Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,072 Bytes
ce90309 47fc4a0 ce90309 47fc4a0 f4ff30a 168a7c1 825e87d 47fc4a0 f4ff30a 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a f4ff30a badae07 f4ff30a 168a7c1 825e87d 168a7c1 f4ff30a 168a7c1 f4ff30a 825e87d f4ff30a 4474e7a badae07 f4ff30a 825e87d f4ff30a 825e87d 4474e7a f4ff30a 4474e7a ce90309 f4ff30a 47fc4a0 f4ff30a 47fc4a0 4474e7a 47fc4a0 825e87d 47fc4a0 4474e7a badae07 f4ff30a badae07 4474e7a 47fc4a0 4474e7a f4ff30a ce90309 f4ff30a badae07 f4ff30a 47fc4a0 168a7c1 f4ff30a badae07 47fc4a0 825e87d badae07 825e87d f4ff30a 47fc4a0 4474e7a badae07 4474e7a f4ff30a 4474e7a f4ff30a badae07 825e87d f4ff30a badae07 f4ff30a 825e87d f4ff30a badae07 825e87d badae07 825e87d f4ff30a badae07 4474e7a badae07 f4ff30a 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 4474e7a badae07 f4ff30a 4474e7a badae07 4474e7a f4ff30a 4474e7a f4ff30a 4474e7a badae07 4474e7a 825e87d f4ff30a 9b91020 4474e7a 825e87d f4ff30a badae07 f4ff30a 825e87d 4474e7a ce90309 4474e7a badae07 f4ff30a 4474e7a badae07 f4ff30a badae07 4474e7a f4ff30a badae07 4474e7a badae07 ce90309 4474e7a 47fc4a0 4474e7a f4ff30a badae07 47fc4a0 f4ff30a 47fc4a0 168a7c1 ce90309 168a7c1 4474e7a 168a7c1 47fc4a0 4474e7a 47fc4a0 825e87d f4ff30a 4474e7a f4ff30a ce90309 47fc4a0 ce90309 f4ff30a 825e87d badae07 47fc4a0 f4ff30a 47fc4a0 f4ff30a ce90309 47fc4a0 168a7c1 badae07 4474e7a badae07 47fc4a0 ce90309 badae07 47fc4a0 ce90309 47fc4a0 4474e7a f4ff30a 4474e7a ce90309 825e87d badae07 f4ff30a 5807c79 4474e7a 5807c79 4474e7a 5807c79 4474e7a badae07 5807c79 badae07 5807c79 4474e7a badae07 5807c79 badae07 4474e7a 5807c79 47fc4a0 f4ff30a 47fc4a0 4474e7a 825e87d 47fc4a0 f4ff30a 47fc4a0 ce90309 badae07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces # Ensure spaces is installed if needed for GPU decorator
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import re
from typing import List, Dict, Tuple, Optional
import torch.distributions as dists # Added import
# --- START: Copied Helper functions from generation_utils.py ---
# [Keep the copied functions: top_p_logits, top_k_logits, sample_tokens]
def top_p_logits(logits, top_p=None):
""" Applies top-p filtering to logits. """
if top_p is None or top_p >= 1.0:
return logits
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
mask = torch.zeros_like(logits, dtype=torch.bool, device=logits.device)
mask = mask.scatter_(-1, sorted_indices, sorted_indices_to_remove)
logits = logits.masked_fill(mask, torch.finfo(logits.dtype).min)
return logits
def top_k_logits(logits, top_k=None):
""" Applies top-k filtering to logits. """
if top_k is None or top_k <= 0:
return logits
top_k = min(top_k, logits.size(-1)) # Safety check
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits = logits.masked_fill(indices_to_remove, torch.finfo(logits.dtype).min)
return logits
def sample_tokens(logits, temperature=0.0, top_p=None, top_k=None, margin_confidence=False, neg_entropy=False):
""" Samples tokens based on logits and calculates confidence. """
if temperature > 0:
# Prevent division by zero or negative temperatures
safe_temp = max(temperature, 1e-6)
logits = logits / safe_temp
if top_p is not None and top_p < 1.0: # Apply top_p if valid
logits = top_p_logits(logits, top_p)
if top_k is not None and top_k > 0: # Apply top_k if valid
logits = top_k_logits(logits, top_k)
