Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# dream_app.py (
|
2 |
|
3 |
import torch
|
4 |
import numpy as np
|
@@ -11,15 +11,11 @@ import re # Keep for parsing constraints
|
|
11 |
|
12 |
# Use try-except for space deployment vs local
|
13 |
try:
|
14 |
-
# Used for spaces deployment with GPU
|
15 |
gpu_check = spaces.GPU
|
16 |
print("Running in Gradio Spaces with GPU environment.")
|
17 |
except AttributeError:
|
18 |
-
# Fallback for local execution or environments without spaces.GPU
|
19 |
print("Running in local environment or without spaces.GPU.")
|
20 |
-
|
21 |
-
def gpu_check(func):
|
22 |
-
return func
|
23 |
|
24 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
25 |
print(f"Using device: {device}")
|
@@ -27,39 +23,50 @@ print(f"Using device: {device}")
|
|
27 |
# --- Load DREAM Model and Tokenizer ---
|
28 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
29 |
print(f"Loading model: {model_path}")
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
# --- Constants for DREAM ---
|
|
|
35 |
if tokenizer.mask_token is None:
|
36 |
-
print("Warning: Mask token not
|
37 |
-
|
38 |
-
|
39 |
-
if
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
MASK_TOKEN = tokenizer.mask_token
|
43 |
MASK_ID = tokenizer.mask_token_id
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
SPECIAL_TOKENS_MAP = {
|
48 |
-
tokenizer.eos_token_id: "[EOS]",
|
49 |
-
tokenizer.bos_token_id: "[BOS]",
|
50 |
-
tokenizer.pad_token_id: "[PAD]",
|
51 |
-
tokenizer.unk_token_id: "[UNK]",
|
52 |
-
MASK_ID: MASK_TOKEN # Map mask ID back to its string representation
|
53 |
-
}
|
54 |
-
# Add None key to handle cases where token IDs might be None (shouldn't happen with tensors)
|
55 |
-
SPECIAL_TOKENS_MAP[None] = "[NONE]"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
|
59 |
-
print(f"Using EOS_TOKEN='{EOS_TOKEN}' with ID={EOS_ID}")
|
60 |
|
61 |
# --- Helper Functions (Constraint Parsing, History Formatting) ---
|
62 |
-
|
63 |
def parse_constraints(constraints_text):
|
64 |
"""Parse constraints in format: 'position:word, position:word, ...'"""
|
65 |
constraints = {}
|
@@ -107,230 +114,182 @@ def format_chat_history(history):
|
|
107 |
|
108 |
# --- Core Generation Logic for DREAM with Visualization ---
|
109 |
|
110 |
-
@gpu_check
|
111 |
def dream_generate_response_with_visualization(
|
112 |
messages,
|
113 |
gen_length=64,
|
114 |
-
steps=64,
|
115 |
constraints=None,
|
116 |
-
temperature=0.6,
|
117 |
-
top_p=0.95,
|
118 |
-
alg="entropy",
|
119 |
-
alg_temp=0.0,
|
120 |
):
|
121 |
"""
|
122 |
Generate text with DREAM model with visualization using the generation hook.
|
123 |
-
|
124 |
-
Args:
|
125 |
-
messages: List of message dictionaries with 'role' and 'content'
|
126 |
-
gen_length: Length of text to generate (max_new_tokens)
|
127 |
-
steps: Number of diffusion steps
|
128 |
-
constraints: Dictionary mapping positions (relative to response start) to words
|
129 |
-
temperature: Sampling temperature
|
130 |
-
top_p: Nucleus sampling p
|
131 |
-
alg: Remasking algorithm ('origin', 'maskgit_plus', 'topk_margin', 'entropy')
|
132 |
-
alg_temp: Temperature for confidence-based algorithms
|
133 |
-
|
134 |
-
Returns:
|
135 |
-
Tuple: (List of visualization states, final generated text string)
|
136 |
"""
|
137 |
print("--- Starting DREAM Generation ---")
|
138 |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
|
139 |
print(f"Constraints: {constraints}")
|
140 |
|
141 |
# --- Input Preparation ---
|
142 |
-
if constraints is None:
|
143 |
-
constraints = {}
|
144 |
|
145 |
-
# Convert word constraints to token IDs (handle multi-token words)
|
146 |
processed_constraints = {}
|
147 |
print("Processing constraints:")
|
148 |
for pos, word in constraints.items():
|
149 |
-
# Prepend space for consistent tokenization, similar to LLaDA example
|
150 |
-
# Important: use add_special_tokens=False for constraints
|
151 |
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
|
152 |
if not tokens:
|
153 |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
|
154 |
continue
|
155 |
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
|
156 |
for i, token_id in enumerate(tokens):
|
157 |
-
# Ensure we don't overwrite parts of multi-token constraints accidentally
|
158 |
if pos + i not in processed_constraints:
|
159 |
processed_constraints[pos + i] = token_id
|
160 |
else:
|
161 |
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.")
|
162 |
|
163 |
-
# Prepare the prompt using chat template
|
164 |
try:
|
165 |
inputs = tokenizer.apply_chat_template(
|
166 |
-
messages,
|
167 |
-
return_tensors="pt",
|
168 |
-
return_dict=True,
|
169 |
-
add_generation_prompt=True # Crucial for instruction-tuned models like Dream-Instruct
|
170 |
)
|
171 |
input_ids = inputs.input_ids.to(device=device)
|
172 |
-
attention_mask = inputs.attention_mask.to(device=device)
|
173 |
prompt_length = input_ids.shape[1]
|
174 |
print(f"Input prompt length: {prompt_length}")
|
175 |
-
# print(f"Input IDs: {input_ids}") # Keep commented unless debugging
|
176 |
except Exception as e:
|
177 |
print(f"Error applying chat template: {e}")
|
178 |
-
return [([("Error applying chat template.", "Error")],)], f"Error: {e}"
|
179 |
|
180 |
-
|
181 |
-
if prompt_length + gen_length > 2048:
|
182 |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
|
183 |
gen_length = 2048 - prompt_length
|
184 |
if gen_length <= 0:
|
185 |
print("Error: Prompt is already too long.")
