
            +
                                logging.warning(f"Invalid node type: {type_str}")
         | 
| 316 | 
            +
                        elif current:
         | 
| 317 | 
            +
                            if line.startswith('Content:'):
         | 
| 318 | 
            +
                                current.content = line[8:].strip()
         | 
| 319 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 320 | 
            +
                                try:
         | 
| 321 | 
            +
                                    current.confidence = float(line[11:].strip())
         | 
| 322 | 
            +
                                except:
         | 
| 323 | 
            +
                                    current.confidence = 0.5
         | 
| 324 | 
            +
                            elif line.startswith('Rationale:'):
         | 
| 325 | 
            +
                                current.metadata["rationale"] = line[10:].strip()
         | 
| 326 | 
            +
                            elif line.startswith('Potential:'):
         | 
| 327 | 
            +
                                current.metadata["potential"] = line[10:].strip()
         | 
| 328 | 
            +
                    
         | 
| 329 | 
            +
                    if current:
         | 
| 330 | 
            +
                        children.append(current)
         | 
| 331 | 
            +
                    
         | 
| 332 | 
            +
                    return children
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                def _apply_evaluations(self, nodes: List[TreeNode], response: str) -> List[TreeNode]:
         | 
| 335 | 
            +
                    """Apply evaluation scores to nodes."""
         | 
| 336 | 
            +
                    current_node_idx = 0
         | 
| 337 | 
            +
                    current_scores = {}
         | 
| 338 | 
            +
                    
         | 
| 339 | 
            +
                    for line in response.split('\n'):
         | 
| 340 | 
            +
                        line = line.strip()
         | 
| 341 | 
            +
                        if not line:
         | 
| 342 | 
            +
                            continue
         | 
| 343 | 
            +
                            
         | 
| 344 | 
            +
                        if line.startswith('[N'):
         | 
| 345 | 
            +
                            if current_scores and current_node_idx < len(nodes):
         | 
| 346 | 
            +
                                nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
         | 
| 347 | 
            +
                                nodes[current_node_idx].metadata.update(current_scores)
         | 
| 348 | 
            +
                                current_node_idx += 1
         | 
| 349 | 
            +
                            current_scores = {}
         | 
| 350 | 
            +
                        elif ':' in line:
         | 
| 351 | 
            +
                            key, value = line.split(':')
         | 
| 352 | 
            +
                            try:
         | 
| 353 | 
            +
                                current_scores[key.strip()] = float(value.strip())
         | 
| 354 | 
            +
                            except:
         | 
| 355 | 
            +
                                pass
         | 
| 356 | 
            +
                    
         | 
| 357 | 
            +
                    if current_scores and current_node_idx < len(nodes):
         | 
| 358 | 
            +
                        nodes[current_node_idx].evaluation_score = current_scores.get("Overall", 0.0)
         | 
| 359 | 
            +
                        nodes[current_node_idx].metadata.update(current_scores)
         | 
| 360 | 
            +
                    
         | 
| 361 | 
            +
                    return nodes
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                async def _evaluate_paths(self, paths: List[List[TreeNode]], context: Dict[str, Any]) -> List[List[TreeNode]]:
         | 
| 364 | 
            +
                    """Evaluate complete reasoning paths."""
         | 
| 365 | 
            +
                    prompt = f"""
         | 
| 366 | 
            +
                    Evaluate complete reasoning paths:
         | 
| 367 | 
            +
                    Paths: {json.dumps([[self._node_to_dict(n) for n in path] for path in paths])}
         | 
| 368 | 
            +
                    Context: {json.dumps(context)}
         | 
| 369 | 
            +
                    
         | 
| 370 | 
            +
                    For each path evaluate:
         | 
| 371 | 
            +
                    1. Coherence of progression
         | 
| 372 | 
            +
                    2. Evidence support
         | 
| 373 | 
            +
                    3. Conclusion strength
         | 
| 374 | 
            +
                    4. Novel insights
         | 
| 375 | 
            +
                    
         | 
| 376 | 
            +
                    Format as:
         | 
| 377 | 
            +
                    [P1]
         | 
| 378 | 
            +
                    Coherence: 0-1
         | 
| 379 | 
            +
                    Evidence: 0-1
         | 
| 380 | 
            +
                    Conclusion: 0-1
         | 
| 381 | 
            +
                    Insights: 0-1
         | 
| 382 | 
            +
                    Overall: 0-1
         | 
| 383 | 
            +
                    """
         | 
| 384 | 
            +
                    
         | 
| 385 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 386 | 
            +
                    scores = self._parse_path_scores(response["answer"])
         | 
| 387 | 
            +
                    
         | 
| 388 | 
            +
                    # Apply scores to paths
         | 
| 389 | 
            +
                    for i, path in enumerate(paths):
         | 
| 390 | 
            +
                        if i < len(scores):
         | 
| 391 | 
            +
                            for node in path:
         | 
| 392 | 
            +
                                node.evaluation_score *= scores[i]
         | 
| 393 | 
            +
                    
         | 
| 394 | 
            +
                    return paths
         | 
| 395 | 
            +
             | 
| 396 | 
            +
                def _parse_path_scores(self, response: str) -> List[float]:
         | 
| 397 | 
            +
                    """Parse path evaluation scores."""
         | 
| 398 | 
            +
                    scores = []
         | 
| 399 | 
            +
                    current_score = None
         | 
| 400 | 
            +
                    
         | 
| 401 | 
            +
                    for line in response.split('\n'):
         | 
| 402 | 
            +
                        line = line.strip()
         | 
| 403 | 
            +
                        if not line:
         | 
| 404 | 
            +
                            continue
         | 
| 405 | 
            +
                            
         | 
| 406 | 
            +
                        if line.startswith('[P'):
         | 
| 407 | 
            +
                            if current_score is not None:
         | 
| 408 | 
            +
                                scores.append(current_score)
         | 
| 409 | 
            +
                            current_score = None
         | 
| 410 | 
            +
                        elif line.startswith('Overall:'):
         | 
| 411 | 
            +
                            try:
         | 
| 412 | 
            +
                                current_score = float(line[8:].strip())
         | 
| 413 | 
            +
                            except:
         | 
| 414 | 
            +
                                current_score = 0.5
         | 
| 415 | 
            +
                    
         | 
| 416 | 
            +
                    if current_score is not None:
         | 
| 417 | 
            +
                        scores.append(current_score)
         | 
| 418 | 
            +
                    
         | 
| 419 | 
            +
                    return scores
         | 
| 420 | 
            +
             | 
| 421 | 
            +
                def _parse_conclusion(self, response: str) -> Dict[str, Any]:
         | 
| 422 | 
            +
                    """Parse final conclusion."""
         | 
| 423 | 
            +
                    conclusion = {
         | 
| 424 | 
            +
                        "answer": "",
         | 
| 425 | 
            +
                        "confidence": 0.0,
         | 
| 426 | 
            +
                        "trace": [],
         | 
| 427 | 
            +
                        "evidence": [],
         | 
| 428 | 
            +
                        "alternatives": [],
         | 
| 429 | 
            +
                        "meta_insights": []
         | 
| 430 | 
            +
                    }
         | 
| 431 | 
            +
                    
         | 
| 432 | 
            +
                    section = None
         | 
| 433 | 
            +
                    for line in response.split('\n'):
         | 
| 434 | 
            +
                        line = line.strip()
         | 
| 435 | 
            +
                        if not line:
         | 
| 436 | 
            +
                            continue
         | 
| 437 | 
            +
                            
         | 
| 438 | 
            +
                        if line.startswith('[Conclusion]'):
         | 
| 439 | 
            +
                            section = "conclusion"
         | 
| 440 | 
            +
                        elif line.startswith('[Meta]'):
         | 
| 441 | 
            +
                            section = "meta"
         | 
| 442 | 
            +
                        elif section == "conclusion":
         | 
| 443 | 
            +
                            if line.startswith('Answer:'):
         | 
| 444 | 
            +
                                conclusion["answer"] = line[7:].strip()
         | 
| 445 | 
            +
                            elif line.startswith('Confidence:'):
         | 
| 446 | 
            +
                                try:
         | 
| 447 | 
            +
                                    conclusion["confidence"] = float(line[11:].strip())
         | 
| 448 | 
            +
                                except:
         | 
| 449 | 
            +
                                    conclusion["confidence"] = 0.5
         | 
| 450 | 
            +
                            elif line.startswith('Trace:'):
         | 
| 451 | 
            +
                                conclusion["trace"] = [t.strip() for t in line[6:].split(',')]
         | 
| 452 | 
            +
                            elif line.startswith('Evidence:'):
         | 
| 453 | 
            +
                                conclusion["evidence"] = [e.strip() for e in line[9:].split(',')]
         | 
| 454 | 
            +
                            elif line.startswith('Alternatives:'):
         | 
| 455 | 
            +
                                conclusion["alternatives"] = [a.strip() for a in line[13:].split(',')]
         | 
| 456 | 
            +
                        elif section == "meta":
         | 
| 457 | 
            +
                            if line.startswith('Insights:'):
         | 
| 458 | 
            +
                                conclusion["meta_insights"].extend([i.strip() for i in line[9:].split(',')])
         | 
| 459 | 
            +
                    
         | 
| 460 | 
            +
                    return conclusion
         | 
| 461 | 
            +
             | 
| 462 | 
            +
                def _node_to_dict(self, node: TreeNode) -> Dict[str, Any]:
         | 
| 463 | 
            +
                    """Convert node to dictionary for serialization."""
         | 
| 464 | 
            +
                    return {
         | 
| 465 | 
            +
                        "id": node.id,
         | 
| 466 | 
            +
                        "type": node.type.value,
         | 
| 467 | 
            +
                        "content": node.content,
         | 
| 468 | 
            +
                        "confidence": node.confidence,
         | 
| 469 | 
            +
                        "evaluation_score": node.evaluation_score,
         | 
| 470 | 
            +
                        "metadata": node.metadata,
         | 
| 471 | 
            +
                        "depth": node.depth
         | 
| 472 | 
            +
                    }
         | 
| 473 | 
            +
             | 
| 474 | 
            +
                def _tree_to_dict(self, root: TreeNode) -> Dict[str, Any]:
         | 
| 475 | 
            +
                    """Convert entire tree to dictionary."""
         | 
| 476 | 
            +
                    def convert_node(node: TreeNode) -> Dict[str, Any]:
         | 
| 477 | 
            +
                        node_dict = self._node_to_dict(node)
         | 
| 478 | 
            +
                        node_dict["children"] = [convert_node(c) for c in node.children]
         | 
| 479 | 
            +
                        return node_dict
         | 
| 480 | 
            +
                    
         | 
| 481 | 
            +
                    return convert_node(root)
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                def _path_to_dict(self, path: List[TreeNode]) -> List[Dict[str, Any]]:
         | 
| 484 | 
            +
                    """Convert path to dictionary."""
         | 
| 485 | 
            +
                    return [self._node_to_dict(n) for n in path]
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                def _update_history(self, root: TreeNode):
         | 
| 488 | 
            +
                    """Update node history."""
         | 
| 489 | 
            +
                    def add_to_history(node: TreeNode):
         | 
| 490 | 
            +
                        self.node_history[node.id] = node
         | 
| 491 | 
            +
                        for child in node.children:
         | 
| 492 | 
            +
                            add_to_history(child)
         | 
| 493 | 
            +
                    
         | 
| 494 | 
            +
                    add_to_history(root)
         | 
| 495 | 
            +
             | 
| 496 | 
            +
                def _update_patterns(self, paths: List[List[TreeNode]]):
         | 
| 497 | 
            +
                    """Update path patterns."""
         | 
| 498 | 
            +
                    for path in paths:
         | 
| 499 | 
            +
                        pattern = "->".join(n.type.value for n in path)
         | 
| 500 | 
            +
                        self.path_patterns[pattern] += path[-1].evaluation_score
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                def get_node_history(self) -> Dict[str, Dict[str, Any]]:
         | 
| 503 | 
            +
                    """Get history of all nodes."""
         | 
| 504 | 
            +
                    return {k: self._node_to_dict(v) for k, v in self.node_history.items()}
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                def get_successful_patterns(self) -> Dict[str, float]:
         | 
| 507 | 
            +
                    """Get successful reasoning patterns."""
         | 
| 508 | 
            +
                    return dict(sorted(self.path_patterns.items(), key=lambda x: x[1], reverse=True))
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                def clear_history(self):
         | 
| 511 | 
            +
                    """Clear node history and patterns."""
         | 
| 512 | 
            +
                    self.node_history.clear()
         | 
| 513 | 
            +
                    self.path_patterns.clear()
         | 
    	
        reasoning/unified_engine.py
    ADDED
    
    | @@ -0,0 +1,427 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Unified reasoning engine that combines multiple reasoning strategies."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import asyncio
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
            from .chain_of_thought import ChainOfThoughtStrategy
         | 
| 14 | 
            +
            from .tree_of_thoughts import TreeOfThoughtsStrategy
         | 
| 15 | 
            +
            from .meta_learning import MetaLearningStrategy
         | 
| 16 | 
            +
            from .recursive import RecursiveReasoning
         | 
| 17 | 
            +
            from .analogical import AnalogicalReasoning
         | 
| 18 | 
            +
            from .local_llm import LocalLLMStrategy
         | 
| 19 | 
            +
            from .agentic import (
         | 
| 20 | 
            +
                TaskDecompositionStrategy,
         | 
| 21 | 
            +
                ResourceManagementStrategy,
         | 
| 22 | 
            +
                ContextualPlanningStrategy,
         | 
| 23 | 
            +
                AdaptiveExecutionStrategy,
         | 
| 24 | 
            +
                FeedbackIntegrationStrategy
         | 
| 25 | 
            +
            )
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            class StrategyType(str, Enum):
         | 
| 28 | 
            +
                """Types of reasoning strategies."""
         | 
| 29 | 
            +
                CHAIN_OF_THOUGHT = "chain_of_thought"
         | 
| 30 | 
            +
                TREE_OF_THOUGHTS = "tree_of_thoughts"
         | 
| 31 | 
            +
                META_LEARNING = "meta_learning"
         | 
| 32 | 
            +
                RECURSIVE = "recursive"
         | 
| 33 | 
            +
                ANALOGICAL = "analogical"
         | 
| 34 | 
            +
                TASK_DECOMPOSITION = "task_decomposition"
         | 
| 35 | 
            +
                RESOURCE_MANAGEMENT = "resource_management"
         | 
| 36 | 
            +
                CONTEXTUAL_PLANNING = "contextual_planning"
         | 
| 37 | 
            +
                ADAPTIVE_EXECUTION = "adaptive_execution"
         | 
| 38 | 
            +
                FEEDBACK_INTEGRATION = "feedback_integration"
         | 
| 39 | 
            +
                LOCAL_LLM = "local_llm"
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            @dataclass
         | 
| 42 | 
            +
            class StrategyResult:
         | 
| 43 | 
            +
                """Result from a reasoning strategy."""
         | 
| 44 | 
            +
                strategy_type: StrategyType
         | 
| 45 | 
            +
                success: bool
         | 
| 46 | 
            +
                answer: Optional[str]
         | 
| 47 | 
            +
                confidence: float
         | 
| 48 | 
            +
                reasoning_trace: List[Dict[str, Any]]
         | 
| 49 | 
            +
                metadata: Dict[str, Any]
         | 
| 50 | 
            +
                performance_metrics: Dict[str, Any]
         | 
| 51 | 
            +
                timestamp: datetime = field(default_factory=datetime.now)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            @dataclass
         | 
| 54 | 
            +
            class UnifiedResult:
         | 
| 55 | 
            +
                """Combined result from multiple strategies."""
         | 
| 56 | 
            +
                success: bool
         | 
| 57 | 
            +
                answer: str
         | 
| 58 | 
            +
                confidence: float
         | 
| 59 | 
            +
                strategy_results: Dict[StrategyType, StrategyResult]
         | 
| 60 | 
            +
                synthesis_method: str
         | 
| 61 | 
            +
                meta_insights: List[str]
         | 
| 62 | 
            +
                performance_metrics: Dict[str, Any]
         | 
| 63 | 
            +
                timestamp: datetime = field(default_factory=datetime.now)
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            class UnifiedReasoningEngine:
         | 
| 66 | 
            +
                """
         | 
| 67 | 
            +
                Advanced unified reasoning engine that:
         | 
| 68 | 
            +
                1. Combines multiple reasoning strategies
         | 
| 69 | 
            +
                2. Dynamically selects and weights strategies
         | 
| 70 | 
            +
                3. Synthesizes results from different approaches
         | 
| 71 | 
            +
                4. Learns from experience
         | 
| 72 | 
            +
                5. Adapts to different types of tasks
         | 
| 73 | 
            +
                """
         | 
| 74 | 
            +
                
         | 
| 75 | 
            +
                def __init__(self,
         | 
| 76 | 
            +
                             min_confidence: float = 0.7,
         | 
| 77 | 
            +
                             strategy_weights: Optional[Dict[StrategyType, float]] = None,
         | 
| 78 | 
            +
                             parallel_threshold: int = 3,
         | 
| 79 | 
            +
                             learning_rate: float = 0.1):
         | 
| 80 | 
            +
                    self.min_confidence = min_confidence
         | 
| 81 | 
            +
                    self.parallel_threshold = parallel_threshold
         | 
| 82 | 
            +
                    self.learning_rate = learning_rate
         | 
| 83 | 
            +
                    
