Spaces:
Running
on
Zero
Running
on
Zero
# llada_app.py -> dream_app.py (v2) | |
import torch | |
import numpy as np | |
import gradio as gr | |
import spaces | |
# import torch.nn.functional as F # Not needed for DREAM's basic visualization | |
from transformers import AutoTokenizer, AutoModel | |
import time | |
import re # Keep for parsing constraints | |
# Use try-except for space deployment vs local | |
try: | |
gpu_check = spaces.GPU | |
print("Running in Gradio Spaces with GPU environment.") | |
except AttributeError: | |
print("Running in local environment or without spaces.GPU.") | |
def gpu_check(func): return func | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"Using device: {device}") | |
# --- Load DREAM Model and Tokenizer --- | |
model_path = "Dream-org/Dream-v0-Instruct-7B" | |
print(f"Loading model: {model_path}") | |
try: | |
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) | |
print("Model and tokenizer loaded.") | |
except Exception as e: | |
print(f"FATAL: Could not load model/tokenizer. Error: {e}") | |
# Optionally exit or raise | |
raise SystemExit(f"Failed to load model: {e}") | |
# --- Constants for DREAM --- | |
# Find mask token and ID | |
if tokenizer.mask_token is None: | |
print("Warning: Mask token not explicitly set in tokenizer. Trying to add '[MASK]'.") | |
# This might require retraining/fine-tuning if the model didn't see it. | |
# Check if it exists first before adding | |
if '[MASK]' not in tokenizer.get_vocab(): | |
tokenizer.add_special_tokens({'mask_token': '[MASK]'}) | |
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings | |
print("Added '[MASK]' and resized embeddings.") | |
else: | |
tokenizer.mask_token = '[MASK]' # Set it if it exists but wasn't assigned | |
print("Found existing '[MASK]', assigned as mask_token.") | |
MASK_TOKEN = tokenizer.mask_token | |
MASK_ID = tokenizer.mask_token_id | |
if MASK_ID is None: | |
raise ValueError("Failed to get MASK_ID after attempting to set mask_token.") | |
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}") | |
# Get EOS and PAD token IDs | |
EOS_TOKEN_ID = tokenizer.eos_token_id | |
PAD_TOKEN_ID = tokenizer.pad_token_id | |
print(f"Using EOS_TOKEN_ID={EOS_TOKEN_ID}, PAD_TOKEN_ID={PAD_TOKEN_ID}") | |
# Handle cases where they might be None (though unlikely for most models) | |
if EOS_TOKEN_ID is None: | |
print("Warning: EOS token ID not found.") | |
if PAD_TOKEN_ID is None: | |
print("Warning: PAD token ID not found. Using EOS ID as fallback for hiding.") | |
PAD_TOKEN_ID = EOS_TOKEN_ID # Use EOS as a fallback for hiding logic if PAD is missing | |
# --- Helper Functions (Constraint Parsing, History Formatting) --- | |
# (Keep parse_constraints and format_chat_history functions as they were) | |
def parse_constraints(constraints_text): | |
"""Parse constraints in format: 'position:word, position:word, ...'""" | |
constraints = {} | |
if not constraints_text: | |
return constraints | |
parts = constraints_text.split(',') | |
for part in parts: | |
part = part.strip() # Trim whitespace | |
if ':' not in part: | |
continue | |
try: | |
pos_str, word = part.split(':', 1) | |
pos = int(pos_str.strip()) | |
word = word.strip() | |
# Allow empty words if needed, but usually we want a word | |
if word and pos >= 0: | |
constraints[pos] = word | |
except ValueError: | |
print(f"Warning: Could not parse constraint part: '{part}'") | |
continue | |
return constraints | |
def format_chat_history(history): | |
""" | |
Format chat history for the DREAM model (standard messages format) | |
Args: | |
history: List of [user_message, assistant_message] pairs | |
Returns: | |
Formatted conversation for the model (list of dictionaries) | |
""" | |
messages = [] | |
# Add system prompt if desired (check DREAM examples/recommendations) | |
# messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional | |
for user_msg, assistant_msg in history: | |
if user_msg: # Handle potential None message if clearing failed | |
messages.append({"role": "user", "content": user_msg}) | |
if assistant_msg: # Skip if None (for the latest user message awaiting response) | |
messages.append({"role": "assistant", "content": assistant_msg}) | |
return messages | |
# --- Core Generation Logic for DREAM with Visualization --- | |
def dream_generate_response_with_visualization( | |
messages, | |
gen_length=64, | |
steps=64, | |
constraints=None, | |
temperature=0.6, | |
top_p=0.95, | |
alg="entropy", | |
alg_temp=0.0, | |
): | |
""" | |
Generate text with DREAM model with visualization using the generation hook. | |