|
186 |
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long."
|
187 |
|
188 |
-
|
189 |
# --- State for Visualization Hook ---
|
190 |
visualization_states = []
|
191 |
-
last_x = None
|
192 |
|
193 |
-
# Initial state: Prompt + all masks
|
194 |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
195 |
-
# Apply initial constraints to the masked part *before* showing the first state
|
196 |
for pos, token_id in processed_constraints.items():
|
197 |
-
absolute_pos = pos
|
198 |
if 0 <= absolute_pos < gen_length:
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
|
205 |
# --- Define the Hook Function ---
|
206 |
-
# This function will be called at each diffusion step
|
207 |
def generation_tokens_hook_func(step, x, logits):
|
208 |
-
nonlocal last_x, visualization_states
|
209 |
-
# print(f"Hook called for step {step}") #
|
210 |
|
211 |
-
current_x = x.clone()
|
212 |
-
|
213 |
-
# 1. Apply Constraints *before* generating visualization for this step
|
214 |
-
# Constraints are relative to the start of the *generated* part
|
215 |
constrained_x = current_x.clone()
|
216 |
-
|
217 |
-
if
|
218 |
print("Warning: prompt_len negative in hook, skipping constraints/vis.")
|
219 |
-
return current_x
|
220 |
|
|
|
|
|
221 |
for pos, token_id in processed_constraints.items():
|
222 |
-
absolute_pos =
|
223 |
-
if
|
224 |
-
# Apply constraint if the current token doesn't match
|
225 |
if constrained_x[0, absolute_pos] != token_id:
|
226 |
constrained_x[0, absolute_pos] = token_id
|
227 |
-
|
228 |
-
|
229 |
|
230 |
# 2. Generate Visualization State for *this* step
|
231 |
-
# Compare current_x (output of diffusion for this step, before constraints applied *in this call*)
|
232 |
-
# with last_x (state from *previous* hook call / initial state, *after* constraints were applied then)
|
233 |
current_state_vis = []
|
234 |
-
gen_part_current = current_x[0,
|
235 |
-
gen_part_last = last_x[0,
|
236 |
|
237 |
for i in range(gen_length):
|
238 |
current_token_id = gen_part_current[i].item()
|
239 |
-
last_token_id = gen_part_last[i].item() if gen_part_last is not None else MASK_ID # Assume mask initially
|
240 |
|
241 |
-
#
|
242 |
-
if current_token_id
|
243 |
-
|
244 |
-
|
245 |
-
#
|
246 |
-
#
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
# Determine category (label) for color mapping
|
256 |
-
category = "Old" # Default assume it was revealed before
|
257 |
is_constrained = i in processed_constraints
|
258 |
|
259 |
if current_token_id == MASK_ID:
|
260 |
-
|
261 |
elif is_constrained and processed_constraints[i] == current_token_id:
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
#
|
268 |
-
|
269 |
-
# else: category remains "Old"
|
270 |
-
|
271 |
|
272 |
-
current_state_vis.append((display_token,
|
273 |
|
274 |
visualization_states.append(current_state_vis)
|
275 |
|
276 |
# 3. Update last_x for the *next* step's comparison
|
277 |
-
# Store the state *after* applying constraints for accurate comparison next time
|
278 |
last_x = constrained_x.clone()
|
279 |
|
280 |
-
# 4. Return the sequence with constraints applied
|
281 |
-
return constrained_x
|
282 |
-
|
283 |
|
284 |
# --- Run DREAM Generation ---
|
285 |
try:
|
286 |
print("Calling model.diffusion_generate...")
|
287 |
-
# Make sure last_x is initialized correctly before the first hook call
|
288 |
-
# It should represent the state *before* the first diffusion step.
|
289 |
-
# Create the initial full sequence (prompt + initial masked/constrained part)
|
290 |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
|
291 |
-
last_x = initial_full_x.clone() # Initialize last_x
|
292 |
-
|
293 |
-
# Add the very first visualization state (prompt + initial masks/constraints)
|
294 |
-
# This state corresponds to the `last_x` *before* the first hook call.
|
295 |
-
initial_state_vis = []
|
296 |
-
initial_gen_part = initial_full_x[0, prompt_length:]
|
297 |
-
for i in range(gen_length):
|
298 |
-
token_id = initial_gen_part[i].item()
|
299 |
-
category = "Mask"
|
300 |
-
display_token = MASK_TOKEN
|
301 |
-
if token_id != MASK_ID:
|
302 |
-
# This must be an initial constraint
|
303 |
-
category = "Constraint"
|
304 |
-
if token_id in SPECIAL_TOKENS_MAP:
|
305 |
-
display_token = SPECIAL_TOKENS_MAP[token_id]
|
306 |
-
else:
|
307 |
-
display_token = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
308 |
-
if not display_token: display_token = " " # Placeholder
|
309 |
-
|
310 |
-
initial_state_vis.append((display_token, category))
|
311 |
-
visualization_states.append(initial_state_vis)
|
312 |
-
|
313 |
|
314 |
output = model.diffusion_generate(
|
315 |
input_ids,
|
316 |
attention_mask=attention_mask,
|
317 |
max_new_tokens=gen_length,
|
318 |
-
output_history=False,
|
319 |
return_dict_in_generate=True,
|
320 |
steps=steps,
|
321 |
temperature=temperature,
|
322 |
top_p=top_p,
|
323 |
alg=alg,
|
324 |
-
alg_temp=alg_temp if alg != "origin" else 0.0,
|
325 |
generation_tokens_hook_func=generation_tokens_hook_func
|
326 |
)
|
327 |
print("model.diffusion_generate finished.")
