File size: 24,210 Bytes
ce90309
47fc4a0
ce90309
47fc4a0
 
168a7c1
825e87d
47fc4a0
825e87d
168a7c1
825e87d
168a7c1
 
 
825e87d
168a7c1
825e87d
 
 
 
168a7c1
ce90309
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce90309
 
47fc4a0
825e87d
47fc4a0
 
825e87d
47fc4a0
825e87d
47fc4a0
 
 
 
 
825e87d
47fc4a0
 
 
 
825e87d
 
 
 
168a7c1
 
ce90309
825e87d
 
 
47fc4a0
ce90309
 
825e87d
 
47fc4a0
825e87d
 
 
 
 
168a7c1
47fc4a0
 
825e87d
47fc4a0
 
 
c691b46
47fc4a0
825e87d
47fc4a0
 
825e87d
 
 
 
 
 
 
 
47fc4a0
 
 
 
825e87d
168a7c1
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a7c1
825e87d
168a7c1
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47fc4a0
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce90309
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b91020
825e87d
 
 
9b91020
825e87d
 
 
 
c691b46
825e87d
 
 
 
 
ce90309
825e87d
 
 
ce90309
825e87d
 
 
 
 
 
 
 
c691b46
825e87d
 
 
ce90309
47fc4a0
825e87d
ce90309
825e87d
168a7c1
47fc4a0
 
ce90309
825e87d
 
47fc4a0
 
168a7c1
ce90309
168a7c1
 
825e87d
 
168a7c1
47fc4a0
 
ce90309
825e87d
 
47fc4a0
ce90309
47fc4a0
 
825e87d
 
 
 
 
47fc4a0
ce90309
 
 
47fc4a0
 
ce90309
825e87d
 
47fc4a0
ce90309
47fc4a0
 
825e87d
 
 
ce90309
47fc4a0
 
 
168a7c1
825e87d
 
 
 
47fc4a0
 
ce90309
 
168a7c1
 
825e87d
168a7c1
 
 
825e87d
 
168a7c1
 
 
825e87d
168a7c1
 
 
825e87d
 
168a7c1
825e87d
 
 
168a7c1
825e87d
 
 
 
 
 
 
 
 
 
 
168a7c1
 
825e87d
168a7c1
 
47fc4a0
ce90309
 
47fc4a0
825e87d
 
 
 
 
 
168a7c1
 
47fc4a0
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a7c1
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
168a7c1
825e87d
 
168a7c1
 
825e87d
 
 
 
 
 
168a7c1
 
825e87d
 
 
 
 
 
168a7c1
825e87d
 
168a7c1
825e87d
 
 
168a7c1
825e87d
 
168a7c1
ce90309
825e87d
 
 
 
 
 
 
47fc4a0
825e87d
47fc4a0
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47fc4a0
 
825e87d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47fc4a0
 
825e87d
47fc4a0
ce90309
825e87d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
# dream_app.py
import torch
import numpy as np
import gradio as gr
import spaces
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, AutoConfig
import time
import copy

# Determine device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Using device: {device}")

# --- Model and Tokenizer Loading ---
model_path = "Dream-org/Dream-v0-Instruct-7B"

print(f"Loading tokenizer from {model_path}...")
# Load configuration first to get special token IDs
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

print(f"Loading model from {model_path}...")
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True
).to(device).eval()
print("Model loaded successfully.")

# --- Constants from Dream Model ---
# Get IDs directly from config or tokenizer if available
MASK_TOKEN = tokenizer.mask_token
MASK_ID = config.mask_token_id if hasattr(config, 'mask_token_id') else tokenizer.mask_token_id
EOS_ID = config.eos_token_id if hasattr(config, 'eos_token_id') else tokenizer.eos_token_id
PAD_ID = config.pad_token_id if hasattr(config, 'pad_token_id') else tokenizer.pad_token_id # Often same as EOS

print(f"MASK_TOKEN: '{MASK_TOKEN}', MASK_ID: {MASK_ID}")
print(f"EOS_ID: {EOS_ID}, PAD_ID: {PAD_ID}")
if MASK_ID is None:
    raise ValueError("Could not determine MASK_ID from model config or tokenizer.")
if EOS_ID is None:
    raise ValueError("Could not determine EOS_ID from model config or tokenizer.")
if PAD_ID is None:
    raise ValueError("Could not determine PAD_ID from model config or tokenizer.")


