File size: 32,072 Bytes
ce90309
47fc4a0
ce90309
47fc4a0
f4ff30a
168a7c1
825e87d
47fc4a0
f4ff30a
 
4474e7a
 
 
badae07
4474e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
badae07
 
 
4474e7a
 
 
 
 
 
badae07
 
 
 
 
 
4474e7a
 
 
badae07
 
 
 
 
 
4474e7a
 
 
 
 
 
 
badae07
4474e7a
 
 
 
 
 
 
 
 
 
 
badae07
4474e7a
 
 
badae07
 
4474e7a
badae07
4474e7a
 
f4ff30a
badae07
f4ff30a
 
 
 
 
168a7c1
825e87d
168a7c1
 
 
f4ff30a
 
168a7c1
f4ff30a
 
825e87d
 
f4ff30a
4474e7a
badae07
f4ff30a
 
 
825e87d
f4ff30a
825e87d
4474e7a
 
 
 
 
 
 
 
 
 
 
 
 
f4ff30a
4474e7a
 
 
 
 
 
 
 
 
 
ce90309
 
f4ff30a
 
 
 
 
 
47fc4a0
 
f4ff30a
47fc4a0
 
 
4474e7a
47fc4a0
 
825e87d
47fc4a0
 
4474e7a
badae07
 
 
 
 
f4ff30a
 
 
badae07
4474e7a
47fc4a0
4474e7a
f4ff30a
ce90309
f4ff30a
 
 
badae07
f4ff30a
47fc4a0
168a7c1
f4ff30a
badae07
47fc4a0
825e87d
badae07
825e87d
f4ff30a
47fc4a0
 
 
4474e7a
 
 
 
 
 
 
badae07
 
 
4474e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4ff30a
 
 
4474e7a
f4ff30a
 
 
 
 
 
 
 
 
 
 
 
badae07
825e87d
f4ff30a
 
 
 
 
 
 
badae07
f4ff30a
825e87d
f4ff30a
 
 
 
badae07
825e87d
 
badae07
 
825e87d
f4ff30a
 
 
 
 
badae07
 
4474e7a
badae07
f4ff30a
4474e7a
 
 
 
 
badae07
4474e7a
badae07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4474e7a
 
badae07
 
4474e7a
 
badae07
 
 
4474e7a
 
 
 
 
 
 
 
 
 
badae07
4474e7a
 
 
 
 
 
badae07
 
4474e7a
 
 
badae07
 
4474e7a
 
badae07
 
 
4474e7a
 
 
badae07
4474e7a
badae07
 
4474e7a
 
 
 
 
 
 
 
 
badae07
4474e7a
 
 
 
 
 
 
 
badae07
4474e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
badae07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4474e7a
 
 
 
 
 
 
 
badae07
4474e7a
badae07
4474e7a
 
badae07
f4ff30a
4474e7a
badae07
 
4474e7a
 
 
f4ff30a
4474e7a
 
f4ff30a
4474e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
badae07
 
 
4474e7a
 
 
 
 
 
 
 
 
825e87d
 
f4ff30a
9b91020
4474e7a
 
825e87d
f4ff30a
 
badae07
f4ff30a
825e87d
4474e7a
ce90309
4474e7a
 
badae07
f4ff30a
4474e7a
badae07
f4ff30a
badae07
4474e7a
f4ff30a
 
 
 
badae07
 
 
4474e7a
 
 
badae07
 
ce90309
4474e7a
 
47fc4a0
4474e7a
 
 
 
 
 
f4ff30a
 
badae07
47fc4a0
 
f4ff30a
47fc4a0
 
168a7c1
ce90309
168a7c1
 
4474e7a
168a7c1
47fc4a0
4474e7a
47fc4a0
 
 
825e87d
 
 
f4ff30a
4474e7a
f4ff30a
ce90309
 
47fc4a0
 
ce90309
f4ff30a
 
825e87d
badae07
47fc4a0
f4ff30a
47fc4a0
f4ff30a
 
 
ce90309
47fc4a0
 
 
168a7c1
badae07
 
 
4474e7a
 
 
 
badae07
47fc4a0
 
ce90309
badae07
 
 
 