|
328 |
|
329 |
-
# Extract final generated sequence (response part only)
|
330 |
final_sequence = output.sequences[0]
|
331 |
response_token_ids = final_sequence[prompt_length:]
|
332 |
|
333 |
-
# Decode
|
334 |
final_text = tokenizer.decode(
|
335 |
response_token_ids,
|
336 |
skip_special_tokens=True,
|
@@ -338,92 +297,55 @@ def dream_generate_response_with_visualization(
|
|
338 |
).strip()
|
339 |
print(f"Final generated text: {final_text}")
|
340 |
|
341 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
|
343 |
|
344 |
except Exception as e:
|
345 |
print(f"Error during generation: {e}")
|
346 |
import traceback
|
347 |
traceback.print_exc()
|
348 |
-
# Add error message to visualization using the "Error" category
|
349 |
error_msg = f"Error during generation: {str(e)}"
|
350 |
-
|
|
|
351 |
final_text = f"Generation failed: {e}"
|
352 |
|
353 |
print("--- DREAM Generation Finished ---")
|
354 |
-
# Return states list (already built by hook) and final text
|
355 |
return visualization_states, final_text
|
356 |
|
357 |
|
358 |
# --- Gradio UI Setup ---
|
359 |
|
360 |
css = '''
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
.
|
365 |
-
|
366 |
-
|
367 |
-
height: 40px; /* Adjust as needed */
|
368 |
-
flex-grow: 0 !important; /* Prevent button from growing */
|
369 |
-
margin-left: 5px !important; /* Add some space */
|
370 |
-
margin-top: auto; /* Align button bottom with textbox */
|
371 |
-
margin-bottom: auto; /* Align button bottom with textbox */
|
372 |
-
line-height: 1; /* Adjust line height if text vertical align is off */
|
373 |
-
padding: 0 10px; /* Adjust padding */
|
374 |
-
}
|
375 |
-
.chat-input-row {
|
376 |
-
display: flex;
|
377 |
-
align-items: center; /* Vertically align items */
|
378 |
-
margin-bottom: 10px; /* Add space below input row */
|
379 |
-
}
|
380 |
-
.chat-input-row > * {
|
381 |
-
margin-right: 5px; /* Space between textbox and button */
|
382 |
-
}
|
383 |
-
.chat-input-row > *:last-child {
|
384 |
-
margin-right: 0;
|
385 |
-
}
|
386 |
-
/* Style HighlightedText elements */
|
387 |
-
.token-hl span {
|
388 |
-
padding: 2px 1px; /* Minimal padding */
|
389 |
-
margin: 0 1px; /* Minimal margin */
|
390 |
-
border-radius: 3px;
|
391 |
-
display: inline-block; /* Ensure background covers token */
|
392 |
-
line-height: 1.2; /* Adjust for better vertical spacing */
|
393 |
-
}
|
394 |
-
/* Custom legend styling */
|
395 |
-
.custom-legend span {
|
396 |
-
display: inline-block;
|
397 |
-
margin-right: 15px;
|
398 |
-
font-size: 0.9em;
|
399 |
-
}
|
400 |
-
.custom-legend span::before {
|
401 |
-
content: "■";
|
402 |
-
margin-right: 4px;
|
403 |
-
font-size: 1.1em; /* Make square slightly larger */
|
404 |
-
vertical-align: middle; /* Align square with text */
|
405 |
-
}
|
406 |
'''
|
407 |
-
# Define color map mapping CATEGORY names to colors
|
408 |
-
color_map = {
|
409 |
-
"Mask": "#A0A0A0", # Darker Gray for masks
|
410 |
-
"New": "#77DD77", # Light Green for new tokens
|
411 |
-
"Old": "#AEC6CF", # Light Blue/Gray for old tokens
|
412 |
-
"Constraint": "#C3A0E0", # Purple for constraints
|
413 |
-
"Error": "#FF6961" # Light Red for errors
|
414 |
-
}
|
415 |
-
|
416 |
-
# Create the custom legend HTML string
|
417 |
-
legend_html = "<div class='custom-legend'>"
|
418 |
-
for category, color in color_map.items():
|
419 |
-
legend_html += f"<span style='color:{color};'>{category}</span>"
|
420 |
-
legend_html += "</div>"
|
421 |
-
|
422 |
-
|
423 |
def create_chatbot_demo():
|
424 |
with gr.Blocks(css=css) as demo:
|
425 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
426 |
-
gr.Markdown("
|
427 |
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
|
428 |
|
429 |
# STATE MANAGEMENT
|
@@ -433,108 +355,75 @@ def create_chatbot_demo():
|
|
433 |
with gr.Row():
|
434 |
with gr.Column(scale=3):
|
435 |
chatbot_ui = gr.Chatbot(
|
436 |
-
label="Conversation",
|
437 |
-
height=500,
|
438 |
-
bubble_full_width=False
|
439 |
)
|
440 |
-
|
441 |
-
# Message input Row
|
442 |
with gr.Row(elem_classes="chat-input-row"):
|
443 |
user_input = gr.Textbox(
|
444 |
-
label="Your Message",
|
445 |
-
|
446 |
-
scale=4,
|
447 |
-
container=False,
|
448 |
-
show_label=False
|
449 |
)
|
450 |
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
|
451 |
|
452 |
constraints_input = gr.Textbox(
|
453 |
label="Word Constraints (Optional)",
|
454 |
-
info="
|
455 |
-
placeholder="e.g., 0:Hello, 6:world",
|
456 |
-
value=""
|
457 |
)
|
458 |
with gr.Column(scale=2):
|
|
|
459 |
output_vis = gr.HighlightedText(
|
460 |
label="Denoising Process Visualization",
|
461 |
-
combine_adjacent=
|
462 |
-
show_legend=
|
463 |
-
|
464 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
465 |
)
|
466 |
-
# Use Markdown to display the custom legend
|
467 |
-
gr.Markdown(legend_html)
|
468 |
|
469 |
|
470 |
-
# Advanced generation settings
|
471 |
with gr.Accordion("Generation Settings", open=False):
|
472 |
with gr.Row():
|
473 |
-
gen_length = gr.Slider(
|
474 |
-
|
475 |
-
label="Max New Tokens"
|
476 |
-
)
|
477 |
-
steps = gr.Slider(
|
478 |
-
minimum=8, maximum=512, value=128, step=8,
|
479 |
-
label="Diffusion Steps"
|
480 |
-
)
|
481 |
with gr.Row():
|
482 |
-
temperature = gr.Slider(
|
483 |
-
|
484 |
-
label="Temperature"
|
485 |
-
)
|
486 |
-
top_p = gr.Slider(
|
487 |
-
minimum=0.0, maximum=1.0, value=0.95, step=0.05,
|
488 |
-
label="Top-P (Nucleus Sampling)"
|
489 |
-
)
|
490 |
with gr.Row():
|
491 |
remasking_strategy = gr.Radio(
|
492 |
-
choices=[
|
493 |
-
|
494 |
-
("Entropy", "entropy"),
|
495 |
-
("MaskGit+", "maskgit_plus"),
|
496 |
-
("TopK Margin", "topk_margin"),
|
497 |
-
],
|
498 |
-
value="entropy",
|
499 |
-
label="Generation Order Strategy (alg)"
|
500 |
)
|
501 |
alg_temp = gr.Slider(
|
502 |
-
minimum=0.0, maximum=1.0, value=0.1, step=0.05,
|
503 |
-
label="Order Randomness (alg_temp)" ,
|
504 |
info="Adds randomness to non-Random strategies. Ignored for Random."