Hides special tokens (EOS, PAD) and uses labels for coloring. | |
""" | |
print("--- Starting DREAM Generation ---") | |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}") | |
print(f"Constraints: {constraints}") | |
# --- Input Preparation --- | |
if constraints is None: constraints = {} | |
processed_constraints = {} | |
print("Processing constraints:") | |
for pos, word in constraints.items(): | |
tokens = tokenizer.encode(" " + word, add_special_tokens=False) | |
if not tokens: | |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.") | |
continue | |
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}") | |
for i, token_id in enumerate(tokens): | |
if pos + i not in processed_constraints: | |
processed_constraints[pos + i] = token_id | |
else: | |
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.") | |
try: | |
inputs = tokenizer.apply_chat_template( | |
messages, return_tensors="pt", return_dict=True, add_generation_prompt=True | |
) | |
input_ids = inputs.input_ids.to(device=device) | |
attention_mask = inputs.attention_mask.to(device=device) | |
prompt_length = input_ids.shape[1] | |
print(f"Input prompt length: {prompt_length}") | |
except Exception as e: | |
print(f"Error applying chat template: {e}") | |
return [([("Error applying chat template.", "Error")],)], f"Error: {e}" # Use 'Error' label | |
# Check context length (DREAM uses 2048) | |
if prompt_length + gen_length > 2048: | |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.") | |
gen_length = 2048 - prompt_length | |
if gen_length <= 0: | |
print("Error: Prompt is already too long.") | |
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long." | |
# --- State for Visualization Hook --- | |
visualization_states = [] | |
last_x = None | |
# Initial state: Prompt + all masks + initial constraints | |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device) | |
for pos, token_id in processed_constraints.items(): | |
absolute_pos = pos | |
if 0 <= absolute_pos < gen_length: | |
initial_x_part[0, absolute_pos] = token_id | |
initial_state_vis = [] | |
for i in range(gen_length): | |
token_id = initial_x_part[0, i].item() | |
if token_id == MASK_ID: | |
initial_state_vis.append((MASK_TOKEN, "Mask")) | |
elif token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID: | |
initial_state_vis.append(("", None)) # Hide special tokens | |
elif i in processed_constraints and processed_constraints[i] == token_id: | |
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip() | |
display_token = token_str if token_str else "?" | |
initial_state_vis.append((display_token, "Constraint")) | |
else: | |
# Should only be constraints here, but add fallback | |
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip() | |
display_token = token_str if token_str else "?" | |
initial_state_vis.append((display_token, "Old")) # Treat unexpected initial non-masks as 'Old' | |
visualization_states.append(initial_state_vis) | |
# --- Define the Hook Function --- | |
def generation_tokens_hook_func(step, x, logits): | |
nonlocal last_x, visualization_states | |
# print(f"Hook called for step {step}") # Verbose logging | |
current_x = x.clone() | |
constrained_x = current_x.clone() | |
prompt_len = current_x.shape[1] - gen_length | |
if prompt_len < 0: | |
print("Warning: prompt_len negative in hook, skipping constraints/vis.") | |
return current_x | |
# 1. Apply Constraints | |
constraints_applied_this_step = False | |
for pos, token_id in processed_constraints.items(): | |
absolute_pos = prompt_len + pos | |
if prompt_len <= absolute_pos < current_x.shape[1]: | |
if constrained_x[0, absolute_pos] != token_id: | |
constrained_x[0, absolute_pos] = token_id | |
constraints_applied_this_step = True | |
# 2. Generate Visualization State for *this* step | |
current_state_vis = [] | |
gen_part_current = current_x[0, prompt_len:] | |
gen_part_last = last_x[0, prompt_len:] if last_x is not None else None | |
for i in range(gen_length): | |
current_token_id = gen_part_current[i].item() | |
# --- Logic to Hide Special Tokens --- | |
if current_token_id == EOS_TOKEN_ID or current_token_id == PAD_TOKEN_ID: | |
# Maybe show on first appearance? For now, always hide. | |
# LLaDA's behavior: "shown once and then disappear" | |
# Let's implement the simpler "always hide" first. | |
current_state_vis.append(("", None)) # Append empty string, no label -> hidden | |
continue # Move to next token | |
# --- Decode and Determine Label --- | |
token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip() | |