 
 
 
 
 
 
 
 
 
47fc4a0
ce90309
47fc4a0
4474e7a
f4ff30a
 
4474e7a
 
 
ce90309
825e87d
badae07
f4ff30a
5807c79
4474e7a
5807c79
 
 
4474e7a
5807c79
 
 
4474e7a
badae07
 
5807c79
 
badae07
 
5807c79
 
 
 
4474e7a
badae07
 
5807c79
 
badae07
4474e7a
5807c79
 
47fc4a0
f4ff30a
47fc4a0
4474e7a
825e87d
 
47fc4a0
 
f4ff30a
47fc4a0
ce90309
badae07
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import

# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
    """ Applies top-p filtering to logits. """
    if top_p is None or top_p >= 1.0:
        return logits
    sorted_logits, sorted_indices = torch.sort(logits, descending=True)
    cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
    sorted_indices_to_remove = cumulative_probs > top_p
    # Shift the indices to the right to keep the first token above the threshold
    sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
    sorted_indices_to_remove[..., 0] = 0

    mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
    mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
    logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
    return logits

def top_k_logits(logits, top_k=None):
    """ Applies top-k filtering to logits. """
    if top_k is None or top_k <= 0:
        return logits
    top_k = min(top_k, logits.size(-1))  # Safety check
    # Remove all tokens with a probability less than the last token of the top-k
    indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
    logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
    return logits

def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
    """ Samples tokens based on logits and calculates confidence. """
    if temperature > 0:
        # Prevent division by zero or negative temperatures
        safe_temp = max(temperature, 1e-6)
        logits = logits / safe_temp
    if top_p is not None and top_p < 1.0: # Apply top_p if valid
        logits = top_p_logits(logits, top_p)
    if top_k is not None and top_k > 0:    # Apply top_k if valid
        logits = top_k_logits(logits, top_k)

    # Ensure logits are not all -inf after filtering, if so, sample uniformly? Or handle error.
    # Add a check here: if all logits are -inf, assign uniform probability.
    is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
    if torch.any(is_all_neg_inf):
        # print("Warning: All logits became -inf after filtering. Assigning uniform probabilities.")
        uniform_logits = torch.zeros_like(logits)
        logits = torch.where(is_all_neg_inf, uniform_logits, logits)

    probs = torch.softmax(logits, dim=-1)

    # Clamp probabilities to avoid NaNs in sampling, ensure they sum to 1
    probs = torch.clamp(probs, min=0.0) # Ensure non-negative
    probs = probs / probs.sum(dim=-1, keepdim=True) # Re-normalize
    probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs


    if temperature > 0:
        try:
            x0 = dists.Categorical(probs=probs).sample()
            confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
        except Exception as e: # Catch broader exceptions during sampling
            print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
            confidence, x0 = probs.max(dim=-1)
    else: # Greedy decoding (temperature == 0)
        confidence, x0 = probs.max(dim=-1)

    if margin_confidence:
        sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
        # Ensure there are at least 2 probabilities to compare
        top1_probs = sorted_probs[..., 0]
        top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs # Handle case with only 1 possible token
        confidence = top1_probs - top2_probs

    if neg_entropy:
        epsilon = 1e-10
        # Ensure probs are > 0 for log
        log_probs = torch.log(probs + epsilon)
        confidence = torch.sum(probs * log_probs, dim=-1) # Should be negative entropy

    # Ensure confidence is not NaN
    confidence = torch.nan_to_num(confidence, nan=0.0)

    return confidence, x0
# --- END: Copied Helper functions ---


# [Keep model loading, constants, helper functions: parse_constraints, format_chat_history, apply_constraints_to_state]
# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
# Use AutoModel for the base model loading, relying on trust_remote_code=True
# for the custom DreamModel class and generation mixin.
model_path = "Dream-org/Dream-v0-Instruct-7B"

# Determine device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# Load model and tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
# Ensure torch_dtype is set appropriately for your hardware if needed
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA
    trust_remote_code=True,
    attn_implementation="sdpa" # Explicitly request SDPA if available/desired
)
model = model.to(device).eval()
print("Model loaded.")