|
505 |
)
|
506 |
-
|
507 |
with gr.Row():
|
508 |
-
visualization_delay = gr.Slider(
|
509 |
-
minimum=0.0, maximum=0.5, value=0.05, step=0.01,
|
510 |
-
label="Visualization Delay (seconds)"
|
511 |
-
)
|
512 |
|
513 |
-
# Clear button
|
514 |
clear_btn = gr.Button("Clear Conversation")
|
515 |
|
516 |
-
# --- Event Handlers ---
|
517 |
-
|
518 |
-
# Helper to add message to history state
|
519 |
def add_message_to_history(history, message, response):
|
520 |
-
history = history.copy()
|
521 |
-
history.append([message, response])
|
522 |
-
return history
|
523 |
|
524 |
-
# Function when user submits message (Enter or Send button)
|
525 |
def user_message_submitted(message, history):
|
526 |
print(f"User submitted: '{message}'")
|
527 |
if not message or not message.strip():
|
528 |
-
print("Empty message submitted, doing nothing.")
|
529 |
-
return history, history, "", [] # history, chatbot_ui, user_input, output_vis
|
530 |
-
|
531 |
history = add_message_to_history(history, message, None)
|
532 |
history_for_display = history.copy()
|
533 |
-
message_out = ""
|
534 |
-
vis_clear = [] # Clear visualization when new message submitted
|
535 |
return history, history_for_display, message_out, vis_clear
|
536 |
|
537 |
-
# Function to generate bot response (triggered after user message is processed)
|
538 |
def bot_response_generator(
|
539 |
history, gen_length, steps, constraints_text, delay,
|
540 |
temperature, top_p, alg, alg_temp
|
@@ -550,91 +439,39 @@ def create_chatbot_demo():
|
|
550 |
|
551 |
try:
|
552 |
vis_states, response_text = dream_generate_response_with_visualization(
|
553 |
-
messages,
|
554 |
-
|
555 |
-
steps=steps,
|
556 |
-
constraints=parsed_constraints,
|
557 |
-
temperature=temperature,
|
558 |
-
top_p=top_p,
|
559 |
-
alg=alg,
|
560 |
-
alg_temp=alg_temp
|
561 |
)
|
|
|
562 |
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
# Important: Yield the *original* history for all intermediate steps,
|
569 |
-
# only yield the final_history with the *last* visualization state.
|
570 |
-
num_states = len(vis_states)
|
571 |
-
for i, state in enumerate(vis_states):
|
572 |
-
current_chatbot_state = history if i < num_states - 1 else final_history
|
573 |
-
yield current_chatbot_state, state
|
574 |
-
if delay > 0 and i < num_states - 1: # Don't sleep after last state
|
575 |
time.sleep(delay)
|
|
|
|
|
|
|
576 |
|
577 |
except Exception as e:
|
578 |
print(f"Error in bot_response_generator: {e}")
|
579 |
-
import traceback
|
580 |
-
traceback.print_exc()
|
581 |
error_msg = f"Error: {str(e)}"
|
582 |
-
error_vis = [(error_msg, "Error")] # Use
|
583 |
-
|
584 |
-
final_history_error = history.copy()
|
585 |
-
final_history_error[-1][1] = error_msg # Add error to chatbot too
|
586 |
-
yield final_history_error, error_vis
|
587 |
|
588 |
-
# Function to clear everything
|
589 |
def clear_conversation():
|
590 |
-
print("Clearing conversation.")
|
591 |
-
return [], [], "", [] # chat_history, chatbot_ui, user_input, output_vis
|
592 |
|
593 |
-
# --- Wire UI elements
|
|
|
|
|
594 |
|
595 |
-
|
596 |
-
|
597 |
-
fn=user_message_submitted,
|
598 |
-
inputs=[user_input, chat_history],
|
599 |
-
outputs=[chat_history, chatbot_ui, user_input, output_vis],
|
600 |
-
queue=False # Show user message immediately
|
601 |
-
)
|
602 |
-
|
603 |
-
# Clicking the Send button
|
604 |
-
click_event = send_btn.click(
|
605 |
-
fn=user_message_submitted,
|
606 |
-
inputs=[user_input, chat_history],
|
607 |
-
outputs=[chat_history, chatbot_ui, user_input, output_vis],
|
608 |
-
queue=False
|
609 |
-
)
|
610 |
|
611 |
-
|
612 |
-
# Use .then() to trigger the generator
|
613 |
-
generation_inputs = [
|
614 |
-
chat_history, gen_length, steps, constraints_input, visualization_delay,
|
615 |
-
temperature, top_p, remasking_strategy, alg_temp
|
616 |
-
]
|
617 |
-
generation_outputs = [chatbot_ui, output_vis]
|
618 |
-
|
619 |
-
submit_event.then(
|
620 |
-
fn=bot_response_generator,
|
621 |
-
inputs=generation_inputs,
|
622 |
-
outputs=generation_outputs
|
623 |
-
)
|
624 |
-
|
625 |
-
click_event.then(
|
626 |
-
fn=bot_response_generator,
|
627 |
-
inputs=generation_inputs,
|
628 |
-
outputs=generation_outputs
|
629 |
-
)
|
630 |
-
|
631 |
-
# Clicking the Clear button
|
632 |
-
clear_btn.click(
|
633 |
-
fn=clear_conversation,
|
634 |
-
inputs=[],
|
635 |
-
outputs=[chat_history, chatbot_ui, user_input, output_vis],
|
636 |
-
queue=False
|
637 |
-
)
|
638 |
|
639 |
return demo
|
640 |
|
@@ -643,6 +480,4 @@ if __name__ == "__main__":
|
|
643 |
print("Creating Gradio demo...")