# Ensure logits are not all -inf after filtering, if so, sample uniformly? Or handle error.
# Add a check here: if all logits are -inf, assign uniform probability.
is_all_neg_inf = torch.all(logits == torch.finfo(logits.dtype).min, dim=-1, keepdim=True)
if torch.any(is_all_neg_inf):
# print("Warning: All logits became -inf after filtering. Assigning uniform probabilities.")
uniform_logits = torch.zeros_like(logits)
logits = torch.where(is_all_neg_inf, uniform_logits, logits)
probs = torch.softmax(logits, dim=-1)
# Clamp probabilities to avoid NaNs in sampling, ensure they sum to 1
probs = torch.clamp(probs, min=0.0) # Ensure non-negative
probs = probs / probs.sum(dim=-1, keepdim=True) # Re-normalize
probs = torch.nan_to_num(probs, nan=0.0) # Handle any remaining NaNs
if temperature > 0:
try:
x0 = dists.Categorical(probs=probs).sample()
confidence = torch.gather(probs, -1, x0.unsqueeze(-1)).squeeze(-1)
except Exception as e: # Catch broader exceptions during sampling
print(f"Warning: Error during Categorical sampling: {e}. Falling back to argmax.")
confidence, x0 = probs.max(dim=-1)
else: # Greedy decoding (temperature == 0)
confidence, x0 = probs.max(dim=-1)
if margin_confidence:
sorted_probs, _ = torch.sort(probs, dim=-1, descending=True)
# Ensure there are at least 2 probabilities to compare
top1_probs = sorted_probs[..., 0]
top2_probs = sorted_probs[..., 1] if sorted_probs.shape[-1] > 1 else top1_probs # Handle case with only 1 possible token
confidence = top1_probs - top2_probs
if neg_entropy:
epsilon = 1e-10
# Ensure probs are > 0 for log
log_probs = torch.log(probs + epsilon)
confidence = torch.sum(probs * log_probs, dim=-1) # Should be negative entropy
# Ensure confidence is not NaN
confidence = torch.nan_to_num(confidence, nan=0.0)
return confidence, x0
# --- END: Copied Helper functions ---
# [Keep model loading, constants, helper functions: parse_constraints, format_chat_history, apply_constraints_to_state]
# Load model configuration to get special token IDs
config = AutoConfig.from_pretrained("Dream-org/Dream-v0-Instruct-7B", trust_remote_code=True)
# Use AutoModel for the base model loading, relying on trust_remote_code=True
# for the custom DreamModel class and generation mixin.
model_path = "Dream-org/Dream-v0-Instruct-7B"
# Determine device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")
# Load model and tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
print("Loading model...")
# Ensure torch_dtype is set appropriately for your hardware if needed
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16 if device == 'cuda' else torch.float32, # Use bfloat16 only on CUDA
trust_remote_code=True,
attn_implementation="sdpa" # Explicitly request SDPA if available/desired
)
model = model.to(device).eval()
print("Model loaded.")
# Constants from Dream's config/tokenizer
MASK_TOKEN = tokenizer.mask_token
MASK_ID = tokenizer.mask_token_id # Use tokenizer's mask_token_id directly
PAD_ID = tokenizer.pad_token_id # Use tokenizer's pad_token_id
EOS_ID = tokenizer.eos_token_id # Use tokenizer's eos_token_id
if MASK_ID is None:
print("Warning: Mask token ID not found in config/tokenizer. Trying to fetch from tokenizer...")
mask_token_special = tokenizer.mask_token
if mask_token_special:
MASK_ID = tokenizer.convert_tokens_to_ids(mask_token_special)
print(f"Found MASK_ID from tokenizer: {MASK_ID}")
else:
raise ValueError("Cannot determine MASK_ID. Check model's tokenizer configuration.")
