Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,859 Bytes
69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed 0d2292c 69595ed 0d2292c c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 0d2292c c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed 0d2292c c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 0d2292c c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 0d2292c c691b46 0d2292c c691b46 69595ed c691b46 69595ed c691b46 69595ed 0d2292c 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed c691b46 69595ed 0d2292c 69595ed c691b46 69595ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
# llada_app.py -> dream_app.py (v2)
import torch
import numpy as np
import gradio as gr
import spaces
# import torch.nn.functional as F # Not needed for DREAM's basic visualization
from transformers import AutoTokenizer, AutoModel
import time
import re # Keep for parsing constraints
# Use try-except for space deployment vs local
try:
gpu_check = spaces.GPU
print("Running in Gradio Spaces with GPU environment.")
except AttributeError:
print("Running in local environment or without spaces.GPU.")
def gpu_check(func): return func
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# --- Load DREAM Model and Tokenizer ---
model_path = "Dream-org/Dream-v0-Instruct-7B"
print(f"Loading model: {model_path}")
try:
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Model and tokenizer loaded.")
except Exception as e:
print(f"FATAL: Could not load model/tokenizer. Error: {e}")
# Optionally exit or raise
raise SystemExit(f"Failed to load model: {e}")
# --- Constants for DREAM ---
# Find mask token and ID
if tokenizer.mask_token is None:
print("Warning: Mask token not explicitly set in tokenizer. Trying to add '[MASK]'.")
# This might require retraining/fine-tuning if the model didn't see it.
# Check if it exists first before adding
if '[MASK]' not in tokenizer.get_vocab():
tokenizer.add_special_tokens({'mask_token': '[MASK]'})
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
print("Added '[MASK]' and resized embeddings.")
else:
tokenizer.mask_token = '[MASK]' # Set it if it exists but wasn't assigned
print("Found existing '[MASK]', assigned as mask_token.")
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id
if MASK_ID is None:
raise ValueError("Failed to get MASK_ID after attempting to set mask_token.")
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
# Get EOS and PAD token IDs
EOS_TOKEN_ID = tokenizer.eos_token_id
PAD_TOKEN_ID = tokenizer.pad_token_id
print(f"Using EOS_TOKEN_ID={EOS_TOKEN_ID}, PAD_TOKEN_ID={PAD_TOKEN_ID}")
# Handle cases where they might be None (though unlikely for most models)
if EOS_TOKEN_ID is None:
print("Warning: EOS token ID not found.")
if PAD_TOKEN_ID is None:
print("Warning: PAD token ID not found. Using EOS ID as fallback for hiding.")
PAD_TOKEN_ID = EOS_TOKEN_ID # Use EOS as a fallback for hiding logic if PAD is missing
# --- Helper Functions (Constraint Parsing, History Formatting) ---
# (Keep parse_constraints and format_chat_history functions as they were)
def parse_constraints(constraints_text):
"""Parse constraints in format: 'position:word, position:word, ...'"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip() # Trim whitespace
if ':' not in part:
continue
try:
pos_str, word = part.split(':', 1)
pos = int(pos_str.strip())
word = word.strip()
# Allow empty words if needed, but usually we want a word
if word and pos >= 0:
constraints[pos] = word
except ValueError:
print(f"Warning: Could not parse constraint part: '{part}'")
continue
return constraints
def format_chat_history(history):
"""
Format chat history for the DREAM model (standard messages format)
Args:
history: List of [user_message, assistant_message] pairs
Returns:
Formatted conversation for the model (list of dictionaries)
"""
messages = []
# Add system prompt if desired (check DREAM examples/recommendations)
# messages.append({"role": "system", "content": "You are a helpful assistant."}) # Optional
for user_msg, assistant_msg in history:
if user_msg: # Handle potential None message if clearing failed
messages.append({"role": "user", "content": user_msg})
if assistant_msg: # Skip if None (for the latest user message awaiting response)
messages.append({"role": "assistant", "content": assistant_msg})
return messages
# --- Core Generation Logic for DREAM with Visualization ---
@gpu_check
def dream_generate_response_with_visualization(
messages,
gen_length=64,
steps=64,
constraints=None,
temperature=0.6,
top_p=0.95,
alg="entropy",
alg_temp=0.0,
):
"""
Generate text with DREAM model with visualization using the generation hook.
Hides special tokens (EOS, PAD) and uses labels for coloring.
"""
print("--- Starting DREAM Generation ---")
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
print(f"Constraints: {constraints}")
# --- Input Preparation ---
if constraints is None: constraints = {}
processed_constraints = {}
print("Processing constraints:")
for pos, word in constraints.items():
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
if not tokens:
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
continue
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
for i, token_id in enumerate(tokens):
if pos + i not in processed_constraints:
processed_constraints[pos + i] = token_id
else:
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.")
try:
inputs = tokenizer.apply_chat_template(
messages, return_tensors="pt", return_dict=True, add_generation_prompt=True
)
input_ids = inputs.input_ids.to(device=device)
attention_mask = inputs.attention_mask.to(device=device)
prompt_length = input_ids.shape[1]
print(f"Input prompt length: {prompt_length}")
except Exception as e:
print(f"Error applying chat template: {e}")
return [([("Error applying chat template.", "Error")],)], f"Error: {e}" # Use 'Error' label
# Check context length (DREAM uses 2048)
if prompt_length + gen_length > 2048:
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
gen_length = 2048 - prompt_length
if gen_length <= 0:
print("Error: Prompt is already too long.")