# --- Helper Functions ---

def parse_constraints(constraints_text, tokenizer):
    """Parse constraints in format: 'position:word, position:word, ...'"""
    constraints = {}
    processed_constraints_tokens = {}
    if not constraints_text:
        return constraints, processed_constraints_tokens

    parts = constraints_text.split(',')
    for part in parts:
        if ':' not in part:
            continue
        pos_str, word = part.split(':', 1)
        try:
            pos = int(pos_str.strip())
            word = word.strip()
            if word and pos >= 0:
                # Store original word constraint for display/debugging if needed
                constraints[pos] = word
                # Tokenize the word (add space for consistency if not BOS)
                # Note: Dream tokenizer might handle spaces differently, adjust if needed
                prefix = " " if pos > 0 else ""
                tokens = tokenizer.encode(prefix + word, add_special_tokens=False)
                for i, token_id in enumerate(tokens):
                     # Prevent overwriting multi-token constraints partially
                    if pos + i not in processed_constraints_tokens:
                        processed_constraints_tokens[pos + i] = token_id
        except ValueError:
            continue
        except Exception as e:
             print(f"Error tokenizing constraint word '{word}': {e}")
             continue

    # Sort by position for consistent application
    processed_constraints_tokens = dict(sorted(processed_constraints_tokens.items()))
    print(f"Parsed Constraints (Word): {constraints}")
    print(f"Parsed Constraints (Tokens): {processed_constraints_tokens}")
    return constraints, processed_constraints_tokens

def format_chat_history(history):
    """
    Format chat history for the Dream model using its chat template convention.

    Args:
        history: List of [user_message, assistant_message] pairs

    Returns:
        Formatted list of message dictionaries for the model
    """
    messages = []
     # Add system prompt if not present (standard practice)
    if not history or history[0][0] is None or history[0][0].lower() != "system":
         messages.append({"role": "system", "content": "You are a helpful assistant."})

    for user_msg, assistant_msg in history:
        if user_msg is not None: # Handle potential system message case
             messages.append({"role": "user", "content": user_msg})
        if assistant_msg:  # Skip if None (for the latest user message)
            messages.append({"role": "assistant", "content": assistant_msg})

    return messages

# --- Core Generation Logic with Visualization Hook ---

@spaces.GPU
def generate_response_with_visualization(
    messages, # List of message dictionaries
    gen_length=64,
    steps=64,
    constraints_text="", # Raw constraint text
    temperature=0.2,
    top_p=0.95,
    top_k=None, # Added for Dream
    alg="entropy", # Changed from remasking
    alg_temp=0.0, # Added for Dream
    visualization_delay=0.05,
    tokenizer=tokenizer,
    model=model,
    device=device,
    MASK_ID=MASK_ID,
    EOS_ID=EOS_ID,
    PAD_ID=PAD_ID
):
    """
    Generate text with Dream model with real-time visualization using a hook.
    """
    visualization_states = []
    final_text = ""
    # Use a list to hold previous_x, allowing nonlocal modification
    # Initialize with None, it will be set after the first hook call
    shared_state = {'previous_x': None}


    try:
        # --- 1. Prepare Inputs ---
        _, parsed_constraints_tokens = parse_constraints(constraints_text, tokenizer)

        # Apply chat template
        # Important: Keep tokenize=False initially to get prompt length correctly
        # The template adds roles and special tokens like <|im_start|> etc.
        chat_input_text = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True, # Adds the prompt for the assistant's turn
            tokenize=False
        )

        # Tokenize the full templated chat string
        inputs = tokenizer(chat_input_text, return_tensors="pt", return_dict=True)
        input_ids = inputs.input_ids.to(device)
        attention_mask = inputs.attention_mask.to(device) # Use mask from tokenizer

        prompt_length = input_ids.shape[1]
        total_length = prompt_length + gen_length