         | 
| 84 | 
            +
                    # Initialize strategies
         | 
| 85 | 
            +
                    self.strategies: Dict[StrategyType, ReasoningStrategy] = {
         | 
| 86 | 
            +
                        StrategyType.CHAIN_OF_THOUGHT: ChainOfThoughtStrategy(),
         | 
| 87 | 
            +
                        StrategyType.TREE_OF_THOUGHTS: TreeOfThoughtsStrategy(),
         | 
| 88 | 
            +
                        StrategyType.META_LEARNING: MetaLearningStrategy(),
         | 
| 89 | 
            +
                        StrategyType.RECURSIVE: RecursiveReasoning(),
         | 
| 90 | 
            +
                        StrategyType.ANALOGICAL: AnalogicalReasoning(),
         | 
| 91 | 
            +
                        StrategyType.TASK_DECOMPOSITION: TaskDecompositionStrategy(),
         | 
| 92 | 
            +
                        StrategyType.RESOURCE_MANAGEMENT: ResourceManagementStrategy(),
         | 
| 93 | 
            +
                        StrategyType.CONTEXTUAL_PLANNING: ContextualPlanningStrategy(),
         | 
| 94 | 
            +
                        StrategyType.ADAPTIVE_EXECUTION: AdaptiveExecutionStrategy(),
         | 
| 95 | 
            +
                        StrategyType.FEEDBACK_INTEGRATION: FeedbackIntegrationStrategy(),
         | 
| 96 | 
            +
                        StrategyType.LOCAL_LLM: LocalLLMStrategy()  # Add local LLM strategy
         | 
| 97 | 
            +
                    }
         | 
| 98 | 
            +
                    
         | 
| 99 | 
            +
                    # Strategy weights with higher weight for LOCAL_LLM
         | 
| 100 | 
            +
                    self.strategy_weights = strategy_weights or {
         | 
| 101 | 
            +
                        **{strategy_type: 1.0 for strategy_type in StrategyType},
         | 
| 102 | 
            +
                        StrategyType.LOCAL_LLM: 2.0  # Higher weight for local LLM
         | 
| 103 | 
            +
                    }
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
                    # Performance tracking
         | 
| 106 | 
            +
                    self.strategy_performance: Dict[StrategyType, List[float]] = defaultdict(list)
         | 
| 107 | 
            +
                    self.task_type_performance: Dict[str, Dict[StrategyType, float]] = defaultdict(lambda: defaultdict(float))
         | 
| 108 | 
            +
                    self.synthesis_performance: Dict[str, List[float]] = defaultdict(list)
         | 
| 109 | 
            +
                    
         | 
| 110 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> UnifiedResult:
         | 
| 111 | 
            +
                    """Main reasoning method combining multiple strategies."""
         | 
| 112 | 
            +
                    try:
         | 
| 113 | 
            +
                        # Analyze task
         | 
| 114 | 
            +
                        task_analysis = await self._analyze_task(query, context)
         | 
| 115 | 
            +
                        
         | 
| 116 | 
            +
                        # Select strategies
         | 
| 117 | 
            +
                        selected_strategies = await self._select_strategies(task_analysis, context)
         | 
| 118 | 
            +
                        
         | 
| 119 | 
            +
                        # Execute strategies
         | 
| 120 | 
            +
                        strategy_results = await self._execute_strategies(
         | 
| 121 | 
            +
                            selected_strategies, query, context)
         | 
| 122 | 
            +
                        
         | 
| 123 | 
            +
                        # Synthesize results
         | 
| 124 | 
            +
                        unified_result = await self._synthesize_results(
         | 
| 125 | 
            +
                            strategy_results, task_analysis, context)
         | 
| 126 | 
            +
                        
         | 
| 127 | 
            +
                        # Learn from experience
         | 
| 128 | 
            +
                        self._update_performance(unified_result)
         | 
| 129 | 
            +
                        
         | 
| 130 | 
            +
                        return unified_result
         | 
| 131 | 
            +
                        
         | 
| 132 | 
            +
                    except Exception as e:
         | 
| 133 | 
            +
                        logging.error(f"Error in unified reasoning: {str(e)}")
         | 
| 134 | 
            +
                        return UnifiedResult(
         | 
| 135 | 
            +
                            success=False,
         | 
| 136 | 
            +
                            answer=f"Error: {str(e)}",
         | 
| 137 | 
            +
                            confidence=0.0,
         | 
| 138 | 
            +
                            strategy_results={},
         | 
| 139 | 
            +
                            synthesis_method="failed",
         | 
| 140 | 
            +
                            meta_insights=[f"Error occurred: {str(e)}"],
         | 
| 141 | 
            +
                            performance_metrics={}
         | 
| 142 | 
            +
                        )
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                async def _analyze_task(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 145 | 
            +
                    """Analyze the task to determine optimal strategy selection."""
         | 
| 146 | 
            +
                    prompt = f"""
         | 
| 147 | 
            +
                    Analyze reasoning task:
         | 
| 148 | 
            +
                    Query: {query}
         | 
| 149 | 
            +
                    Context: {json.dumps(context)}
         | 
| 150 | 
            +
                    
         | 
| 151 | 
            +
                    Determine:
         | 
| 152 | 
            +
                    1. Task type and complexity
         | 
| 153 | 
            +
                    2. Required reasoning capabilities
         | 
| 154 | 
            +
                    3. Resource requirements
         | 
| 155 | 
            +
                    4. Success criteria
         | 
| 156 | 
            +
                    5. Risk factors
         | 
| 157 | 
            +
                    
         | 
| 158 | 
            +
                    Format as:
         | 
| 159 | 
            +
                    [Analysis]
         | 
| 160 | 
            +
                    Type: ...
         | 
| 161 | 
            +
                    Complexity: ...
         | 
| 162 | 
            +
                    Capabilities: ...
         | 
| 163 | 
            +
                    Resources: ...
         | 
| 164 | 
            +
                    Criteria: ...
         | 
| 165 | 
            +
                    Risks: ...
         | 
| 166 | 
            +
                    """
         | 
| 167 | 
            +
                    
         | 
| 168 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 169 | 
            +
                    return self._parse_task_analysis(response["answer"])
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                async def _select_strategies(self, task_analysis: Dict[str, Any], context: Dict[str, Any]) -> List[StrategyType]:
         | 
| 172 | 
            +
                    """Select appropriate strategies based on task analysis."""
         | 
| 173 | 
            +
                    # Calculate strategy scores
         | 
| 174 | 
            +
                    scores: Dict[StrategyType, float] = {}
         | 
| 175 | 
            +
                    for strategy_type in StrategyType:
         | 
| 176 | 
            +
                        base_score = self.strategy_weights[strategy_type]
         | 
| 177 | 
            +
                        
         | 
| 178 | 
            +
                        # Task type performance
         | 
| 179 | 
            +
                        task_type = task_analysis["type"]
         | 
| 180 | 
            +
                        type_score = self.task_type_performance[task_type][strategy_type]
         | 
| 181 | 
            +
                        
         | 
| 182 | 
            +
                        # Recent performance
         | 
| 183 | 
            +
                        recent_performance = (
         | 
| 184 | 
            +
                            sum(self.strategy_performance[strategy_type][-5:]) / 5
         | 
| 185 | 
            +
                            if self.strategy_performance[strategy_type] else 0.5
         | 
| 186 | 
            +
                        )
         | 
| 187 | 
            +
                        
         | 
| 188 | 
            +
                        # Resource match
         | 
| 189 | 
            +
                        resource_match = self._calculate_resource_match(
         | 
| 190 | 
            +
                            strategy_type, task_analysis["resources"])
         | 
| 191 | 
            +
                        
         | 
| 192 | 
            +
                        # Capability match
         | 
| 193 | 
            +
                        capability_match = self._calculate_capability_match(
         | 
| 194 | 
            +
                            strategy_type, task_analysis["capabilities"])
         | 
| 195 | 
            +
                        
         | 
| 196 | 
            +
                        # Combined score
         | 
| 197 | 
            +
                        scores[strategy_type] = (
         | 
| 198 | 
            +
                            0.3 * base_score +
         | 
| 199 | 
            +
                            0.2 * type_score +
         | 
| 200 | 
            +
                            0.2 * recent_performance +
         | 
| 201 | 
            +
                            0.15 * resource_match +
         | 
| 202 | 
            +
                            0.15 * capability_match
         | 
| 203 | 
            +
                        )
         | 
| 204 | 
            +
                    
         | 
| 205 | 
            +
                    # Select top strategies
         | 
| 206 | 
            +
                    selected = sorted(
         | 
| 207 | 
            +
                        StrategyType,
         | 
| 208 | 
            +
                        key=lambda x: scores[x],
         | 
| 209 | 
            +
                        reverse=True
         | 
| 210 | 
            +
                    )[:self.parallel_threshold]
         | 
| 211 | 
            +
                    
         | 
| 212 | 
            +
                    return selected
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                async def _execute_strategies(self,
         | 
| 215 | 
            +
                                            strategies: List[StrategyType],
         | 
| 216 | 
            +
                                            query: str,
         | 
| 217 | 
            +
                                            context: Dict[str, Any]) -> Dict[StrategyType, StrategyResult]:
         | 
| 218 | 
            +
                    """Execute selected strategies in parallel."""
         | 
| 219 | 
            +
                    async def execute_strategy(strategy_type: StrategyType) -> StrategyResult:
         | 
| 220 | 
            +
                        strategy = self.strategies[strategy_type]
         | 
| 221 | 
            +
                        start_time = datetime.now()
         | 
| 222 | 
            +
                        
         | 
| 223 | 
            +
                        try:
         | 
| 224 | 
            +
                            result = await strategy.reason(query, context)
         | 
| 225 | 
            +
                            
         | 
| 226 | 
            +
                            return StrategyResult(
         | 
| 227 | 
            +
                                strategy_type=strategy_type,
         | 
| 228 | 
            +
                                success=result.get("success", False),
         | 
| 229 | 
            +
                                answer=result.get("answer"),
         | 
| 230 | 
            +
                                confidence=result.get("confidence", 0.0),
         | 
| 231 | 
            +
                                reasoning_trace=result.get("reasoning_trace", []),
         | 
| 232 | 
            +
                                metadata=result.get("metadata", {}),
         | 
| 233 | 
            +
                                performance_metrics={
         | 
| 234 | 
            +
                                    "execution_time": (datetime.now() - start_time).total_seconds(),
         | 
| 235 | 
            +
                                    **result.get("performance_metrics", {})
         | 
| 236 | 
            +
                                }
         | 
| 237 | 
            +
                            )
         | 
| 238 | 
            +
                        except Exception as e:
         | 
| 239 | 
            +
                            logging.error(f"Error in strategy {strategy_type}: {str(e)}")
         | 
| 240 | 
            +
                            return StrategyResult(
         | 
| 241 | 
            +
                                strategy_type=strategy_type,
         | 
| 242 | 
            +
                                success=False,
         | 
| 243 | 
            +
                                answer=None,
         | 
| 244 | 
            +
                                confidence=0.0,
         | 
| 245 | 
            +
                                reasoning_trace=[{"error": str(e)}],
         | 
| 246 | 
            +
                                metadata={},
         | 
| 247 | 
            +
                                performance_metrics={"execution_time": (datetime.now() - start_time).total_seconds()}
         | 
| 248 | 
            +
                            )
         | 
| 249 | 
            +
                    
         | 
| 250 | 
            +
                    # Execute strategies in parallel
         | 
| 251 | 
            +
                    tasks = [execute_strategy(strategy) for strategy in strategies]
         | 
| 252 | 
            +
                    results = await asyncio.gather(*tasks)
         | 
| 253 | 
            +
                    
         | 
| 254 | 
            +
                    return {result.strategy_type: result for result in results}
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                async def _synthesize_results(self,
         | 
| 257 | 
            +
                                            strategy_results: Dict[StrategyType, StrategyResult],
         | 
| 258 | 
            +
                                            task_analysis: Dict[str, Any],
         | 
| 259 | 
            +
                                            context: Dict[str, Any]) -> UnifiedResult:
         | 
| 260 | 
            +
                    """Synthesize results from multiple strategies."""
         | 
| 261 | 
            +
                    prompt = f"""
         | 
| 262 | 
            +
                    Synthesize reasoning results:
         | 
| 263 | 
            +
                    Results: {json.dumps({str(k): self._strategy_result_to_dict(v) 
         | 
| 264 | 
            +
                                        for k, v in strategy_results.items()})}
         | 
| 265 | 
            +
                    Task Analysis: {json.dumps(task_analysis)}
         | 
| 266 | 
            +
                    Context: {json.dumps(context)}
         | 
| 267 | 
            +
                    
         | 
| 268 | 
            +
                    Provide:
         | 
| 269 | 
            +
                    1. Optimal synthesis method
         | 
| 270 | 
            +
                    2. Combined answer
         | 
| 271 | 
            +
                    3. Confidence assessment
         | 
| 272 | 
            +
                    4. Meta-insights
         | 
| 273 | 
            +
                    5. Performance analysis
         | 
| 274 | 
            +
                    
         | 
| 275 | 
            +
                    Format as:
         | 
| 276 | 
            +
                    [Synthesis]
         | 
| 277 | 
            +
                    Method: ...
         | 
| 278 | 
            +
                    Answer: ...
         | 
| 279 | 
            +
                    Confidence: ...
         | 
| 280 | 
            +
                    Insights: ...
         | 
| 281 | 
            +
                    Performance: ...
         | 
| 282 | 
            +
                    """
         | 
| 283 | 
            +
                    
         | 
| 284 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 285 | 
            +
                    synthesis = self._parse_synthesis(response["answer"])
         | 
| 286 | 
            +
                    
         | 
| 287 | 
            +
                    return UnifiedResult(
         | 
| 288 | 
            +
                        success=synthesis["confidence"] >= self.min_confidence,
         | 
| 289 | 
            +
                        answer=synthesis["answer"],
         | 
| 290 | 
            +
                        confidence=synthesis["confidence"],
         | 
| 291 | 
            +
                        strategy_results=strategy_results,
         | 
| 292 | 
            +
                        synthesis_method=synthesis["method"],
         | 
| 293 | 
            +
                        meta_insights=synthesis["insights"],
         | 
| 294 | 
            +
                        performance_metrics=synthesis["performance"]
         | 
| 295 | 
            +
                    )
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                def _update_performance(self, result: UnifiedResult):
         | 
| 298 | 
            +
                    """Update performance metrics and strategy weights."""
         | 
| 299 | 
            +
                    # Update strategy performance
         | 
| 300 | 
            +
                    for strategy_type, strategy_result in result.strategy_results.items():
         | 
| 301 | 
            +
                        self.strategy_performance[strategy_type].append(strategy_result.confidence)
         | 
| 302 | 
            +
                        
         | 
| 303 | 
            +
                        # Update weights using exponential moving average
         | 
| 304 | 
            +
                        current_weight = self.strategy_weights[strategy_type]
         | 
| 305 | 
            +
                        performance = strategy_result.confidence
         | 
| 306 | 
            +
                        self.strategy_weights[strategy_type] = (
         | 
| 307 | 
            +
                            (1 - self.learning_rate) * current_weight +
         | 
| 308 | 
            +
                            self.learning_rate * performance
         | 
| 309 | 
            +
                        )
         | 
| 310 | 
            +
                    
         | 
| 311 | 
            +
                    # Update synthesis performance
         | 
| 312 | 
            +
                    self.synthesis_performance[result.synthesis_method].append(result.confidence)
         | 
| 313 | 
            +
             | 
| 314 | 
            +
                def _calculate_resource_match(self, strategy_type: StrategyType, required_resources: Dict[str, Any]) -> float:
         | 
| 315 | 
            +
                    """Calculate how well a strategy matches required resources."""
         | 
| 316 | 
            +
                    # Implementation-specific resource matching logic
         | 
| 317 | 
            +
                    return 0.8  # Placeholder
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                def _calculate_capability_match(self, strategy_type: StrategyType, required_capabilities: List[str]) -> float:
         | 
| 320 | 
            +
                    """Calculate how well a strategy matches required capabilities."""
         | 
| 321 | 
            +
                    # Implementation-specific capability matching logic
         | 
| 322 | 
            +
                    return 0.8  # Placeholder
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                def _parse_task_analysis(self, response: str) -> Dict[str, Any]:
         | 
| 325 | 
            +
                    """Parse task analysis from response."""
         | 
| 326 | 
            +
                    analysis = {
         | 
| 327 | 
            +
                        "type": "",
         | 
| 328 | 
            +
                        "complexity": 0.0,
         | 
| 329 | 
            +
                        "capabilities": [],
         | 
| 330 | 
            +
                        "resources": {},
         | 
| 331 | 
            +
                        "criteria": [],
         | 
| 332 | 
            +
                        "risks": []
         | 
| 333 | 
            +
                    }
         | 
| 334 | 
            +
                    
         | 
| 335 | 
            +
                    for line in response.split('\n'):
         | 
| 336 | 
            +
                        line = line.strip()
         | 
| 337 | 
            +
                        if line.startswith('Type:'):
         | 
| 338 | 
            +
                            analysis["type"] = line[5:].strip()
         | 
| 339 | 
            +
                        elif line.startswith('Complexity:'):
         | 
| 340 | 
            +
                            try:
         | 
| 341 | 
            +
                                analysis["complexity"] = float(line[11:].strip())
         | 
| 342 | 
            +
                            except:
         | 
| 343 | 
            +
                                pass
         | 
| 344 | 
            +
                        elif line.startswith('Capabilities:'):
         | 
| 345 | 
            +
                            analysis["capabilities"] = [c.strip() for c in line[13:].split(',')]
         | 
| 346 | 
            +
                        elif line.startswith('Resources:'):
         | 
| 347 | 
            +
                            try:
         | 
| 348 | 
            +
                                analysis["resources"] = json.loads(line[10:].strip())
         | 
| 349 | 
            +
                            except:
         | 
| 350 | 
            +
                                analysis["resources"] = {"raw": line[10:].strip()}
         | 
| 351 | 
            +
                        elif line.startswith('Criteria:'):
         | 
| 352 | 
            +
                            analysis["criteria"] = [c.strip() for c in line[9:].split(',')]
         | 
| 353 | 
            +
                        elif line.startswith('Risks:'):
         | 
| 354 | 
            +
                            analysis["risks"] = [r.strip() for r in line[7:].split(',')]
         | 
| 355 | 
            +
                    
         | 
| 356 | 
            +
                    return analysis
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                def _parse_synthesis(self, response: str) -> Dict[str, Any]:
         | 
| 359 | 
            +
                    """Parse synthesis result from response."""
         | 
| 360 | 
            +
                    synthesis = {
         | 
| 361 | 
            +
                        "method": "",
         | 
| 362 | 
            +
                        "answer": "",
         | 
| 363 | 
            +
                        "confidence": 0.0,
         | 
| 364 | 
            +
                        "insights": [],
         | 
| 365 | 
            +
                        "performance": {}
         | 
| 366 | 
            +
                    }
         | 
| 367 | 
            +
                    