SPECIAL_TOKEN_IDS = {PAD_ID, EOS_ID, MASK_ID}
try:
IM_START_ID = tokenizer.convert_tokens_to_ids("<|im_start|>")
IM_END_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
SPECIAL_TOKEN_IDS.add(IM_START_ID)
SPECIAL_TOKEN_IDS.add(IM_END_ID)
except KeyError:
print("Warning: <|im_start|> or <|im_end|> not found in tokenizer vocab.")
IM_START_ID = None
IM_END_ID = None
# --- Helper Functions ---
def parse_constraints(constraints_text: str) -> Dict[int, List[int]]:
"""
Parse constraints in format: 'position:word, position:word, ...'
Returns a dictionary mapping the starting position (0-indexed from the start
of the *generated* sequence) to a list of token IDs for the constraint word.
"""
constraints = {}
if not constraints_text:
return constraints
parts = constraints_text.split(',')
for part in parts:
part = part.strip() # Remove leading/trailing whitespace from the part itself
if ':' not in part:
continue
pos_str, word = part.split(':', 1)
try:
pos = int(pos_str.strip())
word = word.strip() # Strip whitespace from word
token_ids = []
if word: # Only encode if word is not empty
# Add space prefix automatically if pos > 0 and word doesn't start with space
text_to_encode = (" " + word) if (pos > 0 and not word.startswith(" ")) else word
token_ids = tokenizer.encode(text_to_encode, add_special_tokens=False)
if token_ids and pos >= 0:
constraints[pos] = token_ids
elif not token_ids and word: # Don't warn for empty words after split
print(f"Warning: Could not tokenize constraint word '{word}'")
except ValueError:
print(f"Warning: Invalid position '{pos_str}' in constraint part '{part}'")
continue # Ignore malformed constraint parts
except Exception as e:
print(f"Warning: Error processing constraint '{part}': {e}")
continue
# print(f"Parsed constraints: {constraints}") # Debugging
return constraints
def format_chat_history(history: List[List[Optional[str]]]) -> List[Dict[str, str]]:
""" Formats chat history for the template. """
messages = []
for user_msg, assistant_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
return messages
def apply_constraints_to_state(
x: torch.Tensor,
prompt_length: int,
total_length: int,
parsed_constraints: Dict[int, List[int]],
current_step: Optional[int] = None # For logging/debugging
) -> torch.Tensor:
""" Applies constraints directly to the state tensor `x`. """
modified_x = x # Modify in place maybe okay? Let's stick with clone for safety.
modified_x = x.clone()
for rel_pos, word_token_ids in parsed_constraints.items():
abs_start_pos = prompt_length + rel_pos
abs_end_pos = abs_start_pos + len(word_token_ids)
if abs_start_pos < total_length and abs_end_pos <= total_length:
try:
constraint_tensor = torch.tensor(word_token_ids, dtype=torch.long, device=modified_x.device)
modified_x[0, abs_start_pos:abs_end_pos] = constraint_tensor
except IndexError:
print(f"Warning (Step {current_step}): Constraint at {rel_pos} ('{tokenizer.decode(word_token_ids)}') goes out of bounds.")