|
644 |
demo = create_chatbot_demo()
|
645 |
print("Launching Gradio demo...")
|
646 |
-
|
647 |
-
# share=True generates a public link (useful for Colab/Spaces)
|
648 |
-
demo.queue().launch(share=True, debug=True) # Add debug=True for more logs
|
|
|
1 |
+
# llada_app.py -> dream_app.py (v2)
|
2 |
|
3 |
import torch
|
4 |
import numpy as np
|
|
|
11 |
|
12 |
# Use try-except for space deployment vs local
|
13 |
try:
|
|
|
14 |
gpu_check = spaces.GPU
|
15 |
print("Running in Gradio Spaces with GPU environment.")
|
16 |
except AttributeError:
|
|
|
17 |
print("Running in local environment or without spaces.GPU.")
|
18 |
+
def gpu_check(func): return func
|
|
|
|
|
19 |
|
20 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
21 |
print(f"Using device: {device}")
|
|
|
23 |
# --- Load DREAM Model and Tokenizer ---
|
24 |
model_path = "Dream-org/Dream-v0-Instruct-7B"
|
25 |
print(f"Loading model: {model_path}")
|
26 |
+
try:
|
27 |
+
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, trust_remote_code=True).to(device).eval()
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
29 |
+
print("Model and tokenizer loaded.")
|
30 |
+
except Exception as e:
|
31 |
+
print(f"FATAL: Could not load model/tokenizer. Error: {e}")
|
32 |
+
# Optionally exit or raise
|
33 |
+
raise SystemExit(f"Failed to load model: {e}")
|
34 |
+
|
35 |
|
36 |
# --- Constants for DREAM ---
|
37 |
+
# Find mask token and ID
|
38 |
if tokenizer.mask_token is None:
|
39 |
+
print("Warning: Mask token not explicitly set in tokenizer. Trying to add '[MASK]'.")
|
40 |
+
# This might require retraining/fine-tuning if the model didn't see it.
|
41 |
+
# Check if it exists first before adding
|
42 |
+
if '[MASK]' not in tokenizer.get_vocab():
|
43 |
+
tokenizer.add_special_tokens({'mask_token': '[MASK]'})
|
44 |
+
model.resize_token_embeddings(len(tokenizer)) # Resize model embeddings
|
45 |
+
print("Added '[MASK]' and resized embeddings.")
|
46 |
+
else:
|
47 |
+
tokenizer.mask_token = '[MASK]' # Set it if it exists but wasn't assigned
|
48 |
+
print("Found existing '[MASK]', assigned as mask_token.")
|
49 |
|
50 |
MASK_TOKEN = tokenizer.mask_token
|
51 |
MASK_ID = tokenizer.mask_token_id
|
52 |
+
if MASK_ID is None:
|
53 |
+
raise ValueError("Failed to get MASK_ID after attempting to set mask_token.")
|
54 |
+
print(f"Using MASK_TOKEN='{MASK_TOKEN}' with ID={MASK_ID}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Get EOS and PAD token IDs
|
57 |
+
EOS_TOKEN_ID = tokenizer.eos_token_id
|
58 |
+
PAD_TOKEN_ID = tokenizer.pad_token_id
|
59 |
+
print(f"Using EOS_TOKEN_ID={EOS_TOKEN_ID}, PAD_TOKEN_ID={PAD_TOKEN_ID}")
|
60 |
+
# Handle cases where they might be None (though unlikely for most models)
|
61 |
+
if EOS_TOKEN_ID is None:
|
62 |
+
print("Warning: EOS token ID not found.")
|
63 |
+
if PAD_TOKEN_ID is None:
|
64 |
+
print("Warning: PAD token ID not found. Using EOS ID as fallback for hiding.")
|
65 |
+
PAD_TOKEN_ID = EOS_TOKEN_ID # Use EOS as a fallback for hiding logic if PAD is missing
|
66 |
|
|
|
|
|
67 |
|
68 |
# --- Helper Functions (Constraint Parsing, History Formatting) ---
|
69 |
+
# (Keep parse_constraints and format_chat_history functions as they were)
|
70 |
def parse_constraints(constraints_text):
|
71 |
"""Parse constraints in format: 'position:word, position:word, ...'"""
|
72 |
constraints = {}
|
|
|
114 |
|
115 |
# --- Core Generation Logic for DREAM with Visualization ---
|
116 |
|
117 |
+
@gpu_check
|
118 |
def dream_generate_response_with_visualization(
|
119 |
messages,
|
120 |
gen_length=64,
|
121 |
+
steps=64,
|
122 |
constraints=None,
|
123 |
+
temperature=0.6,
|
124 |
+
top_p=0.95,
|
125 |
+
alg="entropy",
|
126 |
+
alg_temp=0.0,
|
127 |
):
|
128 |
"""
|
129 |
Generate text with DREAM model with visualization using the generation hook.
|
130 |
+
Hides special tokens (EOS, PAD) and uses labels for coloring.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
"""
|
132 |
print("--- Starting DREAM Generation ---")
|
133 |
print(f"Parameters: gen_length={gen_length}, steps={steps}, temperature={temperature}, top_p={top_p}, alg='{alg}', alg_temp={alg_temp}")
|
134 |
print(f"Constraints: {constraints}")
|
135 |
|
136 |
# --- Input Preparation ---
|
137 |
+
if constraints is None: constraints = {}
|
|
|
138 |
|
|
|
139 |
processed_constraints = {}
|
140 |
print("Processing constraints:")
|
141 |
for pos, word in constraints.items():
|
|
|
|
|
142 |
tokens = tokenizer.encode(" " + word, add_special_tokens=False)
|
143 |
if not tokens:
|
144 |
print(f" Warning: Could not tokenize constraint word '{word}' at position {pos}. Skipping.")