         | 
| 368 | 
            +
                    for line in response.split('\n'):
         | 
| 369 | 
            +
                        line = line.strip()
         | 
| 370 | 
            +
                        if line.startswith('Method:'):
         | 
| 371 | 
            +
                            synthesis["method"] = line[7:].strip()
         | 
| 372 | 
            +
                        elif line.startswith('Answer:'):
         | 
| 373 | 
            +
                            synthesis["answer"] = line[7:].strip()
         | 
| 374 | 
            +
                        elif line.startswith('Confidence:'):
         | 
| 375 | 
            +
                            try:
         | 
| 376 | 
            +
                                synthesis["confidence"] = float(line[11:].strip())
         | 
| 377 | 
            +
                            except:
         | 
| 378 | 
            +
                                pass
         | 
| 379 | 
            +
                        elif line.startswith('Insights:'):
         | 
| 380 | 
            +
                            synthesis["insights"] = [i.strip() for i in line[9:].split(',')]
         | 
| 381 | 
            +
                        elif line.startswith('Performance:'):
         | 
| 382 | 
            +
                            try:
         | 
| 383 | 
            +
                                synthesis["performance"] = json.loads(line[12:].strip())
         | 
| 384 | 
            +
                            except:
         | 
| 385 | 
            +
                                synthesis["performance"] = {"raw": line[12:].strip()}
         | 
| 386 | 
            +
                    
         | 
| 387 | 
            +
                    return synthesis
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                def _strategy_result_to_dict(self, result: StrategyResult) -> Dict[str, Any]:
         | 
| 390 | 
            +
                    """Convert strategy result to dictionary for serialization."""
         | 
| 391 | 
            +
                    return {
         | 
| 392 | 
            +
                        "strategy_type": result.strategy_type.value,
         | 
| 393 | 
            +
                        "success": result.success,
         | 
| 394 | 
            +
                        "answer": result.answer,
         | 
| 395 | 
            +
                        "confidence": result.confidence,
         | 
| 396 | 
            +
                        "reasoning_trace": result.reasoning_trace,
         | 
| 397 | 
            +
                        "metadata": result.metadata,
         | 
| 398 | 
            +
                        "performance_metrics": result.performance_metrics,
         | 
| 399 | 
            +
                        "timestamp": result.timestamp.isoformat()
         | 
| 400 | 
            +
                    }
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                def get_performance_metrics(self) -> Dict[str, Any]:
         | 
| 403 | 
            +
                    """Get comprehensive performance metrics."""
         | 
| 404 | 
            +
                    return {
         | 
| 405 | 
            +
                        "strategy_weights": dict(self.strategy_weights),
         | 
| 406 | 
            +
                        "average_performance": {
         | 
| 407 | 
            +
                            strategy_type.value: sum(scores) / len(scores) if scores else 0
         | 
| 408 | 
            +
                            for strategy_type, scores in self.strategy_performance.items()
         | 
| 409 | 
            +
                        },
         | 
| 410 | 
            +
                        "synthesis_success": {
         | 
| 411 | 
            +
                            method: sum(scores) / len(scores) if scores else 0
         | 
| 412 | 
            +
                            for method, scores in self.synthesis_performance.items()
         | 
| 413 | 
            +
                        },
         | 
| 414 | 
            +
                        "task_type_performance": {
         | 
| 415 | 
            +
                            task_type: dict(strategy_scores)
         | 
| 416 | 
            +
                            for task_type, strategy_scores in self.task_type_performance.items()
         | 
| 417 | 
            +
                        }
         | 
| 418 | 
            +
                    }
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                def clear_performance_history(self):
         | 
| 421 | 
            +
                    """Clear performance history and reset weights."""
         | 
| 422 | 
            +
                    self.strategy_performance.clear()
         | 
| 423 | 
            +
                    self.task_type_performance.clear()
         | 
| 424 | 
            +
                    self.synthesis_performance.clear()
         | 
| 425 | 
            +
                    self.strategy_weights = {
         | 
| 426 | 
            +
                        strategy_type: 1.0 for strategy_type in StrategyType
         | 
| 427 | 
            +
                    }
         | 
    	
        reasoning/venture_strategies.py
    ADDED
    
    | @@ -0,0 +1,423 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Specialized strategies for autonomous business and revenue generation."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class VentureType(Enum):
         | 
| 15 | 
            +
                """Types of business ventures."""
         | 
| 16 | 
            +
                AI_STARTUP = "ai_startup"
         | 
| 17 | 
            +
                SAAS = "saas"
         | 
| 18 | 
            +
                API_SERVICE = "api_service"
         | 
| 19 | 
            +
                DATA_ANALYTICS = "data_analytics"
         | 
| 20 | 
            +
                AUTOMATION_SERVICE = "automation_service"
         | 
| 21 | 
            +
                CONSULTING = "consulting"
         | 
| 22 | 
            +
                DIGITAL_PRODUCTS = "digital_products"
         | 
| 23 | 
            +
                MARKETPLACE = "marketplace"
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            class RevenueStream(Enum):
         | 
| 26 | 
            +
                """Types of revenue streams."""
         | 
| 27 | 
            +
                SUBSCRIPTION = "subscription"
         | 
| 28 | 
            +
                USAGE_BASED = "usage_based"
         | 
| 29 | 
            +
                LICENSING = "licensing"
         | 
| 30 | 
            +
                CONSULTING = "consulting"
         | 
| 31 | 
            +
                PRODUCT_SALES = "product_sales"
         | 
| 32 | 
            +
                COMMISSION = "commission"
         | 
| 33 | 
            +
                ADVERTISING = "advertising"
         | 
| 34 | 
            +
                PARTNERSHIP = "partnership"
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            @dataclass
         | 
| 37 | 
            +
            class VentureMetrics:
         | 
| 38 | 
            +
                """Key business metrics."""
         | 
| 39 | 
            +
                revenue: float
         | 
| 40 | 
            +
                profit_margin: float
         | 
| 41 | 
            +
                customer_acquisition_cost: float
         | 
| 42 | 
            +
                lifetime_value: float
         | 
| 43 | 
            +
                churn_rate: float
         | 
| 44 | 
            +
                growth_rate: float
         | 
| 45 | 
            +
                burn_rate: float
         | 
| 46 | 
            +
                runway_months: float
         | 
| 47 | 
            +
                roi: float
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            @dataclass
         | 
| 50 | 
            +
            class MarketOpportunity:
         | 
| 51 | 
            +
                """Market opportunity analysis."""
         | 
| 52 | 
            +
                market_size: float
         | 
| 53 | 
            +
                growth_potential: float
         | 
| 54 | 
            +
                competition_level: float
         | 
| 55 | 
            +
                entry_barriers: float
         | 
| 56 | 
            +
                regulatory_risks: float
         | 
| 57 | 
            +
                technology_risks: float
         | 
| 58 | 
            +
                monetization_potential: float
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            class AIStartupStrategy(ReasoningStrategy):
         | 
| 61 | 
            +
                """
         | 
| 62 | 
            +
                Advanced AI startup strategy that:
         | 
| 63 | 
            +
                1. Identifies profitable AI applications
         | 
| 64 | 
            +
                2. Analyzes market opportunities
         | 
| 65 | 
            +
                3. Develops MVP strategies
         | 
| 66 | 
            +
                4. Plans scaling approaches
         | 
| 67 | 
            +
                5. Optimizes revenue streams
         | 
| 68 | 
            +
                """
         | 
| 69 | 
            +
                
         | 
| 70 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 71 | 
            +
                    """Generate AI startup strategy."""
         | 
| 72 | 
            +
                    try:
         | 
| 73 | 
            +
                        # Market analysis
         | 
| 74 | 
            +
                        market = await self._analyze_market(query, context)
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        # Technology assessment
         | 
| 77 | 
            +
                        tech = await self._assess_technology(market, context)
         | 
| 78 | 
            +
                        
         | 
| 79 | 
            +
                        # Business model
         | 
| 80 | 
            +
                        model = await self._develop_business_model(tech, context)
         | 
| 81 | 
            +
                        
         | 
| 82 | 
            +
                        # Growth strategy
         | 
| 83 | 
            +
                        strategy = await self._create_growth_strategy(model, context)
         | 
| 84 | 
            +
                        
         | 
| 85 | 
            +
                        # Financial projections
         | 
| 86 | 
            +
                        projections = await self._project_financials(strategy, context)
         | 
| 87 | 
            +
                        
         | 
| 88 | 
            +
                        return {
         | 
| 89 | 
            +
                            "success": projections["annual_profit"] >= 1_000_000,
         | 
| 90 | 
            +
                            "market_analysis": market,
         | 
| 91 | 
            +
                            "tech_assessment": tech,
         | 
| 92 | 
            +
                            "business_model": model,
         | 
| 93 | 
            +
                            "growth_strategy": strategy,
         | 
| 94 | 
            +
                            "financials": projections,
         | 
| 95 | 
            +
                            "confidence": self._calculate_confidence(projections)
         | 
| 96 | 
            +
                        }
         | 
| 97 | 
            +
                    except Exception as e:
         | 
| 98 | 
            +
                        logging.error(f"Error in AI startup strategy: {str(e)}")
         | 
| 99 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 100 | 
            +
             | 
| 101 | 
            +
            class SaaSVentureStrategy(ReasoningStrategy):
         | 
| 102 | 
            +
                """
         | 
| 103 | 
            +
                Advanced SaaS venture strategy that:
         | 
| 104 | 
            +
                1. Identifies scalable SaaS opportunities
         | 
| 105 | 
            +
                2. Develops pricing strategies
         | 
| 106 | 
            +
                3. Plans customer acquisition
         | 
| 107 | 
            +
                4. Optimizes retention
         | 
| 108 | 
            +
                5. Maximizes recurring revenue
         | 
| 109 | 
            +
                """
         | 
| 110 | 
            +
                
         | 
| 111 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 112 | 
            +
                    """Generate SaaS venture strategy."""
         | 
| 113 | 
            +
                    try:
         | 
| 114 | 
            +
                        # Opportunity analysis
         | 
| 115 | 
            +
                        opportunity = await self._analyze_opportunity(query, context)
         | 
| 116 | 
            +
                        
         | 
| 117 | 
            +
                        # Product strategy
         | 
| 118 | 
            +
                        product = await self._develop_product_strategy(opportunity, context)
         | 
| 119 | 
            +
                        
         | 
| 120 | 
            +
                        # Pricing model
         | 
| 121 | 
            +
                        pricing = await self._create_pricing_model(product, context)
         | 
| 122 | 
            +
                        
         | 
| 123 | 
            +
                        # Growth plan
         | 
| 124 | 
            +
                        growth = await self._plan_growth(pricing, context)
         | 
| 125 | 
            +
                        
         | 
| 126 | 
            +
                        # Revenue projections
         | 
| 127 | 
            +
                        projections = await self._project_revenue(growth, context)
         | 
| 128 | 
            +
                        
         | 
| 129 | 
            +
                        return {
         | 
| 130 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 131 | 
            +
                            "opportunity": opportunity,
         | 
| 132 | 
            +
                            "product": product,
         | 
| 133 | 
            +
                            "pricing": pricing,
         | 
| 134 | 
            +
                            "growth": growth,
         | 
| 135 | 
            +
                            "projections": projections
         | 
| 136 | 
            +
                        }
         | 
| 137 | 
            +
                    except Exception as e:
         | 
| 138 | 
            +
                        logging.error(f"Error in SaaS venture strategy: {str(e)}")
         | 
| 139 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 140 | 
            +
             | 
| 141 | 
            +
            class AutomationVentureStrategy(ReasoningStrategy):
         | 
| 142 | 
            +
                """
         | 
| 143 | 
            +
                Advanced automation venture strategy that:
         | 
| 144 | 
            +
                1. Identifies automation opportunities
         | 
| 145 | 
            +
                2. Analyzes cost-saving potential
         | 
| 146 | 
            +
                3. Develops automation solutions
         | 
| 147 | 
            +
                4. Plans implementation
         | 
| 148 | 
            +
                5. Maximizes ROI
         | 
| 149 | 
            +
                """
         | 
| 150 | 
            +
                
         | 
| 151 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 152 | 
            +
                    """Generate automation venture strategy."""
         | 
| 153 | 
            +
                    try:
         | 
| 154 | 
            +
                        # Opportunity identification
         | 
| 155 | 
            +
                        opportunities = await self._identify_opportunities(query, context)
         | 
| 156 | 
            +
                        
         | 
| 157 | 
            +
                        # Solution development
         | 
| 158 | 
            +
                        solutions = await self._develop_solutions(opportunities, context)
         | 
| 159 | 
            +
                        
         | 
| 160 | 
            +
                        # Implementation strategy
         | 
| 161 | 
            +
                        implementation = await self._create_implementation_strategy(solutions, context)
         | 
| 162 | 
            +
                        
         | 
| 163 | 
            +
                        # ROI analysis
         | 
| 164 | 
            +
                        roi = await self._analyze_roi(implementation, context)
         | 
| 165 | 
            +
                        
         | 
| 166 | 
            +
                        # Scale strategy
         | 
| 167 | 
            +
                        scale = await self._create_scale_strategy(roi, context)
         | 
| 168 | 
            +
                        
         | 
| 169 | 
            +
                        return {
         | 
| 170 | 
            +
                            "success": roi["annual_profit"] >= 1_000_000,
         | 
| 171 | 
            +
                            "opportunities": opportunities,
         | 
| 172 | 
            +
                            "solutions": solutions,
         | 
| 173 | 
            +
                            "implementation": implementation,
         | 
| 174 | 
            +
                            "roi": roi,
         | 
| 175 | 
            +
                            "scale": scale
         | 
| 176 | 
            +
                        }
         | 
| 177 | 
            +
                    except Exception as e:
         | 
| 178 | 
            +
                        logging.error(f"Error in automation venture strategy: {str(e)}")
         | 
| 179 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 180 | 
            +
             | 
| 181 | 
            +
            class DataVentureStrategy(ReasoningStrategy):
         | 
| 182 | 
            +
                """
         | 
| 183 | 
            +
                Advanced data venture strategy that:
         | 
| 184 | 
            +
                1. Identifies valuable data opportunities
         | 
| 185 | 
            +
                2. Develops data products
         | 
| 186 | 
            +
                3. Creates monetization strategies
         | 
| 187 | 
            +
                4. Ensures compliance
         | 
| 188 | 
            +
                5. Maximizes data value
         | 
| 189 | 
            +
                """
         | 
| 190 | 
            +
                
         | 
| 191 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 192 | 
            +
                    """Generate data venture strategy."""
         | 
| 193 | 
            +
                    try:
         | 
| 194 | 
            +
                        # Data opportunity analysis
         | 
| 195 | 
            +
                        opportunity = await self._analyze_data_opportunity(query, context)
         | 
| 196 | 
            +
                        
         | 
| 197 | 
            +
                        # Product development
         | 
| 198 | 
            +
                        product = await self._develop_data_product(opportunity, context)
         | 
| 199 | 
            +
                        
         | 
| 200 | 
            +
                        # Monetization strategy
         | 
| 201 | 
            +
                        monetization = await self._create_monetization_strategy(product, context)
         | 
| 202 | 
            +
                        
         | 
| 203 | 
            +
                        # Compliance plan
         | 
| 204 | 
            +
                        compliance = await self._ensure_compliance(monetization, context)
         | 
| 205 | 
            +
                        
         | 
| 206 | 
            +
                        # Scale plan
         | 
| 207 | 
            +
                        scale = await self._plan_scaling(compliance, context)
         | 
| 208 | 
            +
                        
         | 
| 209 | 
            +
                        return {
         | 
| 210 | 
            +
                            "success": monetization["annual_revenue"] >= 1_000_000,
         | 
| 211 | 
            +
                            "opportunity": opportunity,
         | 
| 212 | 
            +
                            "product": product,
         | 
| 213 | 
            +
                            "monetization": monetization,
         | 
| 214 | 
            +
                            "compliance": compliance,
         | 
| 215 | 
            +
                            "scale": scale
         | 
| 216 | 
            +
                        }
         | 
| 217 | 
            +
                    except Exception as e:
         | 
| 218 | 
            +
                        logging.error(f"Error in data venture strategy: {str(e)}")
         | 
| 219 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 220 | 
            +
             | 
| 221 | 
            +
            class APIVentureStrategy(ReasoningStrategy):
         | 
| 222 | 
            +
                """
         | 
| 223 | 
            +
                Advanced API venture strategy that:
         | 
| 224 | 
            +
                1. Identifies API opportunities
         | 
| 225 | 
            +
                2. Develops API products
         | 
| 226 | 
            +
                3. Creates pricing models
         | 
| 227 | 
            +
                4. Plans scaling
         | 
| 228 | 
            +
                5. Maximizes API value
         | 
| 229 | 
            +
                """
         | 
| 230 | 
            +
                
         | 
| 231 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 232 | 
            +
                    """Generate API venture strategy."""
         | 
| 233 | 
            +
                    try:
         | 
| 234 | 
            +
                        # API opportunity analysis
         | 
| 235 | 
            +
                        opportunity = await self._analyze_api_opportunity(query, context)
         | 
| 236 | 
            +
                        
         | 
| 237 | 
            +
                        # Product development
         | 
| 238 | 
            +
                        product = await self._develop_api_product(opportunity, context)
         | 
| 239 | 
            +
                        
         | 
| 240 | 
            +
                        # Pricing strategy
         | 
| 241 | 
            +
                        pricing = await self._create_api_pricing(product, context)
         | 
| 242 | 
            +
                        
         | 
| 243 | 
            +
                        # Scale strategy
         | 
| 244 | 
            +
                        scale = await self._plan_api_scaling(pricing, context)
         | 
| 245 | 
            +
                        
         | 
| 246 | 
            +
                        # Revenue projections
         | 
| 247 | 
            +
                        projections = await self._project_api_revenue(scale, context)
         | 
| 248 | 
            +
                        