except Exception as e:
print(f"Warning (Step {current_step}): Failed to apply constraint at {rel_pos}: {e}")
return modified_x
# --- Core Generation Logic with Live Visualization ---
@spaces.GPU # Decorator for Hugging Face Spaces GPU usage
@torch.no_grad() # Ensure no gradients are computed during generation
def generate_dream_response(
history: List[List[Optional[str]]],
gen_length: int,
steps: int,
constraints_text: str,
temperature: float,
top_p: Optional[float],
top_k: Optional[int],
alg: str,
alg_temp: Optional[float],
visualization_delay: float
) -> List[Tuple[str, str]]:
""" Generates text step-by-step and yields visualization states live. """
if not history or not history[-1][0]:
yield history, [("No input message found.", "red")], ""
return
# --- 1. Preparation ---
last_user_message = history[-1][0]
messages_for_template = format_chat_history(history) # Includes the latest user message
parsed_constraints = parse_constraints(constraints_text)
try:
inputs = tokenizer.apply_chat_template(
messages_for_template,
return_tensors="pt",
return_dict=True,
add_generation_prompt=True
)
input_ids = inputs.input_ids.to(device)
# Ensure prompt_attention_mask is also on the correct device
prompt_attention_mask = inputs.attention_mask.to(device) if 'attention_mask' in inputs else torch.ones_like(input_ids)
prompt_length = input_ids.shape[1]
except Exception as e:
print(f"Error applying chat template: {e}")
yield history, [("Error preparing input.", "red")], ""
return
eps = 1e-3
top_p_val = top_p if top_p is not None and 0.0 < top_p < 1.0 else None # Make sure top_p is > 0
top_k_val = top_k if top_k is not None and top_k > 0 else None
alg_temp_val = alg_temp if alg in ['maskgit_plus', 'topk_margin', 'entropy'] and alg_temp is not None and alg_temp > 0 else None # Ensure > 0
# --- 2. Initialize Generation State ---
total_length = prompt_length + gen_length
initial_generation_part = torch.full((1, gen_length), MASK_ID, dtype=torch.long, device=device)
x = torch.cat((input_ids, initial_generation_part), dim=1)
# --- Prepare Attention Mask for SDPA ---
generation_attention_mask = torch.ones((1, gen_length), dtype=torch.long, device=device)
full_attention_mask_long = torch.cat((prompt_attention_mask, generation_attention_mask), dim=1) # Shape [B, N], dtype torch.long
# Convert attention mask for SDPA: Needs float matching query dtype.
# Where mask is 1 (attend), value should be 0.0. Where mask is 0 (don't attend), value should be -inf.
attention_mask_for_model = full_attention_mask_long.to(model.dtype) # Convert to model's dtype (e.g., bfloat16)
# Invert the mask logic: (1.0 - mask) gives 0s for attend, 1s for mask
# Multiply by large negative number (min value for dtype) for masked positions
large_neg_val = torch.finfo(model.dtype).min
attention_mask_for_model = (1.0 - attention_mask_for_model) * large_neg_val
# Ensure the shape is broadcastable, SDPA usually handles [B, N] -> [B, H, N, N] if needed.
# However, explicitly making it [B, 1, 1, N] or [B, 1, N, N] can be safer.
# Let's try passing [B, N] first, if it fails, reshape.
# Reshape to [B, 1, 1, N] which is commonly expected for additive masks by HF models
attention_mask_for_model = attention_mask_for_model.unsqueeze(1).unsqueeze(2)
# Now shape is [B, 1, 1, N]
# --- Timesteps ---
timesteps = torch.linspace(1, eps, steps + 1, device=device)
# Apply initial constraints
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=-1)
# --- 3. Visualization Setup ---
previous_tokens_vis = None
final_response_text = ""
history_copy = [list(item) for item in history] # Mutable copy
# --- 4. Initial Yield (Masked State) ---
initial_generated_tokens = x[0, prompt_length:].cpu()
vis_data_initial = []
for tok_id in initial_generated_tokens.tolist():
display_token = MASK_TOKEN
color = "#444444" # Dark Gray for masks
vis_data_initial.append((display_token, color))
previous_tokens_vis = initial_generated_tokens
yield history_copy, vis_data_initial, ""
time.sleep(visualization_delay)
# --- 5. Step-by-Step Diffusion Loop ---
try:
start_time = time.time()
for i in range(steps):
mask_index = (x == MASK_ID)
if not mask_index.any():
print(f"No mask tokens left at step {i}. Stopping early.")