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long."
# --- State for Visualization Hook ---
visualization_states = []
last_x = None
# Initial state: Prompt + all masks + initial constraints
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
for pos, token_id in processed_constraints.items():
absolute_pos = pos
if 0 <= absolute_pos < gen_length:
initial_x_part[0, absolute_pos] = token_id
initial_state_vis = []
for i in range(gen_length):
token_id = initial_x_part[0, i].item()
if token_id == MASK_ID:
initial_state_vis.append((MASK_TOKEN, "Mask"))
elif token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
initial_state_vis.append(("", None)) # Hide special tokens
elif i in processed_constraints and processed_constraints[i] == token_id:
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
display_token = token_str if token_str else "?"
initial_state_vis.append((display_token, "Constraint"))
else:
# Should only be constraints here, but add fallback
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
display_token = token_str if token_str else "?"
initial_state_vis.append((display_token, "Old")) # Treat unexpected initial non-masks as 'Old'
visualization_states.append(initial_state_vis)
# --- Define the Hook Function ---
def generation_tokens_hook_func(step, x, logits):
nonlocal last_x, visualization_states
# print(f"Hook called for step {step}") # Verbose logging
current_x = x.clone()
constrained_x = current_x.clone()
prompt_len = current_x.shape[1] - gen_length
if prompt_len < 0:
print("Warning: prompt_len negative in hook, skipping constraints/vis.")
return current_x
# 1. Apply Constraints
constraints_applied_this_step = False
for pos, token_id in processed_constraints.items():
absolute_pos = prompt_len + pos
if prompt_len <= absolute_pos < current_x.shape[1]:
if constrained_x[0, absolute_pos] != token_id:
constrained_x[0, absolute_pos] = token_id
constraints_applied_this_step = True
# 2. Generate Visualization State for *this* step
current_state_vis = []
gen_part_current = current_x[0, prompt_len:]
gen_part_last = last_x[0, prompt_len:] if last_x is not None else None
for i in range(gen_length):
current_token_id = gen_part_current[i].item()
# --- Logic to Hide Special Tokens ---
if current_token_id == EOS_TOKEN_ID or current_token_id == PAD_TOKEN_ID:
# Maybe show on first appearance? For now, always hide.
# LLaDA's behavior: "shown once and then disappear"
# Let's implement the simpler "always hide" first.
current_state_vis.append(("", None)) # Append empty string, no label -> hidden
continue # Move to next token
# --- Decode and Determine Label ---
token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?" # Use MASK_TOKEN if decode fails
label = None # Default label (no color)
is_constrained = i in processed_constraints
if current_token_id == MASK_ID:
label = "Mask"
elif is_constrained and processed_constraints[i] == current_token_id:
label = "Constraint"
elif gen_part_last is None or gen_part_last[i].item() == MASK_ID or gen_part_last[i].item() == EOS_TOKEN_ID or gen_part_last[i].item() == PAD_TOKEN_ID:
# Newly revealed (was mask or hidden special token in previous step)
label = "New"
else:
# Previously revealed and not masked/hidden/constrained
label = "Old"
current_state_vis.append((display_token, label))
visualization_states.append(current_state_vis)
# 3. Update last_x for the *next* step's comparison
last_x = constrained_x.clone()
# 4. Return the sequence with constraints applied
return constrained_x
# --- Run DREAM Generation ---
try:
print("Calling model.diffusion_generate...")
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
last_x = initial_full_x.clone() # Initialize last_x *before* the call
output = model.diffusion_generate(
input_ids,
attention_mask=attention_mask,
max_new_tokens=gen_length,
output_history=False,
return_dict_in_generate=True,
steps=steps,
temperature=temperature,
top_p=top_p,
alg=alg,
alg_temp=alg_temp if alg != "origin" else 0.0,
generation_tokens_hook_func=generation_tokens_hook_func
)
print("model.diffusion_generate finished.")
final_sequence = output.sequences[0]
response_token_ids = final_sequence[prompt_length:]
# Decode final text, skipping special tokens
final_text = tokenizer.decode(
response_token_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
print(f"Final generated text: {final_text}")
# Safeguard: Add final state visualization if needed (using the new label logic)
if len(visualization_states) <= steps:
final_state_vis = []
final_gen_part = final_sequence[prompt_length:]
for i in range(gen_length):
token_id = final_gen_part[i].item()
if token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
final_state_vis.append(("", None))
continue
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?"
