"""Bayesian reasoning implementation.""" import logging from typing import Dict, Any, List import json import re from datetime import datetime from .base import ReasoningStrategy class BayesianReasoning(ReasoningStrategy): """Implements Bayesian reasoning for probabilistic analysis.""" def __init__(self, prior_weight: float = 0.3): self.prior_weight = prior_weight async def reason(self, query: str, context: Dict[str, Any]) -> Dict[str, Any]: try: # Generate hypotheses hypotheses = await self._generate_hypotheses(query, context) # Calculate prior probabilities priors = await self._calculate_priors(hypotheses, context) # Update with evidence posteriors = await self._update_with_evidence(hypotheses, priors, context) # Generate final analysis analysis = await self._generate_analysis(posteriors, context) return { "success": True, "answer": analysis["conclusion"], "hypotheses": hypotheses, "priors": priors, "posteriors": posteriors, "confidence": analysis["confidence"], "reasoning_path": analysis["reasoning_path"] } except Exception as e: return {"success": False, "error": str(e)} async def _generate_hypotheses(self, query: str, context: Dict[str, Any]) -> List[Dict[str, Any]]: prompt = f""" Generate 3-4 hypotheses for this problem: Query: {query} Context: {json.dumps(context)} For each hypothesis: 1. [Statement]: Clear statement of the hypothesis 2. [Assumptions]: Key assumptions made 3. [Testability]: How it could be tested/verified Format as: [H1] Statement: ... Assumptions: ... Testability: ... """ response = await context["groq_api"].predict(prompt) return self._parse_hypotheses(response["answer"]) async def _calculate_priors(self, hypotheses: List[Dict[str, Any]], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Calculate prior probabilities for these hypotheses: Context: {json.dumps(context)} Hypotheses: {json.dumps(hypotheses, indent=2)} For each hypothesis, estimate its prior probability (0-1) based on: 1. Alignment with known principles 2. Historical precedent 3. Domain expertise Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _update_with_evidence(self, hypotheses: List[Dict[str, Any]], priors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, float]: prompt = f""" Update probabilities with available evidence: Context: {json.dumps(context)} Hypotheses and Priors: {json.dumps(list(zip(hypotheses, priors.values())), indent=2)} Consider: 1. How well each hypothesis explains the evidence 2. Any new evidence from the context 3. Potential conflicts or support between hypotheses Format: [H1]: 0.XX, [H2]: 0.XX, ... """ response = await context["groq_api"].predict(prompt) return self._parse_probabilities(response["answer"]) async def _generate_analysis(self, posteriors: Dict[str, float], context: Dict[str, Any]) -> Dict[str, Any]: prompt = f""" Generate final Bayesian analysis: Context: {json.dumps(context)} Posterior Probabilities: {json.dumps(posteriors, indent=2)} Provide: 1. Main conclusion based on highest probability hypotheses 2. Confidence level (0-1) 3. Key reasoning steps taken """ response = await context["groq_api"].predict(prompt) return self._parse_analysis(response["answer"]) def _parse_hypotheses(self, response: str) -> List[Dict[str, Any]]: """Parse hypotheses from response.""" hypotheses = [] current = None for line in response.split('\n'): line = line.strip() if not line: continue if line.startswith('[H'): if current: hypotheses.append(current) current = { "statement": "", "assumptions": "", "testability": "" } elif current: if line.startswith('Statement:'): current["statement"] = line[10:].strip() elif line.startswith('Assumptions:'): current["assumptions"] = line[12:].strip() elif line.startswith('Testability:'): current["testability"] = line[12:].strip() if current: hypotheses.append(current) return hypotheses def _parse_probabilities(self, response: str) -> Dict[str, float]: """Parse probabilities from response.""" probs = {} pattern = r'\[H(\d+)\]:\s*(0\.\d+)' for match in re.finditer(pattern, response): h_num = int(match.group(1)) prob = float(match.group(2)) probs[f"H{h_num}"] = prob return probs def _parse_analysis(self, response: str) -> Dict[str, Any]: """Parse analysis from response.""" lines = response.split('\n') analysis = { "conclusion": "", "confidence": 0.0, "reasoning_path": [] } for line in lines: line = line.strip() if not line: continue if line.startswith('Conclusion:'): analysis["conclusion"] = line[11:].strip() elif line.startswith('Confidence:'): try: analysis["confidence"] = float(line[11:].strip()) except: analysis["confidence"] = 0.5 elif line.startswith('- '): analysis["reasoning_path"].append(line[2:].strip()) return analysis