         | 
| 249 | 
            +
                        return {
         | 
| 250 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 251 | 
            +
                            "opportunity": opportunity,
         | 
| 252 | 
            +
                            "product": product,
         | 
| 253 | 
            +
                            "pricing": pricing,
         | 
| 254 | 
            +
                            "scale": scale,
         | 
| 255 | 
            +
                            "projections": projections
         | 
| 256 | 
            +
                        }
         | 
| 257 | 
            +
                    except Exception as e:
         | 
| 258 | 
            +
                        logging.error(f"Error in API venture strategy: {str(e)}")
         | 
| 259 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 260 | 
            +
             | 
| 261 | 
            +
            class MarketplaceVentureStrategy(ReasoningStrategy):
         | 
| 262 | 
            +
                """
         | 
| 263 | 
            +
                Advanced marketplace venture strategy that:
         | 
| 264 | 
            +
                1. Identifies marketplace opportunities
         | 
| 265 | 
            +
                2. Develops platform strategy
         | 
| 266 | 
            +
                3. Plans liquidity generation
         | 
| 267 | 
            +
                4. Optimizes matching
         | 
| 268 | 
            +
                5. Maximizes transaction value
         | 
| 269 | 
            +
                """
         | 
| 270 | 
            +
                
         | 
| 271 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 272 | 
            +
                    """Generate marketplace venture strategy."""
         | 
| 273 | 
            +
                    try:
         | 
| 274 | 
            +
                        # Opportunity analysis
         | 
| 275 | 
            +
                        opportunity = await self._analyze_marketplace_opportunity(query, context)
         | 
| 276 | 
            +
                        
         | 
| 277 | 
            +
                        # Platform strategy
         | 
| 278 | 
            +
                        platform = await self._develop_platform_strategy(opportunity, context)
         | 
| 279 | 
            +
                        
         | 
| 280 | 
            +
                        # Liquidity strategy
         | 
| 281 | 
            +
                        liquidity = await self._create_liquidity_strategy(platform, context)
         | 
| 282 | 
            +
                        
         | 
| 283 | 
            +
                        # Growth strategy
         | 
| 284 | 
            +
                        growth = await self._plan_marketplace_growth(liquidity, context)
         | 
| 285 | 
            +
                        
         | 
| 286 | 
            +
                        # Revenue projections
         | 
| 287 | 
            +
                        projections = await self._project_marketplace_revenue(growth, context)
         | 
| 288 | 
            +
                        
         | 
| 289 | 
            +
                        return {
         | 
| 290 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 291 | 
            +
                            "opportunity": opportunity,
         | 
| 292 | 
            +
                            "platform": platform,
         | 
| 293 | 
            +
                            "liquidity": liquidity,
         | 
| 294 | 
            +
                            "growth": growth,
         | 
| 295 | 
            +
                            "projections": projections
         | 
| 296 | 
            +
                        }
         | 
| 297 | 
            +
                    except Exception as e:
         | 
| 298 | 
            +
                        logging.error(f"Error in marketplace venture strategy: {str(e)}")
         | 
| 299 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 300 | 
            +
             | 
| 301 | 
            +
            class VenturePortfolioStrategy(ReasoningStrategy):
         | 
| 302 | 
            +
                """
         | 
| 303 | 
            +
                Advanced venture portfolio strategy that:
         | 
| 304 | 
            +
                1. Optimizes venture mix
         | 
| 305 | 
            +
                2. Balances risk-reward
         | 
| 306 | 
            +
                3. Allocates resources
         | 
| 307 | 
            +
                4. Manages dependencies
         | 
| 308 | 
            +
                5. Maximizes portfolio value
         | 
| 309 | 
            +
                """
         | 
| 310 | 
            +
                
         | 
| 311 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 312 | 
            +
                    """Generate venture portfolio strategy."""
         | 
| 313 | 
            +
                    try:
         | 
| 314 | 
            +
                        # Portfolio analysis
         | 
| 315 | 
            +
                        analysis = await self._analyze_portfolio(query, context)
         | 
| 316 | 
            +
                        
         | 
| 317 | 
            +
                        # Venture selection
         | 
| 318 | 
            +
                        selection = await self._select_ventures(analysis, context)
         | 
| 319 | 
            +
                        
         | 
| 320 | 
            +
                        # Resource allocation
         | 
| 321 | 
            +
                        allocation = await self._allocate_resources(selection, context)
         | 
| 322 | 
            +
                        
         | 
| 323 | 
            +
                        # Risk management
         | 
| 324 | 
            +
                        risk = await self._manage_risk(allocation, context)
         | 
| 325 | 
            +
                        
         | 
| 326 | 
            +
                        # Portfolio projections
         | 
| 327 | 
            +
                        projections = await self._project_portfolio(risk, context)
         | 
| 328 | 
            +
                        
         | 
| 329 | 
            +
                        return {
         | 
| 330 | 
            +
                            "success": projections["annual_profit"] >= 1_000_000,
         | 
| 331 | 
            +
                            "analysis": analysis,
         | 
| 332 | 
            +
                            "selection": selection,
         | 
| 333 | 
            +
                            "allocation": allocation,
         | 
| 334 | 
            +
                            "risk": risk,
         | 
| 335 | 
            +
                            "projections": projections
         | 
| 336 | 
            +
                        }
         | 
| 337 | 
            +
                    except Exception as e:
         | 
| 338 | 
            +
                        logging.error(f"Error in venture portfolio strategy: {str(e)}")
         | 
| 339 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 340 | 
            +
             | 
| 341 | 
            +
                async def _analyze_portfolio(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 342 | 
            +
                    """Analyze potential venture portfolio."""
         | 
| 343 | 
            +
                    prompt = f"""
         | 
| 344 | 
            +
                    Analyze venture portfolio opportunities:
         | 
| 345 | 
            +
                    Query: {query}
         | 
| 346 | 
            +
                    Context: {json.dumps(context)}
         | 
| 347 | 
            +
                    
         | 
| 348 | 
            +
                    Consider:
         | 
| 349 | 
            +
                    1. Market opportunities
         | 
| 350 | 
            +
                    2. Technology trends
         | 
| 351 | 
            +
                    3. Resource requirements
         | 
| 352 | 
            +
                    4. Risk factors
         | 
| 353 | 
            +
                    5. Synergy potential
         | 
| 354 | 
            +
                    
         | 
| 355 | 
            +
                    Format as:
         | 
| 356 | 
            +
                    [Analysis]
         | 
| 357 | 
            +
                    Opportunities: ...
         | 
| 358 | 
            +
                    Trends: ...
         | 
| 359 | 
            +
                    Resources: ...
         | 
| 360 | 
            +
                    Risks: ...
         | 
| 361 | 
            +
                    Synergies: ...
         | 
| 362 | 
            +
                    """
         | 
| 363 | 
            +
                    
         | 
| 364 | 
            +
                    response = await context["groq_api"].predict(prompt)
         | 
| 365 | 
            +
                    return self._parse_portfolio_analysis(response["answer"])
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                def _parse_portfolio_analysis(self, response: str) -> Dict[str, Any]:
         | 
| 368 | 
            +
                    """Parse portfolio analysis from response."""
         | 
| 369 | 
            +
                    analysis = {
         | 
| 370 | 
            +
                        "opportunities": [],
         | 
| 371 | 
            +
                        "trends": [],
         | 
| 372 | 
            +
                        "resources": {},
         | 
| 373 | 
            +
                        "risks": [],
         | 
| 374 | 
            +
                        "synergies": []
         | 
| 375 | 
            +
                    }
         | 
| 376 | 
            +
                    
         | 
| 377 | 
            +
                    current_section = None
         | 
| 378 | 
            +
                    for line in response.split('\n'):
         | 
| 379 | 
            +
                        line = line.strip()
         | 
| 380 | 
            +
                        if line.startswith('Opportunities:'):
         | 
| 381 | 
            +
                            current_section = "opportunities"
         | 
| 382 | 
            +
                        elif line.startswith('Trends:'):
         | 
| 383 | 
            +
                            current_section = "trends"
         | 
| 384 | 
            +
                        elif line.startswith('Resources:'):
         | 
| 385 | 
            +
                            current_section = "resources"
         | 
| 386 | 
            +
                        elif line.startswith('Risks:'):
         | 
| 387 | 
            +
                            current_section = "risks"
         | 
| 388 | 
            +
                        elif line.startswith('Synergies:'):
         | 
| 389 | 
            +
                            current_section = "synergies"
         | 
| 390 | 
            +
                        elif current_section and line:
         | 
| 391 | 
            +
                            if current_section == "resources":
         | 
| 392 | 
            +
                                try:
         | 
| 393 | 
            +
                                    key, value = line.split(':')
         | 
| 394 | 
            +
                                    analysis[current_section][key.strip()] = value.strip()
         | 
| 395 | 
            +
                                except:
         | 
| 396 | 
            +
                                    pass
         | 
| 397 | 
            +
                            else:
         | 
| 398 | 
            +
                                analysis[current_section].append(line)
         | 
| 399 | 
            +
                    
         | 
| 400 | 
            +
                    return analysis
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                def get_venture_metrics(self) -> Dict[str, Any]:
         | 
| 403 | 
            +
                    """Get comprehensive venture metrics."""
         | 
| 404 | 
            +
                    return {
         | 
| 405 | 
            +
                        "portfolio_metrics": {
         | 
| 406 | 
            +
                            "total_ventures": len(self.ventures),
         | 
| 407 | 
            +
                            "profitable_ventures": sum(1 for v in self.ventures if v.metrics.profit_margin > 0),
         | 
| 408 | 
            +
                            "total_revenue": sum(v.metrics.revenue for v in self.ventures),
         | 
| 409 | 
            +
                            "average_margin": np.mean([v.metrics.profit_margin for v in self.ventures]),
         | 
| 410 | 
            +
                            "portfolio_roi": np.mean([v.metrics.roi for v in self.ventures])
         | 
| 411 | 
            +
                        },
         | 
| 412 | 
            +
                        "market_metrics": {
         | 
| 413 | 
            +
                            "total_market_size": sum(v.opportunity.market_size for v in self.ventures),
         | 
| 414 | 
            +
                            "average_growth": np.mean([v.opportunity.growth_potential for v in self.ventures]),
         | 
| 415 | 
            +
                            "risk_score": np.mean([v.opportunity.regulatory_risks + v.opportunity.technology_risks for v in self.ventures])
         | 
| 416 | 
            +
                        },
         | 
| 417 | 
            +
                        "performance_metrics": {
         | 
| 418 | 
            +
                            "customer_acquisition": np.mean([v.metrics.customer_acquisition_cost for v in self.ventures]),
         | 
| 419 | 
            +
                            "lifetime_value": np.mean([v.metrics.lifetime_value for v in self.ventures]),
         | 
| 420 | 
            +
                            "churn_rate": np.mean([v.metrics.churn_rate for v in self.ventures]),
         | 
| 421 | 
            +
                            "burn_rate": sum(v.metrics.burn_rate for v in self.ventures)
         | 
| 422 | 
            +
                        }
         | 
| 423 | 
            +
                    }
         | 
    	
        reasoning/venture_types.py
    ADDED
    
    | @@ -0,0 +1,332 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Additional venture types for business optimization."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import logging
         | 
| 4 | 
            +
            from typing import Dict, Any, List, Optional, Set, Union, Type, Tuple
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            from dataclasses import dataclass, field
         | 
| 7 | 
            +
            from enum import Enum
         | 
| 8 | 
            +
            from datetime import datetime
         | 
| 9 | 
            +
            import numpy as np
         | 
| 10 | 
            +
            from collections import defaultdict
         | 
| 11 | 
            +
             | 
| 12 | 
            +
            from .base import ReasoningStrategy
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            class AIInfrastructureStrategy(ReasoningStrategy):
         | 
| 15 | 
            +
                """
         | 
| 16 | 
            +
                AI infrastructure venture strategy that:
         | 
| 17 | 
            +
                1. Identifies infrastructure needs
         | 
| 18 | 
            +
                2. Develops cloud solutions
         | 
| 19 | 
            +
                3. Optimizes compute resources
         | 
| 20 | 
            +
                4. Manages scalability
         | 
| 21 | 
            +
                5. Ensures reliability
         | 
| 22 | 
            +
                """
         | 
| 23 | 
            +
                
         | 
| 24 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 25 | 
            +
                    """Generate AI infrastructure strategy."""
         | 
| 26 | 
            +
                    try:
         | 
| 27 | 
            +
                        # Market analysis
         | 
| 28 | 
            +
                        market = await self._analyze_market(query, context)
         | 
| 29 | 
            +
                        
         | 
| 30 | 
            +
                        # Infrastructure design
         | 
| 31 | 
            +
                        design = await self._design_infrastructure(market, context)
         | 
| 32 | 
            +
                        
         | 
| 33 | 
            +
                        # Optimization strategy
         | 
| 34 | 
            +
                        optimization = await self._create_optimization_strategy(design, context)
         | 
| 35 | 
            +
                        
         | 
| 36 | 
            +
                        # Scaling plan
         | 
| 37 | 
            +
                        scaling = await self._plan_scaling(optimization, context)
         | 
| 38 | 
            +
                        
         | 
| 39 | 
            +
                        # Revenue projections
         | 
| 40 | 
            +
                        projections = await self._project_revenue(scaling, context)
         | 
| 41 | 
            +
                        
         | 
| 42 | 
            +
                        return {
         | 
| 43 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 44 | 
            +
                            "market": market,
         | 
| 45 | 
            +
                            "design": design,
         | 
| 46 | 
            +
                            "optimization": optimization,
         | 
| 47 | 
            +
                            "scaling": scaling,
         | 
| 48 | 
            +
                            "projections": projections
         | 
| 49 | 
            +
                        }
         | 
| 50 | 
            +
                    except Exception as e:
         | 
| 51 | 
            +
                        logging.error(f"Error in AI infrastructure strategy: {str(e)}")
         | 
| 52 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            class AIConsultingStrategy(ReasoningStrategy):
         | 
| 55 | 
            +
                """
         | 
| 56 | 
            +
                AI consulting venture strategy that:
         | 
| 57 | 
            +
                1. Identifies consulting opportunities
         | 
| 58 | 
            +
                2. Develops service offerings
         | 
| 59 | 
            +
                3. Creates delivery frameworks
         | 
| 60 | 
            +
                4. Manages client relationships
         | 
| 61 | 
            +
                5. Scales operations
         | 
| 62 | 
            +
                """
         | 
| 63 | 
            +
                
         | 
| 64 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 65 | 
            +
                    """Generate AI consulting strategy."""
         | 
| 66 | 
            +
                    try:
         | 
| 67 | 
            +
                        # Market analysis
         | 
| 68 | 
            +
                        market = await self._analyze_consulting_market(query, context)
         | 
| 69 | 
            +
                        
         | 
| 70 | 
            +
                        # Service design
         | 
| 71 | 
            +
                        services = await self._design_services(market, context)
         | 
| 72 | 
            +
                        
         | 
| 73 | 
            +
                        # Delivery framework
         | 
| 74 | 
            +
                        framework = await self._create_delivery_framework(services, context)
         | 
| 75 | 
            +
                        
         | 
| 76 | 
            +
                        # Growth strategy
         | 
| 77 | 
            +
                        growth = await self._plan_growth(framework, context)
         | 
| 78 | 
            +
                        
         | 
| 79 | 
            +
                        # Revenue projections
         | 
| 80 | 
            +
                        projections = await self._project_consulting_revenue(growth, context)
         | 
| 81 | 
            +
                        
         | 
| 82 | 
            +
                        return {
         | 
| 83 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 84 | 
            +
                            "market": market,
         | 
| 85 | 
            +
                            "services": services,
         | 
| 86 | 
            +
                            "framework": framework,
         | 
| 87 | 
            +
                            "growth": growth,
         | 
| 88 | 
            +
                            "projections": projections
         | 
| 89 | 
            +
                        }
         | 
| 90 | 
            +
                    except Exception as e:
         | 
| 91 | 
            +
                        logging.error(f"Error in AI consulting strategy: {str(e)}")
         | 
| 92 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 93 | 
            +
             | 
| 94 | 
            +
            class AIProductStrategy(ReasoningStrategy):
         | 
| 95 | 
            +
                """
         | 
| 96 | 
            +
                AI product venture strategy that:
         | 
| 97 | 
            +
                1. Identifies product opportunities
         | 
| 98 | 
            +
                2. Develops product roadmap
         | 
| 99 | 
            +
                3. Creates go-to-market strategy
         | 
| 100 | 
            +
                4. Manages product lifecycle
         | 
| 101 | 
            +
                5. Scales distribution
         | 
| 102 | 
            +
                """
         | 
| 103 | 
            +
                
         | 
| 104 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 105 | 
            +
                    """Generate AI product strategy."""
         | 
| 106 | 
            +
                    try:
         | 
| 107 | 
            +
                        # Market analysis
         | 
| 108 | 
            +
                        market = await self._analyze_product_market(query, context)
         | 
| 109 | 
            +
                        
         | 
| 110 | 
            +
                        # Product development
         | 
| 111 | 
            +
                        product = await self._develop_product_strategy(market, context)
         | 
| 112 | 
            +
                        
         | 
| 113 | 
            +
                        # Go-to-market
         | 
| 114 | 
            +
                        gtm = await self._create_gtm_strategy(product, context)
         | 
| 115 | 
            +
                        
         | 
| 116 | 
            +
                        # Scale strategy
         | 
| 117 | 
            +
                        scale = await self._plan_product_scaling(gtm, context)
         | 
| 118 | 
            +
                        
         | 
| 119 | 
            +
                        # Revenue projections
         | 
| 120 | 
            +
                        projections = await self._project_product_revenue(scale, context)
         | 
| 121 | 
            +
                        