label = None
is_constrained = i in processed_constraints
if token_id == MASK_ID: label = "Mask"
elif is_constrained and processed_constraints[i] == token_id: label = "Constraint"
else: label = "Old" # Default to 'Old' for final state non-masked tokens
final_state_vis.append((display_token, label))
visualization_states.append(final_state_vis)
except Exception as e:
print(f"Error during generation: {e}")
import traceback
traceback.print_exc()
error_msg = f"Error during generation: {str(e)}"
# Use 'Error' label for color mapping
visualization_states.append([("Error", "Error")])
final_text = f"Generation failed: {e}"
print("--- DREAM Generation Finished ---")
return visualization_states, final_text
# --- Gradio UI Setup ---
css = '''
.category-legend{display:none}
/* button{height: 60px} */
.small_btn {max-width: 100px; height: 40px; flex-grow: 0; margin-left: 5px;}
.chat-input-row {display: flex; align-items: center;}
.chat-input-row > * {margin-right: 5px;}
.chat-input-row > *:last-child {margin-right: 0;}
'''
def create_chatbot_demo():
with gr.Blocks(css=css) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown("Watch the text generate step-by-step. Special tokens (EOS, PAD) are hidden.")
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
# STATE MANAGEMENT
chat_history = gr.State([])
# UI COMPONENTS
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(
label="Conversation", height=500, bubble_full_width=False
)
with gr.Row(elem_classes="chat-input-row"):
user_input = gr.Textbox(
label="Your Message", placeholder="Type your message...",
scale=4, container=False, show_label=False
)
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon'",
placeholder="e.g., 0:Hello, 6:world", value=""
)
with gr.Column(scale=2):
# --- Updated HighlightedText with color_map ---
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=True, # Combine adjacent tokens with same label
show_legend=False, # Keep legend off
color_map={ # Map labels to colors
"Mask": "#A0A0A0", # Lighter Gray for Mask
"New": "#66CC66", # Light Green
"Old": "#6699CC", # Light Blue
"Constraint": "#B266FF", # Lighter Purple/Violet
"Error": "#FF6666" # Light Red
}
)
gr.Markdown(
# Update legend text to match labels
"**Color Legend:** <span style='color:#A0A0A0'>■ Mask</span> | <span style='color:#66CC66'>■ New</span> | <span style='color:#6699CC'>■ Old</span> | <span style='color:#B266FF'>■ Constraint</span>"
)
# Advanced generation settings (Keep as before)
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.6, step=0.05, label="Temperature")
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)")
with gr.Row():
remasking_strategy = gr.Radio(
choices=[("Random", "origin"), ("Entropy", "entropy"), ("MaskGit+", "maskgit_plus"), ("TopK Margin", "topk_margin")],
value="entropy", label="Generation Order Strategy (alg)"
)
alg_temp = gr.Slider(
minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Order Randomness (alg_temp)",
info="Adds randomness to non-Random strategies. Ignored for Random."
)
with gr.Row():
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.05, step=0.01, label="Visualization Delay (seconds)")
clear_btn = gr.Button("Clear Conversation")
# --- Event Handlers (Keep as before) ---
def add_message_to_history(history, message, response):
history = history.copy(); history.append([message, response]); return history
def user_message_submitted(message, history):
print(f"User submitted: '{message}'")
if not message or not message.strip():
print("Empty message submitted, doing nothing."); return history, history, "", []
history = add_message_to_history(history, message, None)
history_for_display = history.copy()
message_out = ""; vis_clear = []
return history, history_for_display, message_out, vis_clear
def bot_response_generator(
history, gen_length, steps, constraints_text, delay,
temperature, top_p, alg, alg_temp
):
print("--- Generating Bot Response ---")
if not history or history[-1][1] is not None:
print("History empty or last message already has response. Skipping generation.")
yield history, [], "No response generated." # Yield current state if called unnecessarily
return
messages = format_chat_history(history)
parsed_constraints = parse_constraints(constraints_text)
try:
vis_states, response_text = dream_generate_response_with_visualization(
messages, gen_length=gen_length, steps=steps, constraints=parsed_constraints,
temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp
)
history[-1][1] = response_text.strip() # Update history state
if vis_states:
# Yield initial state first
yield history, vis_states[0] # Update chatbot, update visualization
# Animate remaining states
for state in vis_states[1:]:
time.sleep(delay)
yield history, state # Update chatbot (implicitly), update visualization
else:
yield history, [("Generation failed.", "Error")] # Use label
except Exception as e:
print(f"Error in bot_response_generator: {e}")
import traceback; traceback.print_exc()
error_msg = f"Error: {str(e)}"
error_vis = [(error_msg, "Error")] # Use label
yield history, error_vis
def clear_conversation():
print("Clearing conversation."); return [], [], "", []
# --- Wire UI elements (Keep as before) ---
user_input.submit(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
send_btn.click(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
clear_btn.click(fn=clear_conversation, inputs=[], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)
return demo
# --- Launch the Gradio App ---
if __name__ == "__main__":
print("Creating Gradio demo...")
demo = create_chatbot_demo()
print("Launching Gradio demo...")
demo.queue().launch(share=True, debug=True) |