# Constants from Dream's config/tokenizer
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id # Use tokenizer's mask_token_id directly
PAD_ID = tokenizer.pad_token_id # Use tokenizer's pad_token_id
EOS_ID = tokenizer.eos_token_id # Use tokenizer's eos_token_id

if MASK_ID is None:
    print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...")
    mask_token_special = tokenizer.mask_token
    if mask_token_special:
        MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special)
        print(f"Found MASK_ID from tokenizer: {MASK_ID}")
    else:
        raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")

SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
    IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
    IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
    SPECIAL_TOKEN_IDS.add(IM_START_ID)
    SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError:
    print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
    IM_START_ID = None
    IM_END_ID = None


# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
    """
    Parse constraints in format: 'position:word, position:word, ...'
    Returns a dictionary mapping the starting position (0-indexed from the start
    of the *generated* sequence) to a list of token IDs for the constraint word.
    """
    constraints = {}
    if not constraints_text:
        return constraints

    parts = constraints_text.split(',')
    for part in parts:
        part = part.strip() # Remove leading/trailing whitespace from the part itself
        if ':' not in part:
            continue
        pos_str, word = part.split(':', 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip() # Strip whitespace from word
            token_ids = []
            if word: # Only encode if word is not empty
                 # Add space prefix automatically if pos > 0 and word doesn't start with space
                text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
                token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)

            if token_ids and pos >= 0:
                constraints[pos] = token_ids
            elif not token_ids and word: # Don't warn for empty words after split
                print(f"Warning: Could not tokenize constraint word '{word}'")
        except ValueError:
            print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
            continue # Ignore malformed constraint parts
        except Exception as e:
            print(f"Warning: Error processing constraint '{part}': {e}")
            continue

    # print(f"Parsed constraints: {constraints}") # Debugging
    return constraints


def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
    """ Formats chat history for the template. """
    messages = []
    for user_msg, assistant_msg in history:
        if user_msg:
             messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    return messages

def apply_constraints_to_state(
    x: torch.Tensor,
    prompt_length: int,
    total_length: int,
    parsed_constraints: Dict[int, List[int]],
    current_step: Optional[int] = None # For logging/debugging
) -> torch.Tensor:
    """ Applies constraints directly to the state tensor `x`. """
    modified_x = x # Modify in place maybe okay? Let's stick with clone for safety.
    modified_x = x.clone()
    for rel_pos, word_token_ids in parsed_constraints.items():
        abs_start_pos = prompt_length + rel_pos
        abs_end_pos = abs_start_pos + len(word_token_ids)

        if abs_start_pos < total_length and abs_end_pos <= total_length:
            try:
                constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
                modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
            except IndexError:
                 print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
            except Exception as e:
                 print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
    return modified_x


# --- Core Generation Logic with Live Visualization ---

@spaces.GPU # Decorator for Hugging Face Spaces GPU usage
@torch.no_grad() # Ensure no gradients are computed during generation
def generate_dream_response(
    history: List[List[Optional[str]]],
    gen_length: int,
    steps: int,
    constraints_text: str,
    temperature: float,
    top_p: Optional[float],
    top_k: Optional[int],
    alg: str,
    alg_temp: Optional[float],
    visualization_delay: float
    ) -> List[Tuple[str, str]]:
    """ Generates text step-by-step and yields visualization states live. """

    if not history or not history[-1][0]:
        yield history, [("No input message found.", "red")], ""
        return

    # --- 1. Preparation ---
    last_user_message = history[-1][0]
    messages_for_template = format_chat_history(history) # Includes the latest user message
    parsed_constraints = parse_constraints(constraints_text)

    try:
        inputs = tokenizer.apply_chat_template(
            messages_for_template,
            return_tensors="pt",
            return_dict=True,
            add_generation_prompt=True
        )
        input_ids = inputs.input_ids.to(device)
        # Ensure prompt_attention_mask is also on the correct device
        prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
        prompt_length = input_ids.shape[1]
    except Exception as e:
        print(f"Error applying chat template: {e}")
        yield history, [("Error preparing input.", "red")], ""
        return

    eps = 1e-3
    top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None # Make sure top_p is > 0
    top_k_val = top_k if top_k is not None and top_k > 0 else None
    alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None # Ensure > 0