         | 
| 122 | 
            +
                        return {
         | 
| 123 | 
            +
                            "success": projections["annual_revenue"] >= 1_000_000,
         | 
| 124 | 
            +
                            "market": market,
         | 
| 125 | 
            +
                            "product": product,
         | 
| 126 | 
            +
                            "gtm": gtm,
         | 
| 127 | 
            +
                            "scale": scale,
         | 
| 128 | 
            +
                            "projections": projections
         | 
| 129 | 
            +
                        }
         | 
| 130 | 
            +
                    except Exception as e:
         | 
| 131 | 
            +
                        logging.error(f"Error in AI product strategy: {str(e)}")
         | 
| 132 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 133 | 
            +
             | 
| 134 | 
            +
            class FinTechStrategy(ReasoningStrategy):
         | 
| 135 | 
            +
                """
         | 
| 136 | 
            +
                FinTech venture strategy that:
         | 
| 137 | 
            +
                1. Identifies fintech opportunities
         | 
| 138 | 
            +
                2. Develops financial products
         | 
| 139 | 
            +
                3. Ensures compliance
         | 
| 140 | 
            +
                4. Manages risk
         | 
| 141 | 
            +
                5. Scales operations
         | 
| 142 | 
            +
                """
         | 
| 143 | 
            +
                
         | 
| 144 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 145 | 
            +
                    """Generate FinTech strategy."""
         | 
| 146 | 
            +
                    try:
         | 
| 147 | 
            +
                        # Market analysis
         | 
| 148 | 
            +
                        market = await self._analyze_fintech_market(query, context)
         | 
| 149 | 
            +
                        
         | 
| 150 | 
            +
                        # Product development
         | 
| 151 | 
            +
                        product = await self._develop_fintech_product(market, context)
         | 
| 152 | 
            +
                        
         | 
| 153 | 
            +
                        # Compliance strategy
         | 
| 154 | 
            +
                        compliance = await self._ensure_compliance(product, context)
         | 
| 155 | 
            +
                        
         | 
| 156 | 
            +
                        # Risk management
         | 
| 157 | 
            +
                        risk = await self._manage_risk(compliance, context)
         | 
| 158 | 
            +
                        
         | 
| 159 | 
            +
                        # Scale strategy
         | 
| 160 | 
            +
                        scale = await self._plan_fintech_scaling(risk, context)
         | 
| 161 | 
            +
                        
         | 
| 162 | 
            +
                        return {
         | 
| 163 | 
            +
                            "success": scale["annual_revenue"] >= 1_000_000,
         | 
| 164 | 
            +
                            "market": market,
         | 
| 165 | 
            +
                            "product": product,
         | 
| 166 | 
            +
                            "compliance": compliance,
         | 
| 167 | 
            +
                            "risk": risk,
         | 
| 168 | 
            +
                            "scale": scale
         | 
| 169 | 
            +
                        }
         | 
| 170 | 
            +
                    except Exception as e:
         | 
| 171 | 
            +
                        logging.error(f"Error in FinTech strategy: {str(e)}")
         | 
| 172 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 173 | 
            +
             | 
| 174 | 
            +
            class HealthTechStrategy(ReasoningStrategy):
         | 
| 175 | 
            +
                """
         | 
| 176 | 
            +
                HealthTech venture strategy that:
         | 
| 177 | 
            +
                1. Identifies healthcare opportunities
         | 
| 178 | 
            +
                2. Develops health solutions
         | 
| 179 | 
            +
                3. Ensures compliance
         | 
| 180 | 
            +
                4. Manages patient data
         | 
| 181 | 
            +
                5. Scales operations
         | 
| 182 | 
            +
                """
         | 
| 183 | 
            +
                
         | 
| 184 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 185 | 
            +
                    """Generate HealthTech strategy."""
         | 
| 186 | 
            +
                    try:
         | 
| 187 | 
            +
                        # Market analysis
         | 
| 188 | 
            +
                        market = await self._analyze_healthtech_market(query, context)
         | 
| 189 | 
            +
                        
         | 
| 190 | 
            +
                        # Solution development
         | 
| 191 | 
            +
                        solution = await self._develop_health_solution(market, context)
         | 
| 192 | 
            +
                        
         | 
| 193 | 
            +
                        # Compliance strategy
         | 
| 194 | 
            +
                        compliance = await self._ensure_health_compliance(solution, context)
         | 
| 195 | 
            +
                        
         | 
| 196 | 
            +
                        # Data strategy
         | 
| 197 | 
            +
                        data = await self._manage_health_data(compliance, context)
         | 
| 198 | 
            +
                        
         | 
| 199 | 
            +
                        # Scale strategy
         | 
| 200 | 
            +
                        scale = await self._plan_healthtech_scaling(data, context)
         | 
| 201 | 
            +
                        
         | 
| 202 | 
            +
                        return {
         | 
| 203 | 
            +
                            "success": scale["annual_revenue"] >= 1_000_000,
         | 
| 204 | 
            +
                            "market": market,
         | 
| 205 | 
            +
                            "solution": solution,
         | 
| 206 | 
            +
                            "compliance": compliance,
         | 
| 207 | 
            +
                            "data": data,
         | 
| 208 | 
            +
                            "scale": scale
         | 
| 209 | 
            +
                        }
         | 
| 210 | 
            +
                    except Exception as e:
         | 
| 211 | 
            +
                        logging.error(f"Error in HealthTech strategy: {str(e)}")
         | 
| 212 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 213 | 
            +
             | 
| 214 | 
            +
            class EdTechStrategy(ReasoningStrategy):
         | 
| 215 | 
            +
                """
         | 
| 216 | 
            +
                EdTech venture strategy that:
         | 
| 217 | 
            +
                1. Identifies education opportunities
         | 
| 218 | 
            +
                2. Develops learning solutions
         | 
| 219 | 
            +
                3. Creates content strategy
         | 
| 220 | 
            +
                4. Manages user engagement
         | 
| 221 | 
            +
                5. Scales platform
         | 
| 222 | 
            +
                """
         | 
| 223 | 
            +
                
         | 
| 224 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 225 | 
            +
                    """Generate EdTech strategy."""
         | 
| 226 | 
            +
                    try:
         | 
| 227 | 
            +
                        # Market analysis
         | 
| 228 | 
            +
                        market = await self._analyze_edtech_market(query, context)
         | 
| 229 | 
            +
                        
         | 
| 230 | 
            +
                        # Solution development
         | 
| 231 | 
            +
                        solution = await self._develop_learning_solution(market, context)
         | 
| 232 | 
            +
                        
         | 
| 233 | 
            +
                        # Content strategy
         | 
| 234 | 
            +
                        content = await self._create_content_strategy(solution, context)
         | 
| 235 | 
            +
                        
         | 
| 236 | 
            +
                        # Engagement strategy
         | 
| 237 | 
            +
                        engagement = await self._manage_engagement(content, context)
         | 
| 238 | 
            +
                        
         | 
| 239 | 
            +
                        # Scale strategy
         | 
| 240 | 
            +
                        scale = await self._plan_edtech_scaling(engagement, context)
         | 
| 241 | 
            +
                        
         | 
| 242 | 
            +
                        return {
         | 
| 243 | 
            +
                            "success": scale["annual_revenue"] >= 1_000_000,
         | 
| 244 | 
            +
                            "market": market,
         | 
| 245 | 
            +
                            "solution": solution,
         | 
| 246 | 
            +
                            "content": content,
         | 
| 247 | 
            +
                            "engagement": engagement,
         | 
| 248 | 
            +
                            "scale": scale
         | 
| 249 | 
            +
                        }
         | 
| 250 | 
            +
                    except Exception as e:
         | 
| 251 | 
            +
                        logging.error(f"Error in EdTech strategy: {str(e)}")
         | 
| 252 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 253 | 
            +
             | 
| 254 | 
            +
            class BlockchainStrategy(ReasoningStrategy):
         | 
| 255 | 
            +
                """
         | 
| 256 | 
            +
                Blockchain venture strategy that:
         | 
| 257 | 
            +
                1. Identifies blockchain opportunities
         | 
| 258 | 
            +
                2. Develops blockchain solutions
         | 
| 259 | 
            +
                3. Ensures security
         | 
| 260 | 
            +
                4. Manages tokenomics
         | 
| 261 | 
            +
                5. Scales network
         | 
| 262 | 
            +
                """
         | 
| 263 | 
            +
                
         | 
| 264 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 265 | 
            +
                    """Generate blockchain strategy."""
         | 
| 266 | 
            +
                    try:
         | 
| 267 | 
            +
                        # Market analysis
         | 
| 268 | 
            +
                        market = await self._analyze_blockchain_market(query, context)
         | 
| 269 | 
            +
                        
         | 
| 270 | 
            +
                        # Solution development
         | 
| 271 | 
            +
                        solution = await self._develop_blockchain_solution(market, context)
         | 
| 272 | 
            +
                        
         | 
| 273 | 
            +
                        # Security strategy
         | 
| 274 | 
            +
                        security = await self._ensure_blockchain_security(solution, context)
         | 
| 275 | 
            +
                        
         | 
| 276 | 
            +
                        # Tokenomics
         | 
| 277 | 
            +
                        tokenomics = await self._design_tokenomics(security, context)
         | 
| 278 | 
            +
                        
         | 
| 279 | 
            +
                        # Scale strategy
         | 
| 280 | 
            +
                        scale = await self._plan_blockchain_scaling(tokenomics, context)
         | 
| 281 | 
            +
                        
         | 
| 282 | 
            +
                        return {
         | 
| 283 | 
            +
                            "success": scale["annual_revenue"] >= 1_000_000,
         | 
| 284 | 
            +
                            "market": market,
         | 
| 285 | 
            +
                            "solution": solution,
         | 
| 286 | 
            +
                            "security": security,
         | 
| 287 | 
            +
                            "tokenomics": tokenomics,
         | 
| 288 | 
            +
                            "scale": scale
         | 
| 289 | 
            +
                        }
         | 
| 290 | 
            +
                    except Exception as e:
         | 
| 291 | 
            +
                        logging.error(f"Error in blockchain strategy: {str(e)}")
         | 
| 292 | 
            +
                        return {"success": False, "error": str(e)}
         | 
| 293 | 
            +
             | 
| 294 | 
            +
            class AIMarketplaceStrategy(ReasoningStrategy):
         | 
| 295 | 
            +
                """
         | 
| 296 | 
            +
                AI marketplace venture strategy that:
         | 
| 297 | 
            +
                1. Creates AI model marketplace
         | 
| 298 | 
            +
                2. Manages model deployment
         | 
| 299 | 
            +
                3. Handles transactions
         | 
| 300 | 
            +
                4. Ensures quality
         | 
| 301 | 
            +
                5. Scales platform
         | 
| 302 | 
            +
                """
         | 
| 303 | 
            +
                
         | 
| 304 | 
            +
                async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]:
         | 
| 305 | 
            +
                    """Generate AI marketplace strategy."""
         | 
| 306 | 
            +
                    try:
         | 
| 307 | 
            +
                        # Market analysis
         | 
| 308 | 
            +
                        market = await self._analyze_ai_marketplace(query, context)
         | 
| 309 | 
            +
                        
         | 
| 310 | 
            +
                        # Platform development
         | 
| 311 | 
            +
                        platform = await self._develop_marketplace_platform(market, context)
         | 
| 312 | 
            +
                        
         | 
| 313 | 
            +
                        # Quality strategy
         | 
| 314 | 
            +
                        quality = await self._ensure_model_quality(platform, context)
         | 
| 315 | 
            +
                        
         | 
| 316 | 
            +
                        # Transaction system
         | 
| 317 | 
            +
                        transactions = await self._design_transaction_system(quality, context)
         | 
| 318 | 
            +
                        
         | 
| 319 | 
            +
                        # Scale strategy
         | 
| 320 | 
            +
                        scale = await self._plan_marketplace_scaling(transactions, context)
         | 
| 321 | 
            +
                        
         | 
| 322 | 
            +
                        return {
         | 
| 323 | 
            +
                            "success": scale["annual_revenue"] >= 1_000_000,
         | 
| 324 | 
            +
                            "market": market,
         | 
| 325 | 
            +
                            "platform": platform,
         | 
| 326 | 
            +
                            "quality": quality,
         | 
| 327 | 
            +
                            "transactions": transactions,
         | 
| 328 | 
            +
                            "scale": scale
         | 
| 329 | 
            +
                        }
         | 
| 330 | 
            +
                    except Exception as e:
         | 
| 331 | 
            +
                        logging.error(f"Error in AI marketplace strategy: {str(e)}")
         | 
| 332 | 
            +
                        return {"success": False, "error": str(e)}
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,19 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            fastapi>=0.68.0
         | 
| 2 | 
            +
            uvicorn>=0.15.0
         | 
| 3 | 
            +
            pydantic>=2.0.0
         | 
| 4 | 
            +
            gradio>=4.16.0
         | 
| 5 | 
            +
            llama-cpp-python>=0.2.23
         | 
| 6 | 
            +
            huggingface-hub>=0.19.4
         | 
| 7 | 
            +
            numpy>=1.24.0
         | 
| 8 | 
            +
            networkx>=3.2.1
         | 
| 9 | 
            +
            scikit-learn>=1.3.2
         | 
| 10 | 
            +
            scipy==1.11.4
         | 
| 11 | 
            +
            pandas>=2.1.0
         | 
| 12 | 
            +
            plotly>=5.18.0
         | 
| 13 | 
            +
            typing-extensions>=4.0.0
         | 
| 14 | 
            +
            aiohttp>=3.8.0
         | 
| 15 | 
            +
            asyncio>=3.4.3
         | 
| 16 | 
            +
            joblib==1.3.2
         | 
| 17 | 
            +
            tqdm>=4.66.0
         | 
| 18 | 
            +
            python-dotenv>=0.19.0
         | 
| 19 | 
            +
            httpx>=0.24.0
         | 
    	
        requirements.txt.backup
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            fastapi>=0.68.0
         | 
| 2 | 
            +
            uvicorn>=0.15.0
         | 
| 3 | 
            +
            pydantic>=2.0.0
         | 
| 4 | 
            +
            gradio>=3.50.0
         | 
| 5 | 
            +
            transformers>=4.36.2
         | 
| 6 | 
            +
            torch>=2.1.2
         | 
| 7 | 
            +
            huggingface-hub==0.19.4
         | 
| 8 | 
            +
            ctransformers==0.2.27
         | 
| 9 | 
            +
            numpy>=1.24.0
         | 
| 10 | 
            +
            networkx>=3.2.1
         | 
| 11 | 
            +
            scikit-learn>=1.3.2
         | 
| 12 | 
            +
            scipy==1.11.4
         | 
| 13 | 
            +
            pandas>=2.1.0
         | 
| 14 | 
            +
            plotly>=5.18.0
         | 
| 15 | 
            +
            typing-extensions>=4.0.0
         | 
| 16 | 
            +
            aiohttp>=3.8.0
         | 
| 17 | 
            +
            asyncio>=3.4.3
         | 
| 18 | 
            +
            joblib==1.3.2
         | 
| 19 | 
            +
            tqdm>=4.66.1
         | 
| 20 | 
            +
            python-dotenv>=0.19.0
         | 
| 21 | 
            +
            httpx>=0.24.0
         | 
| 22 | 
            +
            python-multipart>=0.0.5
         | 
| 23 | 
            +
            websockets>=10.0
         | 
| 24 | 
            +
            jinja2>=3.0.0
         | 
| 25 | 
            +
            markdown>=3.3.0
         | 
| 26 | 
            +
            pygments>=2.10.0
         | 
| 27 | 
            +
            starlette>=0.14.0
         | 
| 28 | 
            +
            requests>=2.26.0
         | 
    	
        simple_reasoning.py
    ADDED
    
    | @@ -0,0 +1,25 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Simple Reasoning Agent using local models"""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            class ReasoningAgent:
         | 
| 7 | 
            +
                """A simple reasoning agent using local models."""
         | 
| 8 | 
            +
                
         | 
| 9 | 
            +
                def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
         | 
| 10 | 
            +
                    """Initialize the agent with a local model."""
         | 
| 11 | 
            +
                    # Load model and tokenizer
         | 
| 12 | 
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 13 | 
            +
                    self.model = AutoModelForCausalLM.from_pretrained(
         | 
| 14 | 
            +
                        model_name,
         | 
| 15 | 
            +
                        torch_dtype=torch.float16,
         | 
| 16 | 
            +
                        device_map="auto"
         | 
| 17 | 
            +
                    )
         | 
| 18 | 
            +
                    
         | 
| 19 | 
            +
                def get_response(self, query: str) -> str:
         | 
| 20 | 
            +
                    """Generate a response using the local model."""
         | 
| 21 | 
            +
                    try:
         | 
| 22 | 
            +
                        # Format the prompt
         | 
| 23 | 
            +
                        prompt = f"""<|system|>
         | 
| 24 | 
            +
            You are a helpful AI assistant.
         | 
| 25 | 
            +
            </s>
         | 
    	
        simple_reasoning/__init__.py
    ADDED
    
    | @@ -0,0 +1,5 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Simple reasoning system using local LLM."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from .agent import ReasoningAgent
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            __all__ = ['ReasoningAgent']
         | 
    	
        simple_reasoning/agent.py
    ADDED
    
    | @@ -0,0 +1,26 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Local reasoning agent using TinyLlama."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            class ReasoningAgent:
         | 
| 7 | 
            +
                """Local reasoning agent using TinyLlama with chain of thought prompting."""
         | 
| 8 | 
            +
                
         | 
| 9 | 
            +
                def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
         | 
| 10 | 
            +
                    """Initialize the agent with local model."""
         | 
| 11 | 
            +
                    # Load model and tokenizer
         | 
| 12 | 
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 13 | 
            +
                    self.model = AutoModelForCausalLM.from_pretrained(
         | 
| 14 | 
            +
                        model_name,
         | 
| 15 | 
            +
                        torch_dtype=torch.float16,
         | 
| 16 | 
            +
                        device_map="auto"
         | 
| 17 | 
            +
                    )
         | 
| 18 | 
            +
                    
         | 
| 19 | 
            +
                def get_response(self, message: str) -> str:
         | 
| 20 | 
            +
                    """Generate response using local model with chain of thought prompting."""
         | 
| 21 | 
            +
                    try:
         | 
| 22 | 
            +
                        # Format prompt with chain of thought structure
         | 
| 23 | 
            +
                        prompt = f"""<|system|>
         | 
| 24 | 
            +
            You are a helpful AI assistant that uses chain of thought reasoning to answer questions.
         | 
| 25 | 
            +
            For each response, break down your thinking into steps before giving the final answer.
         | 
| 26 | 
            +
            </s>
         | 
    	