break
# --- Model Forward Pass ---
# Pass the correctly formatted float mask
outputs = model(
input_ids=x,
attention_mask=attention_mask_for_model, # Pass the [B, 1, 1, N] float mask
position_ids=None,
use_cache=False,
return_dict=True
)
logits = outputs.logits
logits = torch.cat([logits[:,:1], logits[:, :-1]], dim=1) # Align logits
mask_logits = logits[mask_index]
if mask_logits.numel() == 0:
print(f"No masked tokens found for logit selection at step {i}. Stopping.")
break
# --- Sampling / Remasking Logic ---
t = timesteps[i]
s = timesteps[i + 1]
x_new_masked_part = torch.full_like(x[mask_index], MASK_ID, device=device, dtype=torch.long)
if alg == 'origin':
p_transfer = (1.0 - s / t) if i < steps - 1 else 1.0
num_masked = mask_logits.shape[0]
transfer_indices_relative = torch.rand(num_masked, device=device) < p_transfer
logits_to_sample = mask_logits[transfer_indices_relative]
if logits_to_sample.numel() > 0:
_, sampled_tokens = sample_tokens(logits_to_sample, temperature=temperature, top_p=top_p_val, top_k=top_k_val)
x_new_masked_part[transfer_indices_relative] = sampled_tokens
else: # Confidence-based algorithms
use_margin = (alg == 'topk_margin')
use_entropy = (alg == 'entropy')
confidence, x0_candidates = sample_tokens(
mask_logits,
temperature=temperature,
top_p=top_p_val,
top_k=top_k_val,
margin_confidence=use_margin,
neg_entropy=use_entropy
)
num_mask_token = mask_logits.shape[0]
target_num_revealed_float = num_mask_token * (1.0 - s / t)
number_transfer_tokens = int(target_num_revealed_float) if i < steps - 1 else num_mask_token
if number_transfer_tokens > 0:
num_samples = min(number_transfer_tokens, num_mask_token) # Ensure k <= num_mask_token
if num_samples > 0: # Proceed only if we need to sample > 0 tokens
if alg_temp_val is None or alg_temp_val <= 0: # Top-k confidence
sort_metric = confidence if alg != 'entropy' else -confidence # Lower entropy = higher confidence
# Ensure k is not greater than the number of elements
k_topk = min(num_samples, sort_metric.numel())
if k_topk > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_topk)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # Sample based on confidence temperature
# Ensure confidence has elements before processing
if confidence.numel() > 0:
conf_probs = confidence / alg_temp_val
# Handle potential inf/-inf before softmax, ensure non-negative probabilities
conf_probs = torch.nan_to_num(conf_probs, nan=0.0, posinf=1e9, neginf=-1e9) # Use large numbers instead of inf
conf_probs = torch.clamp(conf_probs - conf_probs.max(), min=-30) # Prevent large positive values leading to inf in exp
conf_probs = F.softmax(conf_probs, dim=-1)
conf_probs = torch.clamp(conf_probs, min=0.0) # Ensure non-negative
conf_probs = torch.nan_to_num(conf_probs, nan=0.0) # Handle NaNs
# Normalize probabilities if they don't sum to 1
prob_sum = conf_probs.sum()
if not torch.isclose(prob_sum, torch.tensor(1.0, device=device), atol=1e-4) and prob_sum > 0:
# print(f"Warning step {i}: Confidence probabilities sum {prob_sum:.4f} != 1. Re-normalizing.")
conf_probs = conf_probs / prob_sum
if conf_probs.numel() > 0 and num_samples > 0 and torch.all(conf_probs >= 0) and torch.isclose(conf_probs.sum(), torch.tensor(1.0, device=device)):
try:
transfer_indices_relative = torch.multinomial(conf_probs, num_samples=num_samples, replacement=False)
except RuntimeError as e:
print(f"Warning step {i}: Multinomial sampling failed ('{e}'). Falling back to top-k.")