    # --- 2. Initialize Generation State ---
    total_length = prompt_length + gen_length
    initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
    x = torch.cat((input_ids, initial_generation_part), dim=1)

    # --- Prepare Attention Mask for SDPA ---
    generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
    full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) # Shape [B, N], dtype torch.long

    # Convert attention mask for SDPA: Needs float matching query dtype.
    # Where mask is 1 (attend), value should be 0.0. Where mask is 0 (don't attend), value should be -inf.
    attention_mask_for_model = full_attention_mask_long.to(model.dtype) # Convert to model's dtype (e.g., bfloat16)
    # Invert the mask logic: (1.0 - mask) gives 0s for attend, 1s for mask
    # Multiply by large negative number (min value for dtype) for masked positions
    large_neg_val = torch.finfo(model.dtype).min
    attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
    # Ensure the shape is broadcastable, SDPA usually handles [B, N] -> [B, H, N, N] if needed.
    # However, explicitly making it [B, 1, 1, N] or [B, 1, N, N] can be safer.
    # Let's try passing [B, N] first, if it fails, reshape.
    # Reshape to [B, 1, 1, N] which is commonly expected for additive masks by HF models
    attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
    # Now shape is [B, 1, 1, N]

    # --- Timesteps ---
    timesteps = torch.linspace(1, eps, steps + 1, device=device)

    # Apply initial constraints
    x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)

    # --- 3. Visualization Setup ---
    previous_tokens_vis = None
    final_response_text = ""
    history_copy = [list(item) for item in history] # Mutable copy

    # --- 4. Initial Yield (Masked State) ---
    initial_generated_tokens = x[0, prompt_length:].cpu()
    vis_data_initial = []
    for tok_id in initial_generated_tokens.tolist():
        display_token = MASK_TOKEN
        color = "#444444" # Dark Gray for masks
        vis_data_initial.append((display_token, color))

    previous_tokens_vis = initial_generated_tokens
    yield history_copy, vis_data_initial, ""
    time.sleep(visualization_delay)

    # --- 5. Step-by-Step Diffusion Loop ---
    try:
        start_time = time.time()
        for i in range(steps):
            mask_index = (x == MASK_ID)
            if not mask_index.any():
                 print(f"No mask tokens left at step {i}. Stopping early.")
                 break

            # --- Model Forward Pass ---
            # Pass the correctly formatted float mask
            outputs = model(
                input_ids=x,
                attention_mask=attention_mask_for_model, # Pass the [B, 1, 1, N] float mask
                position_ids=None,
                use_cache=False,
                return_dict=True
            )
            logits = outputs.logits
            logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits

            mask_logits = logits[mask_index]
            if mask_logits.numel() == 0:
                 print(f"No masked tokens found for logit selection at step {i}. Stopping.")
                 break

            # --- Sampling / Remasking Logic ---
            t = timesteps[i]
            s = timesteps[i + 1]
            x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)

            if alg == 'origin':
                p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
                num_masked = mask_logits.shape[0]
                transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
                logits_to_sample = mask_logits[transfer_indices_relative]

                if logits_to_sample.numel() > 0:
                    _, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
                    x_new_masked_part[transfer_indices_relative] = sampled_tokens

            else: # Confidence-based algorithms
                use_margin = (alg == 'topk_margin')
                use_entropy = (alg == 'entropy')
                confidence, x0_candidates = sample_tokens(
                    mask_logits,
                    temperature=temperature,
                    top_p=top_p_val,
                    top_k=top_k_val,
                    margin_confidence=use_margin,
                    neg_entropy=use_entropy
                )

                num_mask_token = mask_logits.shape[0]
                target_num_revealed_float = num_mask_token * (1.0 - s / t)
                number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token

                if number_transfer_tokens > 0:
                    num_samples = min(number_transfer_tokens, num_mask_token) # Ensure k <= num_mask_token
                    if num_samples > 0: # Proceed only if we need to sample > 0 tokens
                        if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
                            sort_metric = confidence if alg != 'entropy' else -confidence # Lower entropy = higher confidence
                            # Ensure k is not greater than the number of elements
                            k_topk = min(num_samples, sort_metric.numel())
                            if k_topk > 0:
                                _, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
                            else:
                                transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)