        team_management.py
    ADDED
    
    | @@ -0,0 +1,442 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """
         | 
| 2 | 
            +
            Advanced Team Management System
         | 
| 3 | 
            +
            -----------------------------
         | 
| 4 | 
            +
            Manages specialized teams of agents that work together towards common goals:
         | 
| 5 | 
            +
            1. Team A: Coders (App/Software Developers)
         | 
| 6 | 
            +
            2. Team B: Business (Entrepreneurs)
         | 
| 7 | 
            +
            3. Team C: Research (Deep Online Research)
         | 
| 8 | 
            +
            4. Team D: Crypto & Sports Trading
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            Features:
         | 
| 11 | 
            +
            - Cross-team collaboration
         | 
| 12 | 
            +
            - Goal alignment
         | 
| 13 | 
            +
            - Resource sharing
         | 
| 14 | 
            +
            - Synchronized execution
         | 
| 15 | 
            +
            """
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            from typing import Dict, List, Optional, Set, Union, TypeVar
         | 
| 18 | 
            +
            from dataclasses import dataclass, field
         | 
| 19 | 
            +
            from enum import Enum
         | 
| 20 | 
            +
            import asyncio
         | 
| 21 | 
            +
            from datetime import datetime
         | 
| 22 | 
            +
            import uuid
         | 
| 23 | 
            +
            from collections import defaultdict
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            from orchestrator import AgentOrchestrator, TaskPriority
         | 
| 26 | 
            +
            from agentic_system import AgentRole, AgentCapability, AgentPersonality, Agent
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            class TeamType(Enum):
         | 
| 29 | 
            +
                """Specialized team types."""
         | 
| 30 | 
            +
                CODERS = "coders"
         | 
| 31 | 
            +
                BUSINESS = "business"
         | 
| 32 | 
            +
                RESEARCH = "research"
         | 
| 33 | 
            +
                TRADERS = "traders"
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            class TeamObjective(Enum):
         | 
| 36 | 
            +
                """Types of team objectives."""
         | 
| 37 | 
            +
                SOFTWARE_DEVELOPMENT = "software_development"
         | 
| 38 | 
            +
                BUSINESS_OPPORTUNITY = "business_opportunity"
         | 
| 39 | 
            +
                MARKET_RESEARCH = "market_research"
         | 
| 40 | 
            +
                TRADING_STRATEGY = "trading_strategy"
         | 
| 41 | 
            +
                CROSS_TEAM_PROJECT = "cross_team_project"
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            @dataclass
         | 
| 44 | 
            +
            class TeamProfile:
         | 
| 45 | 
            +
                """Team profile and capabilities."""
         | 
| 46 | 
            +
                id: str
         | 
| 47 | 
            +
                type: TeamType
         | 
| 48 | 
            +
                name: str
         | 
| 49 | 
            +
                primary_objective: TeamObjective
         | 
| 50 | 
            +
                secondary_objectives: List[TeamObjective]
         | 
| 51 | 
            +
                agent_count: int
         | 
| 52 | 
            +
                expertise_areas: List[str]
         | 
| 53 | 
            +
                collaboration_score: float = 0.0
         | 
| 54 | 
            +
                success_rate: float = 0.0
         | 
| 55 | 
            +
                active_projects: int = 0
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            @dataclass
         | 
| 58 | 
            +
            class CollaborationLink:
         | 
| 59 | 
            +
                """Defines collaboration between teams."""
         | 
| 60 | 
            +
                team_a_id: str
         | 
| 61 | 
            +
                team_b_id: str
         | 
| 62 | 
            +
                strength: float
         | 
| 63 | 
            +
                active_projects: int
         | 
| 64 | 
            +
                last_interaction: datetime
         | 
| 65 | 
            +
                success_rate: float
         | 
| 66 | 
            +
             | 
| 67 | 
            +
            class TeamManager:
         | 
| 68 | 
            +
                """Manages specialized teams and their collaboration."""
         | 
| 69 | 
            +
                
         | 
| 70 | 
            +
                def __init__(self, orchestrator: AgentOrchestrator):
         | 
| 71 | 
            +
                    self.orchestrator = orchestrator
         | 
| 72 | 
            +
                    self.teams: Dict[str, TeamProfile] = {}
         | 
| 73 | 
            +
                    self.agents: Dict[str, Dict[str, Agent]] = {}  # team_id -> {agent_id -> Agent}
         | 
| 74 | 
            +
                    self.collaboration_network: Dict[str, CollaborationLink] = {}
         | 
| 75 | 
            +
                    self.shared_objectives: Dict[str, Set[str]] = defaultdict(set)  # objective_id -> set of team_ids
         | 
| 76 | 
            +
                    self.lock = asyncio.Lock()
         | 
| 77 | 
            +
                    
         | 
| 78 | 
            +
                    # Initialize specialized teams
         | 
| 79 | 
            +
                    self._init_teams()
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                def _init_teams(self):
         | 
| 82 | 
            +
                    """Initialize specialized teams."""
         | 
| 83 | 
            +
                    team_configs = {
         | 
| 84 | 
            +
                        TeamType.CODERS: {
         | 
| 85 | 
            +
                            "name": "Development Team",
         | 
| 86 | 
            +
                            "primary": TeamObjective.SOFTWARE_DEVELOPMENT,
         | 
| 87 | 
            +
                            "secondary": [
         | 
| 88 | 
            +
                                TeamObjective.BUSINESS_OPPORTUNITY,
         | 
| 89 | 
            +
                                TeamObjective.MARKET_RESEARCH
         | 
| 90 | 
            +
                            ],
         | 
| 91 | 
            +
                            "expertise": [
         | 
| 92 | 
            +
                                "full_stack_development",
         | 
| 93 | 
            +
                                "cloud_architecture",
         | 
| 94 | 
            +
                                "ai_ml",
         | 
| 95 | 
            +
                                "blockchain",
         | 
| 96 | 
            +
                                "mobile_development"
         | 
| 97 | 
            +
                            ]
         | 
| 98 | 
            +
                        },
         | 
| 99 | 
            +
                        TeamType.BUSINESS: {
         | 
| 100 | 
            +
                            "name": "Business Strategy Team",
         | 
| 101 | 
            +
                            "primary": TeamObjective.BUSINESS_OPPORTUNITY,
         | 
| 102 | 
            +
                            "secondary": [
         | 
| 103 | 
            +
                                TeamObjective.MARKET_RESEARCH,
         | 
| 104 | 
            +
                                TeamObjective.TRADING_STRATEGY
         | 
| 105 | 
            +
                            ],
         | 
| 106 | 
            +
                            "expertise": [
         | 
| 107 | 
            +
                                "market_analysis",
         | 
| 108 | 
            +
                                "business_strategy",
         | 
| 109 | 
            +
                                "digital_transformation",
         | 
| 110 | 
            +
                                "startup_innovation",
         | 
| 111 | 
            +
                                "product_management"
         | 
| 112 | 
            +
                            ]
         | 
| 113 | 
            +
                        },
         | 
| 114 | 
            +
                        TeamType.RESEARCH: {
         | 
| 115 | 
            +
                            "name": "Research & Analysis Team",
         | 
| 116 | 
            +
                            "primary": TeamObjective.MARKET_RESEARCH,
         | 
| 117 | 
            +
                            "secondary": [
         | 
| 118 | 
            +
                                TeamObjective.BUSINESS_OPPORTUNITY,
         | 
| 119 | 
            +
                                TeamObjective.TRADING_STRATEGY
         | 
| 120 | 
            +
                            ],
         | 
| 121 | 
            +
                            "expertise": [
         | 
| 122 | 
            +
                                "deep_research",
         | 
| 123 | 
            +
                                "data_analysis",
         | 
| 124 | 
            +
                                "trend_forecasting",
         | 
| 125 | 
            +
                                "competitive_analysis",
         | 
| 126 | 
            +
                                "technology_assessment"
         | 
| 127 | 
            +
                            ]
         | 
| 128 | 
            +
                        },
         | 
| 129 | 
            +
                        TeamType.TRADERS: {
         | 
| 130 | 
            +
                            "name": "Trading & Investment Team",
         | 
| 131 | 
            +
                            "primary": TeamObjective.TRADING_STRATEGY,
         | 
| 132 | 
            +
                            "secondary": [
         | 
| 133 | 
            +
                                TeamObjective.MARKET_RESEARCH,
         | 
| 134 | 
            +
                                TeamObjective.BUSINESS_OPPORTUNITY
         | 
| 135 | 
            +
                            ],
         | 
| 136 | 
            +
                            "expertise": [
         | 
| 137 | 
            +
                                "crypto_trading",
         | 
| 138 | 
            +
                                "sports_betting",
         | 
| 139 | 
            +
                                "risk_management",
         | 
| 140 | 
            +
                                "market_timing",
         | 
| 141 | 
            +
                                "portfolio_optimization"
         | 
| 142 | 
            +
                            ]
         | 
| 143 | 
            +
                        }
         | 
| 144 | 
            +
                    }
         | 
| 145 | 
            +
                    
         | 
| 146 | 
            +
                    for team_type, config in team_configs.items():
         | 
| 147 | 
            +
                        team_id = str(uuid.uuid4())
         | 
| 148 | 
            +
                        self.teams[team_id] = TeamProfile(
         | 
| 149 | 
            +
                            id=team_id,
         | 
| 150 | 
            +
                            type=team_type,
         | 
| 151 | 
            +
                            name=config["name"],
         | 
| 152 | 
            +
                            primary_objective=config["primary"],
         | 
| 153 | 
            +
                            secondary_objectives=config["secondary"],
         | 
| 154 | 
            +
                            agent_count=5,  # Default size
         | 
| 155 | 
            +
                            expertise_areas=config["expertise"]
         | 
| 156 | 
            +
                        )
         | 
| 157 | 
            +
                        self.agents[team_id] = {}
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                async def initialize_team_agents(self):
         | 
| 160 | 
            +
                    """Initialize agents for each team with appropriate roles and capabilities."""
         | 
| 161 | 
            +
                    for team_id, team in self.teams.items():
         | 
| 162 | 
            +
                        await self._create_team_agents(team_id)
         | 
| 163 | 
            +
                        await self._establish_collaboration_links(team_id)
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                async def _create_team_agents(self, team_id: str):
         | 
| 166 | 
            +
                    """Create specialized agents for a team."""
         | 
| 167 | 
            +
                    team = self.teams[team_id]
         | 
| 168 | 
            +
                    
         | 
| 169 | 
            +
                    # Define agent configurations based on team type
         | 
| 170 | 
            +
                    agent_configs = self._get_agent_configs(team.type)
         | 
| 171 | 
            +
                    
         | 
| 172 | 
            +
                    for config in agent_configs:
         | 
| 173 | 
            +
                        agent_id = await self.orchestrator.create_agent(
         | 
| 174 | 
            +
                            role=config["role"],
         | 
| 175 | 
            +
                            capabilities=config["capabilities"]
         | 
| 176 | 
            +
                        )
         | 
| 177 | 
            +
                        
         | 
| 178 | 
            +
                        agent = Agent(
         | 
| 179 | 
            +
                            profile=config["profile"],
         | 
| 180 | 
            +
                            reasoning_engine=self.orchestrator.reasoning_engine,
         | 
| 181 | 
            +
                            meta_learning=self.orchestrator.meta_learning
         | 
| 182 | 
            +
                        )
         | 
| 183 | 
            +
                        
         | 
| 184 | 
            +
                        self.agents[team_id][agent_id] = agent
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                def _get_agent_configs(self, team_type: TeamType) -> List[Dict]:
         | 
| 187 | 
            +
                    """Get agent configurations based on team type."""
         | 
| 188 | 
            +
                    base_configs = [
         | 
| 189 | 
            +
                        {
         | 
| 190 | 
            +
                            "role": AgentRole.COORDINATOR,
         | 
| 191 | 
            +
                            "capabilities": [
         | 
| 192 | 
            +
                                AgentCapability.COORDINATION,
         | 
| 193 | 
            +
                                AgentCapability.REASONING
         | 
| 194 | 
            +
                            ],
         | 
| 195 | 
            +
                            "personality": AgentPersonality.PROACTIVE
         | 
| 196 | 
            +
                        },
         | 
| 197 | 
            +
                        {
         | 
| 198 | 
            +
                            "role": AgentRole.EXECUTOR,
         | 
| 199 | 
            +
                            "capabilities": [
         | 
| 200 | 
            +
                                AgentCapability.EXECUTION,
         | 
| 201 | 
            +
                                AgentCapability.LEARNING
         | 
| 202 | 
            +
                            ],
         | 
| 203 | 
            +
                            "personality": AgentPersonality.ANALYTICAL
         | 
| 204 | 
            +
                        }
         | 
| 205 | 
            +
                    ]
         | 
| 206 | 
            +
                    
         | 
| 207 | 
            +
                    # Add team-specific configurations
         | 
| 208 | 
            +
                    if team_type == TeamType.CODERS:
         | 
| 209 | 
            +
                        base_configs.extend([
         | 
| 210 | 
            +
                            {
         | 
| 211 | 
            +
                                "role": AgentRole.EXECUTOR,
         | 
| 212 | 
            +
                                "capabilities": [
         | 
| 213 | 
            +
                                    AgentCapability.EXECUTION,
         | 
| 214 | 
            +
                                    AgentCapability.REASONING
         | 
| 215 | 
            +
                                ],
         | 
| 216 | 
            +
                                "personality": AgentPersonality.CREATIVE,
         | 
| 217 | 
            +
                                "expertise": ["software_development", "system_design"]
         | 
| 218 | 
            +
                            }
         | 
| 219 | 
            +
                        ])
         | 
| 220 | 
            +
                    elif team_type == TeamType.BUSINESS:
         | 
| 221 | 
            +
                        base_configs.extend([
         | 
| 222 | 
            +
                            {
         | 
| 223 | 
            +
                                "role": AgentRole.PLANNER,
         | 
| 224 | 
            +
                                "capabilities": [
         | 
| 225 | 
            +
                                    AgentCapability.REASONING,
         | 
| 226 | 
            +
                                    AgentCapability.LEARNING
         | 
| 227 | 
            +
                                ],
         | 
| 228 | 
            +
                                "personality": AgentPersonality.PROACTIVE,
         | 
| 229 | 
            +
                                "expertise": ["business_strategy", "market_analysis"]
         | 
| 230 | 
            +
                            }
         | 
| 231 | 
            +
                        ])
         | 
| 232 | 
            +
                    elif team_type == TeamType.RESEARCH:
         | 
| 233 | 
            +
                        base_configs.extend([
         | 
| 234 | 
            +
                            {
         | 
| 235 | 
            +
                                "role": AgentRole.MONITOR,
         | 
| 236 | 
            +
                                "capabilities": [
         | 
| 237 | 
            +
                                    AgentCapability.MONITORING,
         | 
| 238 | 
            +
                                    AgentCapability.LEARNING
         | 
| 239 | 
            +
                                ],
         | 
| 240 | 
            +
                                "personality": AgentPersonality.ANALYTICAL,
         | 
| 241 | 
            +
                                "expertise": ["research", "data_analysis"]
         | 
| 242 | 
            +
                            }
         | 
| 243 | 
            +
                        ])
         | 
| 244 | 
            +
                    elif team_type == TeamType.TRADERS:
         | 
| 245 | 
            +
                        base_configs.extend([
         | 
| 246 | 
            +
                            {
         | 
| 247 | 
            +
                                "role": AgentRole.EXECUTOR,
         | 
| 248 | 
            +
                                "capabilities": [
         | 
| 249 | 
            +
                                    AgentCapability.EXECUTION,
         | 
| 250 | 
            +
                                    AgentCapability.REASONING
         | 
| 251 | 
            +
                                ],
         | 
| 252 | 
            +
                                "personality": AgentPersonality.CAUTIOUS,
         | 
| 253 | 
            +
                                "expertise": ["trading", "risk_management"]
         | 
| 254 | 
            +
                            }
         | 
| 255 | 
            +
                        ])
         | 
| 256 | 
            +
                        
         | 
| 257 | 
            +
                    return base_configs
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                async def _establish_collaboration_links(self, team_id: str):
         | 
| 260 | 
            +
                    """Establish collaboration links with other teams."""
         | 
| 261 | 
            +
                    team = self.teams[team_id]
         | 
| 262 | 
            +
                    
         | 
| 263 | 
            +
                    for other_id, other_team in self.teams.items():
         | 
| 264 | 
            +
                        if other_id != team_id:
         | 
| 265 | 
            +
                            link_id = f"{min(team_id, other_id)}_{max(team_id, other_id)}"
         | 
| 266 | 
            +
                            if link_id not in self.collaboration_network:
         | 
| 267 | 
            +
                                self.collaboration_network[link_id] = CollaborationLink(
         | 
| 268 | 
            +
                                    team_a_id=team_id,
         | 
| 269 | 
            +
                                    team_b_id=other_id,
         | 
| 270 | 
            +
                                    strength=0.5,  # Initial collaboration strength
         | 
| 271 | 
            +
                                    active_projects=0,
         | 
| 272 | 
            +
                                    last_interaction=datetime.now(),
         | 
| 273 | 
            +
                                    success_rate=0.0
         | 
| 274 | 
            +
                                )
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                async def create_cross_team_objective(
         | 
| 277 | 
            +
                    self,
         | 
| 278 | 
            +
                    objective: str,
         | 
| 279 | 
            +
                    required_teams: List[TeamType],
         | 
| 280 | 
            +
                    priority: TaskPriority = TaskPriority.MEDIUM
         | 
| 281 | 
            +
                ) -> str:
         | 
| 282 | 
            +
                    """Create an objective that requires multiple teams."""
         | 
| 283 | 
            +
                    objective_id = str(uuid.uuid4())
         | 
| 284 | 
            +
                    