|
145 |
continue
|
146 |
print(f" Pos {pos}, Word '{word}' -> Tokens {tokens}")
|
147 |
for i, token_id in enumerate(tokens):
|
|
|
148 |
if pos + i not in processed_constraints:
|
149 |
processed_constraints[pos + i] = token_id
|
150 |
else:
|
151 |
print(f" Warning: Overlapping constraint at position {pos+i}. Keeping first.")
|
152 |
|
|
|
153 |
try:
|
154 |
inputs = tokenizer.apply_chat_template(
|
155 |
+
messages, return_tensors="pt", return_dict=True, add_generation_prompt=True
|
|
|
|
|
|
|
156 |
)
|
157 |
input_ids = inputs.input_ids.to(device=device)
|
158 |
+
attention_mask = inputs.attention_mask.to(device=device)
|
159 |
prompt_length = input_ids.shape[1]
|
160 |
print(f"Input prompt length: {prompt_length}")
|
|
|
161 |
except Exception as e:
|
162 |
print(f"Error applying chat template: {e}")
|
163 |
+
return [([("Error applying chat template.", "Error")],)], f"Error: {e}" # Use 'Error' label
|
164 |
|
165 |
+
# Check context length (DREAM uses 2048)
|
166 |
+
if prompt_length + gen_length > 2048:
|
167 |
print(f"Warning: Requested length ({prompt_length + gen_length}) exceeds model max length (2048). Truncating gen_length.")
|
168 |
gen_length = 2048 - prompt_length
|
169 |
if gen_length <= 0:
|
170 |
print("Error: Prompt is already too long.")
|
171 |
return [([("Prompt too long.", "Error")],)], "Error: Prompt too long."
|
172 |
|
|
|
173 |
# --- State for Visualization Hook ---
|
174 |
visualization_states = []
|
175 |
+
last_x = None
|
176 |
|
177 |
+
# Initial state: Prompt + all masks + initial constraints
|
178 |
initial_x_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
|
|
|
179 |
for pos, token_id in processed_constraints.items():
|
180 |
+
absolute_pos = pos
|
181 |
if 0 <= absolute_pos < gen_length:
|
182 |
+
initial_x_part[0, absolute_pos] = token_id
|
183 |
+
|
184 |
+
initial_state_vis = []
|
185 |
+
for i in range(gen_length):
|
186 |
+
token_id = initial_x_part[0, i].item()
|
187 |
+
if token_id == MASK_ID:
|
188 |
+
initial_state_vis.append((MASK_TOKEN, "Mask"))
|
189 |
+
elif token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
|
190 |
+
initial_state_vis.append(("", None)) # Hide special tokens
|
191 |
+
elif i in processed_constraints and processed_constraints[i] == token_id:
|
192 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
193 |
+
display_token = token_str if token_str else "?"
|
194 |
+
initial_state_vis.append((display_token, "Constraint"))
|
195 |
+
else:
|
196 |
+
# Should only be constraints here, but add fallback
|
197 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
198 |
+
display_token = token_str if token_str else "?"
|
199 |
+
initial_state_vis.append((display_token, "Old")) # Treat unexpected initial non-masks as 'Old'
|
200 |
+
visualization_states.append(initial_state_vis)
|
201 |
|
202 |
|
203 |
# --- Define the Hook Function ---
|
|
|
204 |
def generation_tokens_hook_func(step, x, logits):
|
205 |
+
nonlocal last_x, visualization_states
|
206 |
+
# print(f"Hook called for step {step}") # Verbose logging
|
207 |
|
208 |
+
current_x = x.clone()
|
|
|
|
|
|
|
209 |
constrained_x = current_x.clone()
|
210 |
+
prompt_len = current_x.shape[1] - gen_length
|
211 |
+
if prompt_len < 0:
|
212 |
print("Warning: prompt_len negative in hook, skipping constraints/vis.")
|
213 |
+
return current_x
|
214 |
|
215 |
+
# 1. Apply Constraints
|
216 |
+
constraints_applied_this_step = False
|
217 |
for pos, token_id in processed_constraints.items():
|
218 |
+
absolute_pos = prompt_len + pos
|
219 |
+
if prompt_len <= absolute_pos < current_x.shape[1]:
|
|
|
220 |
if constrained_x[0, absolute_pos] != token_id:
|
221 |
constrained_x[0, absolute_pos] = token_id
|
222 |
+
constraints_applied_this_step = True
|
|
|
223 |
|
224 |
# 2. Generate Visualization State for *this* step
|
|
|
|
|
225 |
current_state_vis = []
|
226 |
+
gen_part_current = current_x[0, prompt_len:]
|
227 |
+
gen_part_last = last_x[0, prompt_len:] if last_x is not None else None
|
228 |
|
229 |
for i in range(gen_length):
|
230 |
current_token_id = gen_part_current[i].item()
|
|
|
231 |
|
232 |
+
# --- Logic to Hide Special Tokens ---
|
233 |
+
if current_token_id == EOS_TOKEN_ID or current_token_id == PAD_TOKEN_ID:
|
234 |
+
# Maybe show on first appearance? For now, always hide.
|
235 |
+
# LLaDA's behavior: "shown once and then disappear"
|
236 |
+
# Let's implement the simpler "always hide" first.
|
237 |
+
current_state_vis.append(("", None)) # Append empty string, no label -> hidden
|
238 |
+
continue # Move to next token
|
239 |
+
|
240 |
+
# --- Decode and Determine Label ---
|
241 |
+
token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
|
242 |
+
display_token = token_str if token_str else MASK_TOKEN if current_token_id == MASK_ID else "?" # Use MASK_TOKEN if decode fails
|
243 |
+
|
244 |
+
label = None # Default label (no color)
|
|
|
|
|
|
|
245 |
is_constrained = i in processed_constraints
|
246 |
|
247 |
if current_token_id == MASK_ID:
|
248 |
+
label = "Mask"
|
249 |
elif is_constrained and processed_constraints[i] == current_token_id:
|
250 |
+
label = "Constraint"
|
251 |
+
elif gen_part_last is None or gen_part_last[i].item() == MASK_ID or gen_part_last[i].item() == EOS_TOKEN_ID or gen_part_last[i].item() == PAD_TOKEN_ID:
|
252 |
+
# Newly revealed (was mask or hidden special token in previous step)
|
253 |
+
label = "New"
|
254 |
+
else:
|
255 |
+
# Previously revealed and not masked/hidden/constrained
|
256 |
+
label = "Old"
|
|
|
|
|
257 |
|
258 |
+
current_state_vis.append((display_token, label))
|
259 |
|
260 |
visualization_states.append(current_state_vis)
|
261 |
|
262 |
# 3. Update last_x for the *next* step's comparison
|
|
|
263 |
last_x = constrained_x.clone()
|
264 |
|
265 |
+
# 4. Return the sequence with constraints applied
|
266 |
+
return constrained_x
|
|
|
267 |
|
268 |
# --- Run DREAM Generation ---
|
269 |
try:
|
270 |
print("Calling model.diffusion_generate...")
|
|
|
|
|
|
|
271 |
initial_full_x = torch.cat([input_ids, initial_x_part], dim=1)
|
272 |
+
last_x = initial_full_x.clone() # Initialize last_x *before* the call
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
output = model.diffusion_generate(
|
275 |
input_ids,
|
276 |
attention_mask=attention_mask,
|
277 |
max_new_tokens=gen_length,
|
278 |
+
output_history=False,
|
279 |
return_dict_in_generate=True,
|
280 |
steps=steps,
|
281 |
temperature=temperature,
|
282 |
top_p=top_p,
|
283 |
alg=alg,
|
284 |
+
alg_temp=alg_temp if alg != "origin" else 0.0,
|
285 |
generation_tokens_hook_func=generation_tokens_hook_func
|
286 |
)
|
287 |
print("model.diffusion_generate finished.")
|
288 |
|
|
|
289 |
final_sequence = output.sequences[0]
|
290 |
response_token_ids = final_sequence[prompt_length:]
|
291 |
|
292 |
+
# Decode final text, skipping special tokens
|
293 |
final_text = tokenizer.decode(
|
294 |
response_token_ids,
|
295 |
skip_special_tokens=True,
|
|
|
297 |
).strip()
|
298 |
print(f"Final generated text: {final_text}")
|
299 |
|
300 |
+
# Safeguard: Add final state visualization if needed (using the new label logic)
|
301 |
+
if len(visualization_states) <= steps:
|
302 |
+
final_state_vis = []
|
303 |
+
final_gen_part = final_sequence[prompt_length:]
|
304 |
+
for i in range(gen_length):
|
305 |
+
token_id = final_gen_part[i].item()
|
306 |
+
if token_id == EOS_TOKEN_ID or token_id == PAD_TOKEN_ID:
|
307 |
+
final_state_vis.append(("", None))
|
308 |
+
continue
|
309 |
+
|
310 |
+
token_str = tokenizer.decode([token_id], skip_special_tokens=True).strip()
|
311 |
+
display_token = token_str if token_str else MASK_TOKEN if token_id == MASK_ID else "?"
|
312 |
+
label = None
|
313 |
+
is_constrained = i in processed_constraints
|
314 |
+
|
315 |
+
if token_id == MASK_ID: label = "Mask"
|
316 |
+
elif is_constrained and processed_constraints[i] == token_id: label = "Constraint"
|
317 |
+
else: label = "Old" # Default to 'Old' for final state non-masked tokens
|
318 |
+
final_state_vis.append((display_token, label))
|
319 |
+
visualization_states.append(final_state_vis)
|
320 |
|
321 |
|
322 |
except Exception as e:
|
323 |
print(f"Error during generation: {e}")
|
324 |
import traceback
|
325 |
traceback.print_exc()
|
|
|
326 |
error_msg = f"Error during generation: {str(e)}"
|
327 |
+
# Use 'Error' label for color mapping
|
328 |
+
visualization_states.append([("Error", "Error")])
|
329 |
final_text = f"Generation failed: {e}"
|
330 |
|
331 |
print("--- DREAM Generation Finished ---")
|
|
|
332 |
return visualization_states, final_text
|
333 |
|
334 |
|
335 |
# --- Gradio UI Setup ---
|
336 |
|
337 |
css = '''
|
338 |
+
.category-legend{display:none}
|
339 |
+
/* button{height: 60px} */
|
340 |
+
.small_btn {max-width: 100px; height: 40px; flex-grow: 0; margin-left: 5px;}
|
341 |
+
.chat-input-row {display: flex; align-items: center;}
|
342 |
+
.chat-input-row > * {margin-right: 5px;}
|
343 |
+
.chat-input-row > *:last-child {margin-right: 0;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
def create_chatbot_demo():
|
346 |
with gr.Blocks(css=css) as demo:
|
347 |
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
|
348 |
+
gr.Markdown("Watch the text generate step-by-step. Special tokens (EOS, PAD) are hidden.")