                        else: # Sample based on confidence temperature
                            # Ensure confidence has elements before processing
                            if confidence.numel() > 0:
                                conf_probs = confidence / alg_temp_val
                                # Handle potential inf/-inf before softmax, ensure non-negative probabilities
                                conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9) # Use large numbers instead of inf
                                conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) # Prevent large positive values leading to inf in exp
                                conf_probs = F.softmax(conf_probs, dim=-1)
                                conf_probs = torch.clamp(conf_probs, min=0.0) # Ensure non-negative
                                conf_probs = torch.nan_to_num(conf_probs, nan=0.0) # Handle NaNs

                                # Normalize probabilities if they don't sum to 1
                                prob_sum = conf_probs.sum()
                                if not torch.isclose(prob_sum, torch.tensor(1.0, device=device), atol=1e-4) and prob_sum > 0:
                                    # print(f"Warning step {i}: Confidence probabilities sum {prob_sum:.4f} != 1. Re-normalizing.")
                                    conf_probs = conf_probs / prob_sum

                                if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(conf_probs.sum(), torch.tensor(1.0, device=device)):
                                    try:
                                        transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
                                    except RuntimeError as e:
                                        print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
                                        sort_metric = confidence if alg != 'entropy' else -confidence
                                        k_multinomial_fallback = min(num_samples, sort_metric.numel())
                                        if k_multinomial_fallback > 0:
                                             _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
                                        else:
                                             transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
                                else: # Handle cases where multinomial is not possible
                                    # print(f"Warning step {i}: Invalid probabilities for multinomial sampling. Falling back to top-k.")
                                    sort_metric = confidence if alg != 'entropy' else -confidence
                                    k_multinomial_fallback = min(num_samples, sort_metric.numel())
                                    if k_multinomial_fallback > 0:
                                        _, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
                                    else:
                                        transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
                            else: # No confidence values to sample from
                                 transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)

                        # Apply the transfer
                        if transfer_indices_relative.numel() > 0:
                             # Ensure indices are within bounds of x0_candidates
                             valid_indices = transfer_indices_relative < x0_candidates.shape[0]
                             valid_transfer_indices = transfer_indices_relative[valid_indices]

                             if valid_transfer_indices.numel() > 0:
                                  # Ensure indices are also within bounds of x_new_masked_part
                                  if valid_transfer_indices.max() < x_new_masked_part.shape[0]:
                                       x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
                                  else:
                                       print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")

            # Update the global state `x` only at the masked positions
            x[mask_index] = x_new_masked_part

            # --- Apply Constraints ---
            x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)

            # --- Yield Visualization ---
            current_generated_tokens = x[0, prompt_length:].cpu()
            vis_data = []
            # [Keep visualization formatting logic the same]
            for j in range(gen_length):
                current_tok_id = current_generated_tokens[j].item()
                previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID

                try:
                    # Use replace to handle potential bytes rendering issues
                    decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
                    display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
                except Exception:
                    display_token = f"[ID:{current_tok_id}]" # Fallback

                color = None
                token_to_display = display_token

                if current_tok_id == MASK_ID:
                    color = "#444444" # Dark Gray for masks
                elif previous_tok_id == MASK_ID: # Token was just revealed
                    color = "#66CC66" # Light Green
                else: # Token was already revealed
                    color = "#6699CC" # Light Blue

                should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
                              (EOS_ID is not None and current_tok_id == EOS_ID)
                if should_hide and previous_tok_id == current_tok_id:
                    token_to_display = "" # Hide by making empty
                    color = None # No color for hidden

                if token_to_display:
                    vis_data.append((token_to_display, color))

            previous_tokens_vis = current_generated_tokens # Update for next step

            intermediate_response_tokens = x[0, prompt_length:]
            intermediate_response_text = tokenizer.decode(
                intermediate_response_tokens,
                skip_special_tokens=True,
                clean_up_tokenization_spaces=True
            ).strip()

            yield history_copy, vis_data, intermediate_response_text
            time.sleep(visualization_delay)

        end_time = time.time()
        print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")