         | 
| 285 | 
            +
                    # Find relevant teams
         | 
| 286 | 
            +
                    selected_teams = []
         | 
| 287 | 
            +
                    for team_id, team in self.teams.items():
         | 
| 288 | 
            +
                        if team.type in required_teams:
         | 
| 289 | 
            +
                            selected_teams.append(team_id)
         | 
| 290 | 
            +
                    
         | 
| 291 | 
            +
                    if len(selected_teams) < len(required_teams):
         | 
| 292 | 
            +
                        raise ValueError("Not all required teams are available")
         | 
| 293 | 
            +
                    
         | 
| 294 | 
            +
                    # Create shared objective
         | 
| 295 | 
            +
                    self.shared_objectives[objective_id].update(selected_teams)
         | 
| 296 | 
            +
                    
         | 
| 297 | 
            +
                    # Create tasks for each team
         | 
| 298 | 
            +
                    tasks = []
         | 
| 299 | 
            +
                    for team_id in selected_teams:
         | 
| 300 | 
            +
                        task_id = await self.orchestrator.submit_task(
         | 
| 301 | 
            +
                            description=f"Team {self.teams[team_id].name} contribution to: {objective}",
         | 
| 302 | 
            +
                            priority=priority
         | 
| 303 | 
            +
                        )
         | 
| 304 | 
            +
                        tasks.append(task_id)
         | 
| 305 | 
            +
                    
         | 
| 306 | 
            +
                    return objective_id
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                async def monitor_objective_progress(self, objective_id: str) -> Dict:
         | 
| 309 | 
            +
                    """Monitor progress of a cross-team objective."""
         | 
| 310 | 
            +
                    if objective_id not in self.shared_objectives:
         | 
| 311 | 
            +
                        raise ValueError("Unknown objective")
         | 
| 312 | 
            +
                        
         | 
| 313 | 
            +
                    team_progress = {}
         | 
| 314 | 
            +
                    for team_id in self.shared_objectives[objective_id]:
         | 
| 315 | 
            +
                        team = self.teams[team_id]
         | 
| 316 | 
            +
                        team_agents = self.agents[team_id]
         | 
| 317 | 
            +
                        
         | 
| 318 | 
            +
                        # Calculate team progress
         | 
| 319 | 
            +
                        active_agents = sum(1 for agent in team_agents.values() if agent.state == "busy")
         | 
| 320 | 
            +
                        completion_rate = sum(agent.get_task_completion_rate() for agent in team_agents.values()) / len(team_agents)
         | 
| 321 | 
            +
                        
         | 
| 322 | 
            +
                        team_progress[team.name] = {
         | 
| 323 | 
            +
                            "active_agents": active_agents,
         | 
| 324 | 
            +
                            "completion_rate": completion_rate,
         | 
| 325 | 
            +
                            "collaboration_score": team.collaboration_score
         | 
| 326 | 
            +
                        }
         | 
| 327 | 
            +
                        
         | 
| 328 | 
            +
                    return team_progress
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                async def optimize_team_collaboration(self):
         | 
| 331 | 
            +
                    """Optimize collaboration between teams."""
         | 
| 332 | 
            +
                    for link in self.collaboration_network.values():
         | 
| 333 | 
            +
                        team_a = self.teams[link.team_a_id]
         | 
| 334 | 
            +
                        team_b = self.teams[link.team_b_id]
         | 
| 335 | 
            +
                        
         | 
| 336 | 
            +
                        # Update collaboration strength based on:
         | 
| 337 | 
            +
                        # 1. Number of successful joint projects
         | 
| 338 | 
            +
                        # 2. Frequency of interaction
         | 
| 339 | 
            +
                        # 3. Complementary expertise
         | 
| 340 | 
            +
                        
         | 
| 341 | 
            +
                        success_factor = link.success_rate
         | 
| 342 | 
            +
                        interaction_factor = min((datetime.now() - link.last_interaction).days / 30.0, 1.0)
         | 
| 343 | 
            +
                        expertise_overlap = len(
         | 
| 344 | 
            +
                            set(team_a.expertise_areas) & set(team_b.expertise_areas)
         | 
| 345 | 
            +
                        ) / len(set(team_a.expertise_areas) | set(team_b.expertise_areas))
         | 
| 346 | 
            +
                        
         | 
| 347 | 
            +
                        new_strength = (
         | 
| 348 | 
            +
                            0.4 * success_factor +
         | 
| 349 | 
            +
                            0.3 * (1 - interaction_factor) +
         | 
| 350 | 
            +
                            0.3 * (1 - expertise_overlap)
         | 
| 351 | 
            +
                        )
         | 
| 352 | 
            +
                        
         | 
| 353 | 
            +
                        link.strength = 0.7 * link.strength + 0.3 * new_strength
         | 
| 354 | 
            +
             | 
| 355 | 
            +
                async def get_team_recommendations(self, objective: str) -> List[TeamType]:
         | 
| 356 | 
            +
                    """Get recommended teams for an objective based on expertise and collaboration history."""
         | 
| 357 | 
            +
                    # Analyze objective to determine required expertise
         | 
| 358 | 
            +
                    required_expertise = await self._analyze_objective(objective)
         | 
| 359 | 
            +
                    
         | 
| 360 | 
            +
                    # Score each team
         | 
| 361 | 
            +
                    team_scores = {}
         | 
| 362 | 
            +
                    for team_id, team in self.teams.items():
         | 
| 363 | 
            +
                        # Calculate expertise match
         | 
| 364 | 
            +
                        expertise_match = len(
         | 
| 365 | 
            +
                            set(required_expertise) & set(team.expertise_areas)
         | 
| 366 | 
            +
                        ) / len(required_expertise)
         | 
| 367 | 
            +
                        
         | 
| 368 | 
            +
                        # Calculate collaboration potential
         | 
| 369 | 
            +
                        collab_potential = self._calculate_collaboration_potential(team_id)
         | 
| 370 | 
            +
                        
         | 
| 371 | 
            +
                        # Calculate success history
         | 
| 372 | 
            +
                        success_history = team.success_rate
         | 
| 373 | 
            +
                        
         | 
| 374 | 
            +
                        # Weighted score
         | 
| 375 | 
            +
                        score = (
         | 
| 376 | 
            +
                            0.4 * expertise_match +
         | 
| 377 | 
            +
                            0.3 * collab_potential +
         | 
| 378 | 
            +
                            0.3 * success_history
         | 
| 379 | 
            +
                        )
         | 
| 380 | 
            +
                        
         | 
| 381 | 
            +
                        team_scores[team.type] = score
         | 
| 382 | 
            +
                        
         | 
| 383 | 
            +
                    # Return sorted recommendations
         | 
| 384 | 
            +
                    return sorted(
         | 
| 385 | 
            +
                        team_scores.keys(),
         | 
| 386 | 
            +
                        key=lambda x: team_scores[x],
         | 
| 387 | 
            +
                        reverse=True
         | 
| 388 | 
            +
                    )
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                async def _analyze_objective(self, objective: str) -> List[str]:
         | 
| 391 | 
            +
                    """Analyze an objective to determine required expertise."""
         | 
| 392 | 
            +
                    # Use reasoning engine to analyze objective
         | 
| 393 | 
            +
                    analysis = await self.orchestrator.reasoning_engine.reason(
         | 
| 394 | 
            +
                        query=f"Analyze required expertise for: {objective}",
         | 
| 395 | 
            +
                        context={
         | 
| 396 | 
            +
                            "available_expertise": [
         | 
| 397 | 
            +
                                expertise
         | 
| 398 | 
            +
                                for team in self.teams.values()
         | 
| 399 | 
            +
                                for expertise in team.expertise_areas
         | 
| 400 | 
            +
                            ]
         | 
| 401 | 
            +
                        }
         | 
| 402 | 
            +
                    )
         | 
| 403 | 
            +
                    
         | 
| 404 | 
            +
                    return analysis.get("required_expertise", [])
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                def _calculate_collaboration_potential(self, team_id: str) -> float:
         | 
| 407 | 
            +
                    """Calculate a team's collaboration potential based on history."""
         | 
| 408 | 
            +
                    team_links = [
         | 
| 409 | 
            +
                        link for link in self.collaboration_network.values()
         | 
| 410 | 
            +
                        if team_id in (link.team_a_id, link.team_b_id)
         | 
| 411 | 
            +
                    ]
         | 
| 412 | 
            +
                    
         | 
| 413 | 
            +
                    if not team_links:
         | 
| 414 | 
            +
                        return 0.5
         | 
| 415 | 
            +
                        
         | 
| 416 | 
            +
                    return sum(link.strength for link in team_links) / len(team_links)
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                async def update_team_metrics(self):
         | 
| 419 | 
            +
                    """Update performance metrics for all teams."""
         | 
| 420 | 
            +
                    for team_id, team in self.teams.items():
         | 
| 421 | 
            +
                        team_agents = self.agents[team_id]
         | 
| 422 | 
            +
                        
         | 
| 423 | 
            +
                        # Calculate success rate
         | 
| 424 | 
            +
                        completed_tasks = sum(
         | 
| 425 | 
            +
                            agent.get_completed_task_count()
         | 
| 426 | 
            +
                            for agent in team_agents.values()
         | 
| 427 | 
            +
                        )
         | 
| 428 | 
            +
                        total_tasks = sum(
         | 
| 429 | 
            +
                            agent.get_total_task_count()
         | 
| 430 | 
            +
                            for agent in team_agents.values()
         | 
| 431 | 
            +
                        )
         | 
| 432 | 
            +
                        team.success_rate = completed_tasks / max(1, total_tasks)
         | 
| 433 | 
            +
                        
         | 
| 434 | 
            +
                        # Calculate collaboration score
         | 
| 435 | 
            +
                        team_links = [
         | 
| 436 | 
            +
                            link for link in self.collaboration_network.values()
         | 
| 437 | 
            +
                            if team_id in (link.team_a_id, link.team_b_id)
         | 
| 438 | 
            +
                        ]
         | 
| 439 | 
            +
                        team.collaboration_score = (
         | 
| 440 | 
            +
                            sum(link.strength for link in team_links) /
         | 
| 441 | 
            +
                            len(team_links) if team_links else 0.5
         | 
| 442 | 
            +
                        )
         | 
    	
        ui/venture_ui.py
    ADDED
    
    | @@ -0,0 +1,399 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """UI components for venture strategies and analysis."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            import gradio as gr
         | 
| 4 | 
            +
            import json
         | 
| 5 | 
            +
            from typing import Dict, Any, List
         | 
| 6 | 
            +
            import plotly.graph_objects as go
         | 
| 7 | 
            +
            import plotly.express as px
         | 
| 8 | 
            +
            import pandas as pd
         | 
| 9 | 
            +
            from datetime import datetime
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            class VentureUI:
         | 
| 12 | 
            +
                """UI for venture strategies and analysis."""
         | 
| 13 | 
            +
                
         | 
| 14 | 
            +
                def __init__(self, api_client):
         | 
| 15 | 
            +
                    self.api_client = api_client
         | 
| 16 | 
            +
                    
         | 
| 17 | 
            +
                def create_interface(self):
         | 
| 18 | 
            +
                    """Create Gradio interface."""
         | 
| 19 | 
            +
                    with gr.Blocks(title="Venture Strategy Optimizer") as interface:
         | 
| 20 | 
            +
                        gr.Markdown("# Venture Strategy Optimizer")
         | 
| 21 | 
            +
                        
         | 
| 22 | 
            +
                        with gr.Tabs():
         | 
| 23 | 
            +
                            # Venture Analysis Tab
         | 
| 24 | 
            +
                            with gr.Tab("Venture Analysis"):
         | 
| 25 | 
            +
                                with gr.Row():
         | 
| 26 | 
            +
                                    with gr.Column():
         | 
| 27 | 
            +
                                        venture_type = gr.Dropdown(
         | 
| 28 | 
            +
                                            choices=self._get_venture_types(),
         | 
| 29 | 
            +
                                            label="Venture Type"
         | 
| 30 | 
            +
                                        )
         | 
| 31 | 
            +
                                        query = gr.Textbox(
         | 
| 32 | 
            +
                                            lines=3,
         | 
| 33 | 
            +
                                            label="Analysis Query"
         | 
| 34 | 
            +
                                        )
         | 
| 35 | 
            +
                                        analyze_btn = gr.Button("Analyze Venture")
         | 
| 36 | 
            +
                                    
         | 
| 37 | 
            +
                                    with gr.Column():
         | 
| 38 | 
            +
                                        analysis_output = gr.JSON(label="Analysis Results")
         | 
| 39 | 
            +
                                        metrics_plot = gr.Plot(label="Key Metrics")
         | 
| 40 | 
            +
                                
         | 
| 41 | 
            +
                                analyze_btn.click(
         | 
| 42 | 
            +
                                    fn=self._analyze_venture,
         | 
| 43 | 
            +
                                    inputs=[venture_type, query],
         | 
| 44 | 
            +
                                    outputs=[analysis_output, metrics_plot]
         | 
| 45 | 
            +
                                )
         | 
| 46 | 
            +
                            
         | 
| 47 | 
            +
                            # Market Analysis Tab
         | 
| 48 | 
            +
                            with gr.Tab("Market Analysis"):
         | 
| 49 | 
            +
                                with gr.Row():
         | 
| 50 | 
            +
                                    with gr.Column():
         | 
| 51 | 
            +
                                        segment = gr.Textbox(
         | 
| 52 | 
            +
                                            label="Market Segment"
         | 
| 53 | 
            +
                                        )
         | 
| 54 | 
            +
                                        market_btn = gr.Button("Analyze Market")
         | 
| 55 | 
            +
                                    
         | 
| 56 | 
            +
                                    with gr.Column():
         | 
| 57 | 
            +
                                        market_output = gr.JSON(label="Market Analysis")
         | 
| 58 | 
            +
                                        market_plot = gr.Plot(label="Market Trends")
         | 
| 59 | 
            +
                                
         | 
| 60 | 
            +
                                market_btn.click(
         | 
| 61 | 
            +
                                    fn=self._analyze_market,
         | 
| 62 | 
            +
                                    inputs=[segment],
         | 
| 63 | 
            +
                                    outputs=[market_output, market_plot]
         | 
| 64 | 
            +
                                )
         | 
| 65 | 
            +
                            
         | 
| 66 | 
            +
                            # Portfolio Optimization Tab
         | 
| 67 | 
            +
                            with gr.Tab("Portfolio Optimization"):
         | 
| 68 | 
            +
                                with gr.Row():
         | 
| 69 | 
            +
                                    with gr.Column():
         | 
| 70 | 
            +
                                        ventures = gr.CheckboxGroup(
         | 
| 71 | 
            +
                                            choices=self._get_venture_types(),
         | 
| 72 | 
            +
                                            label="Select Ventures"
         | 
| 73 | 
            +
                                        )
         | 
| 74 | 
            +
                                        optimize_btn = gr.Button("Optimize Portfolio")
         | 
| 75 | 
            +
                                    
         | 
| 76 | 
            +
                                    with gr.Column():
         | 
| 77 | 
            +
                                        portfolio_output = gr.JSON(label="Portfolio Strategy")
         | 
| 78 | 
            +
                                        portfolio_plot = gr.Plot(label="Portfolio Allocation")
         | 
| 79 | 
            +
                                
         | 
| 80 | 
            +
                                optimize_btn.click(
         | 
| 81 | 
            +
                                    fn=self._optimize_portfolio,
         | 
| 82 | 
            +
                                    inputs=[ventures],
         | 
| 83 | 
            +
                                    outputs=[portfolio_output, portfolio_plot]
         | 
| 84 | 
            +
                                )
         | 
| 85 | 
            +
                            
         | 
| 86 | 
            +
                            # Monetization Strategy Tab
         | 
| 87 | 
            +
                            with gr.Tab("Monetization Strategy"):
         | 
| 88 | 
            +
                                with gr.Row():
         | 
| 89 | 
            +
                                    with gr.Column():
         | 
| 90 | 
            +
                                        monetization_type = gr.Dropdown(
         | 
| 91 | 
            +
                                            choices=self._get_venture_types(),
         | 
| 92 | 
            +
                                            label="Venture Type"
         | 
| 93 | 
            +
                                        )
         | 
| 94 | 
            +
                                        monetize_btn = gr.Button("Optimize Monetization")
         | 
| 95 | 
            +
                                    
         | 
| 96 | 
            +
                                    with gr.Column():
         | 
| 97 | 
            +
                                        monetization_output = gr.JSON(label="Monetization Strategy")
         | 
| 98 | 
            +
                                        revenue_plot = gr.Plot(label="Revenue Projections")
         | 
| 99 | 
            +
                                
         | 
| 100 | 
            +
                                monetize_btn.click(
         | 
| 101 | 
            +
                                    fn=self._optimize_monetization,
         | 
| 102 | 
            +
                                    inputs=[monetization_type],
         | 
| 103 | 
            +
                                    outputs=[monetization_output, revenue_plot]
         | 
| 104 | 
            +
                                )
         | 
| 105 | 
            +
                            
         | 
| 106 | 
            +
                            # Insights Dashboard Tab
         | 
| 107 | 
            +
                            with gr.Tab("Insights Dashboard"):
         | 
| 108 | 
            +
                                with gr.Row():
         | 
| 109 | 
            +
                                    refresh_btn = gr.Button("Refresh Insights")
         | 
| 110 | 
            +
                                
         | 
| 111 | 
            +
                                with gr.Row():
         | 
| 112 | 
            +
                                    with gr.Column():
         | 
| 113 | 
            +
                                        market_insights = gr.JSON(label="Market Insights")
         | 
| 114 | 
            +
                                        market_trends = gr.Plot(label="Market Trends")
         | 
| 115 | 
            +
                                    
         | 
| 116 | 
            +
                                    with gr.Column():
         | 
| 117 | 
            +
                                        portfolio_insights = gr.JSON(label="Portfolio Insights")
         | 
| 118 | 
            +
                                        portfolio_trends = gr.Plot(label="Portfolio Performance")
         | 
| 119 | 
            +
                                
         | 
| 120 | 
            +
                                refresh_btn.click(
         | 
| 121 | 
            +
                                    fn=self._refresh_insights,
         | 
| 122 | 
            +
                                    outputs=[
         | 
| 123 | 
            +
                                        market_insights, market_trends,
         | 
| 124 | 
            +
                                        portfolio_insights, portfolio_trends
         | 
| 125 | 
            +
                                    ]
         | 
| 126 | 
            +
                                )
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                    return interface
         | 
| 129 | 
            +
                