|
349 |
gr.Markdown("[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B) - [Blog Post](https://hkunlp.github.io/blog/2025/dream/)")
|
350 |
|
351 |
# STATE MANAGEMENT
|
|
|
355 |
with gr.Row():
|
356 |
with gr.Column(scale=3):
|
357 |
chatbot_ui = gr.Chatbot(
|
358 |
+
label="Conversation", height=500, bubble_full_width=False
|
|
|
|
|
359 |
)
|
|
|
|
|
360 |
with gr.Row(elem_classes="chat-input-row"):
|
361 |
user_input = gr.Textbox(
|
362 |
+
label="Your Message", placeholder="Type your message...",
|
363 |
+
scale=4, container=False, show_label=False
|
|
|
|
|
|
|
364 |
)
|
365 |
send_btn = gr.Button("Send", scale=1, elem_classes="small_btn")
|
366 |
|
367 |
constraints_input = gr.Textbox(
|
368 |
label="Word Constraints (Optional)",
|
369 |
+
info="Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon'",
|
370 |
+
placeholder="e.g., 0:Hello, 6:world", value=""
|
|
|
371 |
)
|
372 |
with gr.Column(scale=2):
|
373 |
+
# --- Updated HighlightedText with color_map ---
|
374 |
output_vis = gr.HighlightedText(
|
375 |
label="Denoising Process Visualization",
|
376 |
+
combine_adjacent=True, # Combine adjacent tokens with same label
|
377 |
+
show_legend=False, # Keep legend off
|
378 |
+
color_map={ # Map labels to colors
|
379 |
+
"Mask": "#A0A0A0", # Lighter Gray for Mask
|
380 |
+
"New": "#66CC66", # Light Green
|
381 |
+
"Old": "#6699CC", # Light Blue
|
382 |
+
"Constraint": "#B266FF", # Lighter Purple/Violet
|
383 |
+
"Error": "#FF6666" # Light Red
|
384 |
+
}
|
385 |
+
)
|
386 |
+
gr.Markdown(
|
387 |
+
# Update legend text to match labels
|
388 |
+
"**Color Legend:** <span style='color:#A0A0A0'>■ Mask</span> | <span style='color:#66CC66'>■ New</span> | <span style='color:#6699CC'>■ Old</span> | <span style='color:#B266FF'>■ Constraint</span>"
|
389 |
)
|
|
|
|
|
390 |
|
391 |
|
392 |
+
# Advanced generation settings (Keep as before)
|
393 |
with gr.Accordion("Generation Settings", open=False):
|
394 |
with gr.Row():
|
395 |
+
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
|
396 |
+
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
with gr.Row():
|
398 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.5, value=0.6, step=0.05, label="Temperature")
|
399 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (Nucleus Sampling)")
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
with gr.Row():
|
401 |
remasking_strategy = gr.Radio(
|
402 |
+
choices=[("Random", "origin"), ("Entropy", "entropy"), ("MaskGit+", "maskgit_plus"), ("TopK Margin", "topk_margin")],
|
403 |
+
value="entropy", label="Generation Order Strategy (alg)"
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
)
|
405 |
alg_temp = gr.Slider(
|
406 |
+
minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Order Randomness (alg_temp)",
|
|
|
407 |
info="Adds randomness to non-Random strategies. Ignored for Random."
|
408 |
)
|
|
|
409 |
with gr.Row():
|
410 |
+
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.05, step=0.01, label="Visualization Delay (seconds)")
|
|
|
|
|
|
|
411 |
|
|
|
412 |
clear_btn = gr.Button("Clear Conversation")
|
413 |
|
414 |
+
# --- Event Handlers (Keep as before) ---
|
|
|
|
|
415 |
def add_message_to_history(history, message, response):
|
416 |
+
history = history.copy(); history.append([message, response]); return history
|
|
|
|
|
417 |
|
|
|
418 |
def user_message_submitted(message, history):
|
419 |
print(f"User submitted: '{message}'")
|
420 |
if not message or not message.strip():
|
421 |
+
print("Empty message submitted, doing nothing."); return history, history, "", []
|
|
|
|
|
422 |
history = add_message_to_history(history, message, None)
|
423 |
history_for_display = history.copy()
|
424 |
+
message_out = ""; vis_clear = []
|
|
|
425 |
return history, history_for_display, message_out, vis_clear
|
426 |
|
|
|
427 |
def bot_response_generator(
|
428 |
history, gen_length, steps, constraints_text, delay,
|
429 |
temperature, top_p, alg, alg_temp
|
|
|
439 |
|
440 |
try:
|
441 |
vis_states, response_text = dream_generate_response_with_visualization(
|
442 |
+
messages, gen_length=gen_length, steps=steps, constraints=parsed_constraints,
|
443 |
+
temperature=temperature, top_p=top_p, alg=alg, alg_temp=alg_temp
|
|
|
|
|
|
|
|
|
|
|
|
|
444 |
)
|
445 |
+
history[-1][1] = response_text.strip() # Update history state
|
446 |
|
447 |
+
if vis_states:
|
448 |
+
# Yield initial state first
|
449 |
+
yield history, vis_states[0] # Update chatbot, update visualization
|
450 |
+
# Animate remaining states
|
451 |
+
for state in vis_states[1:]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
time.sleep(delay)
|
453 |
+
yield history, state # Update chatbot (implicitly), update visualization
|
454 |
+
else:
|
455 |
+
yield history, [("Generation failed.", "Error")] # Use label
|
456 |
|
457 |
except Exception as e:
|
458 |
print(f"Error in bot_response_generator: {e}")
|
459 |
+
import traceback; traceback.print_exc()
|
|
|
460 |
error_msg = f"Error: {str(e)}"
|
461 |
+
error_vis = [(error_msg, "Error")] # Use label
|
462 |
+
yield history, error_vis
|
|
|
|
|
|
|
463 |
|
|
|
464 |
def clear_conversation():
|
465 |
+
print("Clearing conversation."); return [], [], "", []
|
|
|
466 |
|
467 |
+
# --- Wire UI elements (Keep as before) ---
|
468 |
+
user_input.submit(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
|
469 |
+
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
|
470 |
|
471 |
+
send_btn.click(fn=user_message_submitted, inputs=[user_input, chat_history], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)\
|
472 |
+
.then(fn=bot_response_generator, inputs=[history, gen_length, steps, constraints_input, visualization_delay, temperature, top_p, remasking_strategy, alg_temp], outputs=[chatbot_ui, output_vis])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
473 |
|
474 |
+
clear_btn.click(fn=clear_conversation, inputs=[], outputs=[chat_history, chatbot_ui, user_input, output_vis], queue=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
475 |
|
476 |
return demo
|
477 |
|
|
|
480 |
print("Creating Gradio demo...")
|
481 |
demo = create_chatbot_demo()
|
482 |
print("Launching Gradio demo...")
|
483 |
+
demo.queue().launch(share=True, debug=True)
|
|
|
|