display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?" # Use MASK_TOKEN if decode fails | |
label = None # Default label (no color) | |
is_constrained = i in processed_constraints | |
if current_token_id == MASK_ID: | |
label = "Mask" | |
elif is_constrained and processed_constraints[i] == current_token_id: | |
label = "Constraint" | |
elif gen_part_last is None or gen_part_last[i].item() == MASK_ID or gen_part_last[i].item() == EOS_TOKEN_ID or gen_part_last[i].item() == PAD_TOKEN_ID: | |
# Newly revealed (was mask or hidden special token in previous step) | |
label = "New" | |
else: | |
# Previously revealed and not masked/hidden/constrained | |
label = "Old" | |
current_state_vis.append((display_token, label)) | |
visualization_states.append(current_state_vis) | |
# 3. Update last_x for the *next* step's comparison | |
last_x = constrained_x.clone() | |
# 4. Return the sequence with constraints applied | |
return constrained_x | |
# --- Run DREAM Generation --- | |
try: | |
print("Calling model.diffusion_generate...") | |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1) | |
last_x = initial_full_x.clone() # Initialize last_x *before* the call | |
output = model.diffusion_generate( | |
input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=gen_length, | |
output_history=False, | |
return_dict_in_generate=True, | |
steps=steps, | |
temperature=temperature, | |
top_p=top_p, | |
alg=alg, | |
alg_temp=alg_temp if alg != "origin" else 0.0, | |
generation_tokens_hook_func=generation_tokens_hook_func | |
) | |
print("model.diffusion_generate finished.") | |
final_sequence = output.sequences[0] | |
response_token_ids = final_sequence[prompt_length:] | |
# Decode final text, skipping special tokens | |
final_text = tokenizer.decode( | |
response_token_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=True | |
).strip() | |
print(f"Final generated text: {final_text}") | |
# Safeguard: Add final state visualization if needed (using the new label logic) | |
if len(visualization_states) <= steps: | |
final_state_vis = [] | |
final_gen_part = final_sequence[prompt_length:] | |
for i in range(gen_length): | |
token_id = final_gen_part[i].item() | |
if token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID: | |
final_state_vis.append(("", None)) | |
continue | |
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip() | |
display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?" | |
label = None | |
is_constrained = i in processed_constraints | |
if token_id == MASK_ID: label = "Mask" | |
elif is_constrained and processed_constraints[i] == token_id: label = "Constraint" | |
else: label = "Old" # Default to 'Old' for final state non-masked tokens | |
final_state_vis.append((display_token, label)) | |
visualization_states.append(final_state_vis) | |
except Exception as e: | |
print(f"Error during generation: {e}") | |
import traceback | |
traceback.print_exc() | |
error_msg = f"Error during generation: {str(e)}" | |
# Use 'Error' label for color mapping | |
visualization_states.append([("Error", "Error")]) | |
final_text = f"Generation failed: {e}" | |
print("--- DREAM Generation Finished ---") | |
return visualization_states, final_text | |
# --- Gradio UI Setup --- | |
css = ''' | |
.category-legend{display:none} | |
/* button{height: 60px} */ | |
.small_btn {max-width: 100px; height: 40px; flex-grow: 0; margin-left: 5px;} | |
.chat-input-row {display: flex; align-items: center;} | |
.chat-input-row > * {margin-right: 5px;} | |
.chat-input-row > *:last-child {margin-right: 0;} | |
''' | |
def create_chatbot_demo(): | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo") | |
gr.Markdown("Watch the text generate step-by-step. Special tokens (EOS, PAD) are hidden.") | |
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)") | |
# STATE MANAGEMENT | |
chat_history = gr.State([]) | |
# UI COMPONENTS | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot_ui = gr.Chatbot( | |
label="Conversation", height=500, bubble_full_width=False | |
) | |
with gr.Row(elem_classes="chat-input-row"): | |
user_input = gr.Textbox( | |
label="Your Message", placeholder="Type your message...", | |
scale=4, container=False, show_label=False | |
) | |
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn") | |
constraints_input = gr.Textbox( | |
label="Word Constraints (Optional)", | |
info="Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon'", | |
placeholder="e.g., 0:Hello, 6:world", value="" | |
) | |
with gr.Column(scale=2): | |