sort_metric = confidence if alg != 'entropy' else -confidence
k_multinomial_fallback = min(num_samples, sort_metric.numel())
if k_multinomial_fallback > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # Handle cases where multinomial is not possible
# print(f"Warning step {i}: Invalid probabilities for multinomial sampling. Falling back to top-k.")
sort_metric = confidence if alg != 'entropy' else -confidence
k_multinomial_fallback = min(num_samples, sort_metric.numel())
if k_multinomial_fallback > 0:
_, transfer_indices_relative = torch.topk(sort_metric, k=k_multinomial_fallback)
else:
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
else: # No confidence values to sample from
transfer_indices_relative = torch.tensor([], dtype=torch.long, device=device)
# Apply the transfer
if transfer_indices_relative.numel() > 0:
# Ensure indices are within bounds of x0_candidates
valid_indices = transfer_indices_relative < x0_candidates.shape[0]
valid_transfer_indices = transfer_indices_relative[valid_indices]
if valid_transfer_indices.numel() > 0:
# Ensure indices are also within bounds of x_new_masked_part
if valid_transfer_indices.max() < x_new_masked_part.shape[0]:
x_new_masked_part[valid_transfer_indices] = x0_candidates[valid_transfer_indices].clone()
else:
print(f"Warning step {i}: transfer_indices out of bounds for x_new_masked_part.")
# Update the global state `x` only at the masked positions
x[mask_index] = x_new_masked_part
# --- Apply Constraints ---
x = apply_constraints_to_state(x, prompt_length, total_length, parsed_constraints, current_step=i)
# --- Yield Visualization ---
current_generated_tokens = x[0, prompt_length:].cpu()
vis_data = []
# [Keep visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = current_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
# Use replace to handle potential bytes rendering issues
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception:
display_token = f"[ID:{current_tok_id}]" # Fallback
color = None
token_to_display = display_token
if current_tok_id == MASK_ID:
color = "#444444" # Dark Gray for masks
elif previous_tok_id == MASK_ID: # Token was just revealed
color = "#66CC66" # Light Green
else: # Token was already revealed
color = "#6699CC" # Light Blue
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
(EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id:
token_to_display = "" # Hide by making empty
color = None # No color for hidden
if token_to_display:
vis_data.append((token_to_display, color))
previous_tokens_vis = current_generated_tokens # Update for next step
intermediate_response_tokens = x[0, prompt_length:]
intermediate_response_text = tokenizer.decode(
intermediate_response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
yield history_copy, vis_data, intermediate_response_text
time.sleep(visualization_delay)
end_time = time.time()
print(f"Dream generation finished in {end_time - start_time:.2f} seconds.")
# --- 6. Final Processing & Yield ---
final_sequence = x[0]
response_tokens = final_sequence[prompt_length:]
final_response_text = tokenizer.decode(
response_tokens,
skip_special_tokens=True,
clean_up_tokenization_spaces=True
).strip()
history_copy[-1][1] = final_response_text
final_generated_tokens = x[0, prompt_length:].cpu()
vis_data_final = []
# [Keep final visualization formatting logic the same]
for j in range(gen_length):
current_tok_id = final_generated_tokens[j].item()
previous_tok_id = previous_tokens_vis[j].item() if previous_tokens_vis is not None and j < len(previous_tokens_vis) else MASK_ID
try:
decoded_token = tokenizer.decode([current_tok_id], skip_special_tokens=False, clean_up_tokenization_spaces=False)
display_token = MASK_TOKEN if current_tok_id == MASK_ID else decoded_token
except Exception:
display_token = f"[ID:{current_tok_id}]" # Fallback
color = None
token_to_display = display_token
if current_tok_id == MASK_ID: color = "#444444"
elif previous_tok_id == MASK_ID: color = "#66CC66"
else: color = "#6699CC"
should_hide = (PAD_ID is not None and current_tok_id == PAD_ID) or \
(EOS_ID is not None and current_tok_id == EOS_ID)
if should_hide and previous_tok_id == current_tok_id:
token_to_display = ""; color = None
if token_to_display: vis_data_final.append((token_to_display, color))
yield history_copy, vis_data_final, final_response_text
print("Visualization streaming complete.")