        # --- 6. Final Processing & Yield ---
        final_sequence = x[0]
        response_tokens = final_sequence[prompt_length:]
        final_response_text = tokenizer.decode(
            response_tokens,
            skip_special_tokens=True,
            clean_up_tokenization_spaces=True
        ).strip()
        history_copy[-1][1] = final_response_text

        final_generated_tokens = x[0, prompt_length:].cpu()
        vis_data_final = []
        # [Keep final visualization formatting logic the same]
        for j in range(gen_length):
            current_tok_id = final_generated_tokens[j].item()
            previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
            try:
                decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
                display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
            except Exception:
                display_token = f"[ID:{current_tok_id}]" # Fallback
            color = None
            token_to_display = display_token
            if current_tok_id == MASK_ID: color = "#444444"
            elif previous_tok_id == MASK_ID: color = "#66CC66"
            else: color = "#6699CC"
            should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
                          (EOS_ID is not None and current_tok_id == EOS_ID)
            if should_hide and previous_tok_id == current_tok_id:
                 token_to_display = ""; color = None
            if token_to_display: vis_data_final.append((token_to_display, color))

        yield history_copy, vis_data_final, final_response_text
        print("Visualization streaming complete.")

    except Exception as e:
        print(f"Error during generation or processing: {e}")
        import traceback
        traceback.print_exc()
        yield history_copy, [("Error during generation.", "red")], ""
        return


# --- Gradio UI (No changes needed here) ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
        gr.Markdown(
            "[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
            "[[Blog](https://hkunlp.github.io/blog/2025/dream/)]" # Note: Link might be hypothetical
        )

        _chat_history_store = gr.State([]) # Hidden state to store actual history list

        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(
                    label="Conversation",
                    height=500,
                    show_copy_button=True,
                    bubble_full_width=False,
                )
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message",
                            placeholder="Type your message here...",
                            scale=7,
                            autofocus=True,
                            show_label=False,
                            container=False
                        )
                        send_btn = gr.Button("Send", scale=1, variant="primary")
                constraints_input = gr.Textbox(
                    label="Word Constraints (Optional)",
                    info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
                    placeholder="0:Hello, 10:world",
                    value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=True,
                    show_legend=False,
                    interactive=False
                )
                response_text_display = gr.Textbox(
                    label="Generated Response",
                    interactive=False,
                    lines=5
                )

        with gr.Accordion("Generation Settings", open=False):
             with gr.Row():
                gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
                steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
             with gr.Row():
                temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
                alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
             with gr.Row():
                top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
                top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
             with gr.Row():
                 remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
             with gr.Row():
                visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")

        clear_btn = gr.Button("Clear Conversation")

        def add_user_message_to_history(message: str, history_store: List[List[Optional[str]]]):
            if not message.strip():
                gr.Warning("Please enter a message.")
                return history_store, history_store, "", [], ""
            history_store.append([message, None])
            return history_store, history_store, "", [], ""

        def clear_conversation():
            return [], [], "", [], ""

        generation_inputs = [
            _chat_history_store, gen_length, steps, constraints_input,
            temperature, top_p, top_k, remasking_strategy, alg_temp,
            visualization_delay
        ]
        generation_outputs = [chatbot_ui, output_vis, response_text_display]

        submit_listener = user_input.submit(
            fn=add_user_message_to_history,
            inputs=[user_input, _chat_history_store],
            outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
        ).then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs,
            show_progress="hidden"
        )

        click_listener = send_btn.click(
            fn=add_user_message_to_history,
            inputs=[user_input, _chat_history_store],
            outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
        ).then(
            fn=generate_dream_response,
            inputs=generation_inputs,
            outputs=generation_outputs,
            show_progress="hidden"
        )

        clear_btn.click(
            clear_conversation,
            inputs=[],
            outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
        )

    return demo

# --- Launch ---
if __name__ == "__main__":
    demo = create_chatbot_demo()
    demo.queue().launch(debug=True, share=False)