         | 
| 130 | 
            +
                def _get_venture_types(self) -> List[str]:
         | 
| 131 | 
            +
                    """Get available venture types."""
         | 
| 132 | 
            +
                    try:
         | 
| 133 | 
            +
                        response = self.api_client.list_strategies()
         | 
| 134 | 
            +
                        return response.get("strategies", [])
         | 
| 135 | 
            +
                    except Exception as e:
         | 
| 136 | 
            +
                        print(f"Error getting venture types: {e}")
         | 
| 137 | 
            +
                        return []
         | 
| 138 | 
            +
                
         | 
| 139 | 
            +
                def _analyze_venture(self,
         | 
| 140 | 
            +
                                    venture_type: str,
         | 
| 141 | 
            +
                                    query: str) -> tuple[Dict[str, Any], go.Figure]:
         | 
| 142 | 
            +
                    """Analyze venture opportunity."""
         | 
| 143 | 
            +
                    try:
         | 
| 144 | 
            +
                        # Get analysis
         | 
| 145 | 
            +
                        response = self.api_client.analyze_venture({
         | 
| 146 | 
            +
                            "venture_type": venture_type,
         | 
| 147 | 
            +
                            "query": query
         | 
| 148 | 
            +
                        })
         | 
| 149 | 
            +
                        result = response.get("result", {})
         | 
| 150 | 
            +
                        
         | 
| 151 | 
            +
                        # Create visualization
         | 
| 152 | 
            +
                        fig = self._create_venture_plot(result)
         | 
| 153 | 
            +
                        
         | 
| 154 | 
            +
                        return result, fig
         | 
| 155 | 
            +
                    except Exception as e:
         | 
| 156 | 
            +
                        print(f"Error in venture analysis: {e}")
         | 
| 157 | 
            +
                        return {"error": str(e)}, go.Figure()
         | 
| 158 | 
            +
                
         | 
| 159 | 
            +
                def _analyze_market(self,
         | 
| 160 | 
            +
                                   segment: str) -> tuple[Dict[str, Any], go.Figure]:
         | 
| 161 | 
            +
                    """Analyze market opportunity."""
         | 
| 162 | 
            +
                    try:
         | 
| 163 | 
            +
                        # Get analysis
         | 
| 164 | 
            +
                        response = self.api_client.analyze_market({
         | 
| 165 | 
            +
                            "segment": segment
         | 
| 166 | 
            +
                        })
         | 
| 167 | 
            +
                        result = response.get("result", {})
         | 
| 168 | 
            +
                        
         | 
| 169 | 
            +
                        # Create visualization
         | 
| 170 | 
            +
                        fig = self._create_market_plot(result)
         | 
| 171 | 
            +
                        
         | 
| 172 | 
            +
                        return result, fig
         | 
| 173 | 
            +
                    except Exception as e:
         | 
| 174 | 
            +
                        print(f"Error in market analysis: {e}")
         | 
| 175 | 
            +
                        return {"error": str(e)}, go.Figure()
         | 
| 176 | 
            +
                
         | 
| 177 | 
            +
                def _optimize_portfolio(self,
         | 
| 178 | 
            +
                                      ventures: List[str]) -> tuple[Dict[str, Any], go.Figure]:
         | 
| 179 | 
            +
                    """Optimize venture portfolio."""
         | 
| 180 | 
            +
                    try:
         | 
| 181 | 
            +
                        # Get optimization
         | 
| 182 | 
            +
                        response = self.api_client.optimize_portfolio({
         | 
| 183 | 
            +
                            "ventures": ventures
         | 
| 184 | 
            +
                        })
         | 
| 185 | 
            +
                        result = response.get("result", {})
         | 
| 186 | 
            +
                        
         | 
| 187 | 
            +
                        # Create visualization
         | 
| 188 | 
            +
                        fig = self._create_portfolio_plot(result)
         | 
| 189 | 
            +
                        
         | 
| 190 | 
            +
                        return result, fig
         | 
| 191 | 
            +
                    except Exception as e:
         | 
| 192 | 
            +
                        print(f"Error in portfolio optimization: {e}")
         | 
| 193 | 
            +
                        return {"error": str(e)}, go.Figure()
         | 
| 194 | 
            +
                
         | 
| 195 | 
            +
                def _optimize_monetization(self,
         | 
| 196 | 
            +
                                         venture_type: str) -> tuple[Dict[str, Any], go.Figure]:
         | 
| 197 | 
            +
                    """Optimize monetization strategy."""
         | 
| 198 | 
            +
                    try:
         | 
| 199 | 
            +
                        # Get optimization
         | 
| 200 | 
            +
                        response = self.api_client.optimize_monetization({
         | 
| 201 | 
            +
                            "venture_type": venture_type
         | 
| 202 | 
            +
                        })
         | 
| 203 | 
            +
                        result = response.get("result", {})
         | 
| 204 | 
            +
                        
         | 
| 205 | 
            +
                        # Create visualization
         | 
| 206 | 
            +
                        fig = self._create_revenue_plot(result)
         | 
| 207 | 
            +
                        
         | 
| 208 | 
            +
                        return result, fig
         | 
| 209 | 
            +
                    except Exception as e:
         | 
| 210 | 
            +
                        print(f"Error in monetization optimization: {e}")
         | 
| 211 | 
            +
                        return {"error": str(e)}, go.Figure()
         | 
| 212 | 
            +
                
         | 
| 213 | 
            +
                def _refresh_insights(self) -> tuple[Dict[str, Any], go.Figure,
         | 
| 214 | 
            +
                                                   Dict[str, Any], go.Figure]:
         | 
| 215 | 
            +
                    """Refresh insights dashboard."""
         | 
| 216 | 
            +
                    try:
         | 
| 217 | 
            +
                        # Get insights
         | 
| 218 | 
            +
                        market_response = self.api_client.get_market_insights()
         | 
| 219 | 
            +
                        portfolio_response = self.api_client.get_portfolio_insights()
         | 
| 220 | 
            +
                        
         | 
| 221 | 
            +
                        market_insights = market_response.get("insights", {})
         | 
| 222 | 
            +
                        portfolio_insights = portfolio_response.get("insights", {})
         | 
| 223 | 
            +
                        
         | 
| 224 | 
            +
                        # Create visualizations
         | 
| 225 | 
            +
                        market_fig = self._create_market_trends_plot(market_insights)
         | 
| 226 | 
            +
                        portfolio_fig = self._create_portfolio_trends_plot(portfolio_insights)
         | 
| 227 | 
            +
                        
         | 
| 228 | 
            +
                        return market_insights, market_fig, portfolio_insights, portfolio_fig
         | 
| 229 | 
            +
                    except Exception as e:
         | 
| 230 | 
            +
                        print(f"Error refreshing insights: {e}")
         | 
| 231 | 
            +
                        return (
         | 
| 232 | 
            +
                            {"error": str(e)}, go.Figure(),
         | 
| 233 | 
            +
                            {"error": str(e)}, go.Figure()
         | 
| 234 | 
            +
                        )
         | 
| 235 | 
            +
                
         | 
| 236 | 
            +
                def _create_venture_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 237 | 
            +
                    """Create venture analysis visualization."""
         | 
| 238 | 
            +
                    try:
         | 
| 239 | 
            +
                        metrics = data.get("metrics", {})
         | 
| 240 | 
            +
                        
         | 
| 241 | 
            +
                        fig = go.Figure()
         | 
| 242 | 
            +
                        fig.add_trace(go.Scatterpolar(
         | 
| 243 | 
            +
                            r=[
         | 
| 244 | 
            +
                                metrics.get("market_score", 0),
         | 
| 245 | 
            +
                                metrics.get("opportunity_score", 0),
         | 
| 246 | 
            +
                                metrics.get("risk_score", 0),
         | 
| 247 | 
            +
                                metrics.get("growth_potential", 0),
         | 
| 248 | 
            +
                                metrics.get("profitability", 0)
         | 
| 249 | 
            +
                            ],
         | 
| 250 | 
            +
                            theta=[
         | 
| 251 | 
            +
                                "Market Score",
         | 
| 252 | 
            +
                                "Opportunity Score",
         | 
| 253 | 
            +
                                "Risk Score",
         | 
| 254 | 
            +
                                "Growth Potential",
         | 
| 255 | 
            +
                                "Profitability"
         | 
| 256 | 
            +
                            ],
         | 
| 257 | 
            +
                            fill='toself'
         | 
| 258 | 
            +
                        ))
         | 
| 259 | 
            +
                        
         | 
| 260 | 
            +
                        fig.update_layout(
         | 
| 261 | 
            +
                            polar=dict(
         | 
| 262 | 
            +
                                radialaxis=dict(
         | 
| 263 | 
            +
                                    visible=True,
         | 
| 264 | 
            +
                                    range=[0, 1]
         | 
| 265 | 
            +
                                )
         | 
| 266 | 
            +
                            ),
         | 
| 267 | 
            +
                            showlegend=False
         | 
| 268 | 
            +
                        )
         | 
| 269 | 
            +
                        
         | 
| 270 | 
            +
                        return fig
         | 
| 271 | 
            +
                    except Exception as e:
         | 
| 272 | 
            +
                        print(f"Error creating venture plot: {e}")
         | 
| 273 | 
            +
                        return go.Figure()
         | 
| 274 | 
            +
                
         | 
| 275 | 
            +
                def _create_market_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 276 | 
            +
                    """Create market analysis visualization."""
         | 
| 277 | 
            +
                    try:
         | 
| 278 | 
            +
                        trends = data.get("trend_analysis", {})
         | 
| 279 | 
            +
                        
         | 
| 280 | 
            +
                        df = pd.DataFrame([
         | 
| 281 | 
            +
                            {
         | 
| 282 | 
            +
                                "Trend": trend["name"],
         | 
| 283 | 
            +
                                "Impact": trend["impact"],
         | 
| 284 | 
            +
                                "Potential": trend["market_potential"],
         | 
| 285 | 
            +
                                "Risk": trend["risk_level"]
         | 
| 286 | 
            +
                            }
         | 
| 287 | 
            +
                            for trend in trends
         | 
| 288 | 
            +
                        ])
         | 
| 289 | 
            +
                        
         | 
| 290 | 
            +
                        fig = px.scatter(
         | 
| 291 | 
            +
                            df,
         | 
| 292 | 
            +
                            x="Impact",
         | 
| 293 | 
            +
                            y="Potential",
         | 
| 294 | 
            +
                            size="Risk",
         | 
| 295 | 
            +
                            hover_data=["Trend"],
         | 
| 296 | 
            +
                            title="Market Trends Analysis"
         | 
| 297 | 
            +
                        )
         | 
| 298 | 
            +
                        
         | 
| 299 | 
            +
                        return fig
         | 
| 300 | 
            +
                    except Exception as e:
         | 
| 301 | 
            +
                        print(f"Error creating market plot: {e}")
         | 
| 302 | 
            +
                        return go.Figure()
         | 
| 303 | 
            +
                
         | 
| 304 | 
            +
                def _create_portfolio_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 305 | 
            +
                    """Create portfolio optimization visualization."""
         | 
| 306 | 
            +
                    try:
         | 
| 307 | 
            +
                        allocation = data.get("allocation", {})
         | 
| 308 | 
            +
                        
         | 
| 309 | 
            +
                        fig = go.Figure(data=[
         | 
| 310 | 
            +
                            go.Bar(
         | 
| 311 | 
            +
                                name=venture,
         | 
| 312 | 
            +
                                x=["Resources", "Priority", "Risk"],
         | 
| 313 | 
            +
                                y=[
         | 
| 314 | 
            +
                                    sum(resources.values()),
         | 
| 315 | 
            +
                                    priority,
         | 
| 316 | 
            +
                                    len(constraints)
         | 
| 317 | 
            +
                                ]
         | 
| 318 | 
            +
                            )
         | 
| 319 | 
            +
                            for venture, (resources, priority, constraints) in allocation.items()
         | 
| 320 | 
            +
                        ])
         | 
| 321 | 
            +
                        
         | 
| 322 | 
            +
                        fig.update_layout(
         | 
| 323 | 
            +
                            barmode='group',
         | 
| 324 | 
            +
                            title="Portfolio Allocation"
         | 
| 325 | 
            +
                        )
         | 
| 326 | 
            +
                        
         | 
| 327 | 
            +
                        return fig
         | 
| 328 | 
            +
                    except Exception as e:
         | 
| 329 | 
            +
                        print(f"Error creating portfolio plot: {e}")
         | 
| 330 | 
            +
                        return go.Figure()
         | 
| 331 | 
            +
                
         | 
| 332 | 
            +
                def _create_revenue_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 333 | 
            +
                    """Create revenue projection visualization."""
         | 
| 334 | 
            +
                    try:
         | 
| 335 | 
            +
                        projections = data.get("projections", {})
         | 
| 336 | 
            +
                        
         | 
| 337 | 
            +
                        months = list(range(12))
         | 
| 338 | 
            +
                        revenue = [
         | 
| 339 | 
            +
                            projections.get("monthly_revenue", {}).get(str(m), 0)
         | 
| 340 | 
            +
                            for m in months
         | 
| 341 | 
            +
                        ]
         | 
| 342 | 
            +
                        
         | 
| 343 | 
            +
                        fig = go.Figure()
         | 
| 344 | 
            +
                        fig.add_trace(go.Scatter(
         | 
| 345 | 
            +
                            x=months,
         | 
| 346 | 
            +
                            y=revenue,
         | 
| 347 | 
            +
                            mode='lines+markers',
         | 
| 348 | 
            +
                            name='Revenue'
         | 
| 349 | 
            +
                        ))
         | 
| 350 | 
            +
                        
         | 
| 351 | 
            +
                        fig.update_layout(
         | 
| 352 | 
            +
                            title="Revenue Projections",
         | 
| 353 | 
            +
                            xaxis_title="Month",
         | 
| 354 | 
            +
                            yaxis_title="Revenue ($)"
         | 
| 355 | 
            +
                        )
         | 
| 356 | 
            +
                        
         | 
| 357 | 
            +
                        return fig
         | 
| 358 | 
            +
                    except Exception as e:
         | 
| 359 | 
            +
                        print(f"Error creating revenue plot: {e}")
         | 
| 360 | 
            +
                        return go.Figure()
         | 
| 361 | 
            +
                
         | 
| 362 | 
            +
                def _create_market_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 363 | 
            +
                    """Create market trends visualization."""
         | 
| 364 | 
            +
                    try:
         | 
| 365 | 
            +
                        trends = data.get("trend_insights", [])
         | 
| 366 | 
            +
                        
         | 
| 367 | 
            +
                        df = pd.DataFrame(trends)
         | 
| 368 | 
            +
                        
         | 
| 369 | 
            +
                        fig = px.scatter(
         | 
| 370 | 
            +
                            df,
         | 
| 371 | 
            +
                            x="impact",
         | 
| 372 | 
            +
                            y="potential",
         | 
| 373 | 
            +
                            size="risk",
         | 
| 374 | 
            +
                            hover_data=["name"],
         | 
| 375 | 
            +
                            title="Market Trends Overview"
         | 
| 376 | 
            +
                        )
         | 
| 377 | 
            +
                        
         | 
| 378 | 
            +
                        return fig
         | 
| 379 | 
            +
                    except Exception as e:
         | 
| 380 | 
            +
                        print(f"Error creating market trends plot: {e}")
         | 
| 381 | 
            +
                        return go.Figure()
         | 
| 382 | 
            +
                
         | 
| 383 | 
            +
                def _create_portfolio_trends_plot(self, data: Dict[str, Any]) -> go.Figure:
         | 
| 384 | 
            +
                    """Create portfolio trends visualization."""
         | 
| 385 | 
            +
                    try:
         | 
| 386 | 
            +
                        metrics = data.get("portfolio_metrics", {})
         | 
| 387 | 
            +
                        
         | 
| 388 | 
            +
                        fig = go.Figure()
         | 
| 389 | 
            +
                        fig.add_trace(go.Indicator(
         | 
| 390 | 
            +
                            mode="gauge+number",
         | 
| 391 | 
            +
                            value=metrics.get("total_revenue", 0),
         | 
| 392 | 
            +
                            title={'text': "Total Revenue ($M)"},
         | 
| 393 | 
            +
                            gauge={'axis': {'range': [None, 10]}}
         | 
| 394 | 
            +
                        ))
         | 
| 395 | 
            +
                        
         | 
| 396 | 
            +
                        return fig
         | 
| 397 | 
            +
                    except Exception as e:
         | 
| 398 | 
            +
                        print(f"Error creating portfolio trends plot: {e}")
         | 
| 399 | 
            +
                        return go.Figure()
         | 
    	
        upload_to_hub.py
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from huggingface_hub import HfApi
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Initialize the Hugging Face API
         | 
| 5 | 
            +
            api = HfApi()
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            print("Starting upload to Hugging Face Space...")
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Create a new Space if it doesn't exist
         | 
| 10 | 
            +
            try:
         | 
| 11 | 
            +
                api.create_repo(
         | 
| 12 | 
            +
                    repo_id="nananie143/advanced-reasoning",
         | 
| 13 | 
            +
                    repo_type="space",
         | 
| 14 | 
            +
                    space_sdk="gradio",
         | 
| 15 | 
            +
                    private=False
         | 
| 16 | 
            +
                )
         | 
| 17 | 
            +
            except Exception as e:
         | 
| 18 | 
            +
                print(f"Space might already exist or there was an error: {e}")
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # Upload the files
         | 
| 21 | 
            +
            api.upload_folder(
         | 
| 22 | 
            +
                folder_path=".",
         | 
| 23 | 
            +
                repo_id="nananie143/advanced-reasoning",
         | 
| 24 | 
            +
                repo_type="space",
         | 
| 25 | 
            +
                ignore_patterns=["*.pyc", "__pycache__", ".git", ".env", "*.gguf"]
         | 
| 26 | 
            +
            )
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            print("Upload completed successfully!")
         |