except Exception as e:
print(f"Error during generation or processing: {e}")
import traceback
traceback.print_exc()
yield history_copy, [("Error during generation.", "red")], ""
return
# --- Gradio UI (No changes needed here) ---
css = '''
.category-legend{display:none}
button{min-height: 60px}
'''
def create_chatbot_demo():
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
gr.Markdown(
"[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
"[[Blog](https://hkunlp.github.io/blog/2025/dream/)]" # Note: Link might be hypothetical
)
_chat_history_store = gr.State([]) # Hidden state to store actual history list
with gr.Row():
with gr.Column(scale=3):
chatbot_ui = gr.Chatbot(
label="Conversation",
height=500,
show_copy_button=True,
bubble_full_width=False,
)
with gr.Group():
with gr.Row():
user_input = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
scale=7,
autofocus=True,
show_label=False,
container=False
)
send_btn = gr.Button("Send", scale=1, variant="primary")
constraints_input = gr.Textbox(
label="Word Constraints (Optional)",
info="Place words at specific positions (0-indexed from start of generation). Format: 'pos:word, pos:word,...'. Example: '0:Once, 5:upon, 10:time'",
placeholder="0:Hello, 10:world",
value=""
)
with gr.Column(scale=2):
output_vis = gr.HighlightedText(
label="Denoising Process Visualization",
combine_adjacent=True,
show_legend=False,
interactive=False
)
response_text_display = gr.Textbox(
label="Generated Response",
interactive=False,
lines=5
)
with gr.Accordion("Generation Settings", open=False):
with gr.Row():
gen_length = gr.Slider(minimum=16, maximum=512, value=128, step=8, label="Max New Tokens")
steps = gr.Slider(minimum=8, maximum=512, value=128, step=8, label="Diffusion Steps")
with gr.Row():
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.4, step=0.05, label="Temperature (0 = greedy)")
alg_temp = gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.05, label="Remasking Temp (Confidence Algs)")
with gr.Row():
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.05, label="Top-P (0 disables)")
top_k = gr.Slider(minimum=0, maximum=200, value=0, step=5, label="Top-K (0 disables)")
with gr.Row():
remasking_strategy = gr.Radio(choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'], value='entropy', label="Remasking Strategy (Algorithm)")
with gr.Row():
visualization_delay = gr.Slider(minimum=0.0, maximum=0.5, value=0.03, step=0.01, label="Visualization Delay (seconds)")
clear_btn = gr.Button("Clear Conversation")
def add_user_message_to_history(message: str, history_store: List[List[Optional[str]]]):
if not message.strip():
gr.Warning("Please enter a message.")
return history_store, history_store, "", [], ""
history_store.append([message, None])
return history_store, history_store, "", [], ""
def clear_conversation():
return [], [], "", [], ""
generation_inputs = [
_chat_history_store, gen_length, steps, constraints_input,
temperature, top_p, top_k, remasking_strategy, alg_temp,
visualization_delay
]
generation_outputs = [chatbot_ui, output_vis, response_text_display]
submit_listener = user_input.submit(
fn=add_user_message_to_history,
inputs=[user_input, _chat_history_store],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs,
show_progress="hidden"
)
click_listener = send_btn.click(
fn=add_user_message_to_history,
inputs=[user_input, _chat_history_store],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
).then(
fn=generate_dream_response,
inputs=generation_inputs,
outputs=generation_outputs,
show_progress="hidden"
)
clear_btn.click(
clear_conversation,
inputs=[],
outputs=[_chat_history_store, chatbot_ui, user_input, output_vis, response_text_display]
)
return demo
# --- Launch ---
if __name__ == "__main__":
demo = create_chatbot_demo()
demo.queue().launch(debug=True, share=False) |