# --- Updated HighlightedText with color_map --- | |
output_vis = gr.HighlightedText( | |
label="Denoising Process Visualization", | |
combine_adjacent=True, # Combine adjacent tokens with same label | |
show_legend=False, # Keep legend off | |
color_map={ # Map labels to colors | |
"Mask": "#A0A0A0", # Lighter Gray for Mask | |
"New": "#66CC66", # Light Green | |
"Old": "#6699CC", # Light Blue | |
"Constraint": "#B266FF", # Lighter Purple/Violet | |
"Error": "#FF6666" # Light Red | |
} | |
) | |
gr.Markdown( | |
# Update legend text to match labels | |
"**Color Legend:** <span style='color:#A0A0A0'>■ Mask</span> | <span style='color:#66CC66'>■ New</span> | <span style='color:#6699CC'>■ Old</span> | <span style='color:#B266FF'>■ Constraint</span>" | |
) | |
# Advanced generation settings (Keep as before) | |
with gr.Accordion("Generation Settings", open=False): | |
with gr.Row(): | |
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens") | |
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps") | |
with gr.Row(): | |
temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.6, step=0.05, label="Temperature") | |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)") | |
with gr.Row(): | |
remasking_strategy = gr.Radio( | |
choices=[("Random", "origin"), ("Entropy", "entropy"), ("MaskGit+", "maskgit_plus"), ("TopK Margin", "topk_margin")], | |
value="entropy", label="Generation Order Strategy (alg)" | |
) | |
alg_temp = gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Order Randomness (alg_temp)", | |
info="Adds randomness to non-Random strategies. Ignored for Random." | |
) | |
with gr.Row(): | |
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.05, step=0.01, label="Visualization Delay (seconds)") | |
clear_btn = gr.Button("Clear Conversation") | |
# --- Event Handlers (Keep as before) --- | |
def add_message_to_history(history, message, response): | |
history = history.copy(); history.append([message, response]); return history | |
def user_message_submitted(message, history): | |
print(f"User submitted: '{message}'") | |
if not message or not message.strip(): | |
print("Empty message submitted, doing nothing."); return history, history, "", [] | |
history = add_message_to_history(history, message, None) | |
history_for_display = history.copy() | |
message_out = ""; vis_clear = [] | |
return history, history_for_display, message_out, vis_clear | |
def bot_response_generator( | |
history, gen_length, steps, constraints_text, delay, | |
temperature, top_p, alg, alg_temp | |
): | |
print("--- Generating Bot Response ---") | |
if not history or history[-1][1] is not None: | |
print("History empty or last message already has response. Skipping generation.") | |
yield history, [], "No response generated." # Yield current state if called unnecessarily | |
return | |
messages = format_chat_history(history) | |
parsed_constraints = parse_constraints(constraints_text) | |
try: | |
vis_states, response_text = dream_generate_response_with_visualization( | |
messages, gen_length=gen_length, steps=steps, constraints=parsed_constraints, | |
temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp | |
) | |
history[-1][1] = response_text.strip() # Update history state | |
if vis_states: | |
# Yield initial state first | |
yield history, vis_states[0] # Update chatbot, update visualization | |
# Animate remaining states | |
for state in vis_states[1:]: | |
time.sleep(delay) | |
yield history, state # Update chatbot (implicitly), update visualization | |
else: | |
yield history, [("Generation failed.", "Error")] # Use label | |
except Exception as e: | |
print(f"Error in bot_response_generator: {e}") | |
import traceback; traceback.print_exc() | |
error_msg = f"Error: {str(e)}" | |
error_vis = [(error_msg, "Error")] # Use label | |
yield history, error_vis | |
def clear_conversation(): | |
print("Clearing conversation."); return [], [], "", [] | |
# --- Wire UI elements (Keep as before) --- | |
user_input.submit(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\ | |
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis]) | |
send_btn.click(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\ | |
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis]) | |
clear_btn.click(fn=clear_conversation, inputs=[], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False) | |
return demo | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
print("Creating Gradio demo...") | |
demo = create_chatbot_demo() | |
print("Launching Gradio demo...") | |
demo.queue().launch(share=True, debug=True) |