        # --- 2. Initialize Generation Sequence ---
        # Start with the prompt, pad the rest with MASK_ID
        x = torch.full((1, total_length), MASK_ID, dtype=torch.long, device=device)
        x[:, :prompt_length] = input_ids.clone()
        attention_mask = F.pad(attention_mask, (0, gen_length), value=1) # Extend attention mask

        # Apply initial constraints to the masked sequence `x`
        for pos, token_id in parsed_constraints_tokens.items():
            absolute_pos = prompt_length + pos
            if absolute_pos < total_length:
                print(f"Applying initial constraint at pos {absolute_pos}: token {token_id}")
                x[:, absolute_pos] = token_id

        # Store initial state (prompt + all masked) for visualization
        initial_state_vis = []
        # Add prompt tokens (optional visualization, could be grayed out or skipped)
        # for i in range(prompt_length):
        #     token_str = tokenizer.decode([x[0, i].item()], skip_special_tokens=True)
        #     initial_state_vis.append((token_str if token_str else " ", "#AAAAAA")) # Gray for prompt

        # Add masked tokens for the generation part
        for _ in range(gen_length):
            initial_state_vis.append((MASK_TOKEN, "#444444")) # Dark gray for masks
        visualization_states.append(initial_state_vis)
        shared_state['previous_x'] = x.clone() # Initialize previous_x


        # --- 3. Define the Visualization Hook ---
        def generation_tokens_hook_func(step, current_x_hook, logits):
            # nonlocal previous_x # Allow modification of the outer scope variable
            current_x_hook = current_x_hook.clone() # Work on a copy

            # --- Apply constraints within the hook ---
            # This ensures constraints are respected even if the model tries to overwrite them
            for pos, token_id in parsed_constraints_tokens.items():
                absolute_pos = prompt_length + pos
                if absolute_pos < total_length:
                    current_x_hook[:, absolute_pos] = token_id
            # --- End Constraint Application ---

            if shared_state['previous_x'] is None: # First call
                 shared_state['previous_x'] = current_x_hook.clone()
                 return current_x_hook # Must return the (potentially modified) sequence

            # Generate visualization state for this step
            current_state_vis = []
            prev_x_step = shared_state['previous_x']

            for i in range(gen_length):
                pos = prompt_length + i  # Absolute position in the sequence
                current_token_id = current_x_hook[0, pos].item()
                prev_token_id = prev_x_step[0, pos].item()

                # Decode token, handling special tokens we want to hide
                token_str = ""
                color = "#444444" # Default: Dark Gray (Mask)
                token_str_raw = tokenizer.decode([current_token_id], skip_special_tokens=False) # Keep special tokens for ID check

                if current_token_id == MASK_ID:
                    token_str = MASK_TOKEN
                    color = "#444444" # Dark gray
                elif current_token_id == EOS_ID or current_token_id == PAD_ID:
                     token_str = "" # Hide EOS/PAD visually
                     color = "#DDDDDD" # Use a light gray or make transparent if possible
                else:
                    # Decode without special tokens for display if it's not MASK/EOS/PAD
                    token_str = tokenizer.decode([current_token_id], skip_special_tokens=True).strip()
                    if not token_str: token_str = token_str_raw # Fallback if strip removes everything (e.g., space)

                    if prev_token_id == MASK_ID:
                        # Newly revealed in this step
                        color = "#66CC66" # Light green (Simplified from confidence levels)
                    else:
                        # Previously revealed
                        color = "#6699CC" # Light blue

                current_state_vis.append((token_str if token_str else " ", color)) # Ensure non-empty tuple element

            visualization_states.append(current_state_vis)
            shared_state['previous_x'] = current_x_hook.clone() # Update previous_x for the next step

            return current_x_hook # Return the sequence (constraints applied)

        # --- 4. Run Diffusion Generation ---
        print("Starting diffusion generation...")
        start_time = time.time()
        output = model.diffusion_generate(
            input_ids=x[:, :prompt_length], # Pass only the initial prompt to diffusion_generate
                                            # as it handles the masking internally based on MASK_ID
            attention_mask=attention_mask,  # Provide the full attention mask
            max_new_tokens=gen_length,
            output_history=False, # We capture history via the hook
            return_dict_in_generate=True,
            steps=steps,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            alg=alg,
            alg_temp=alg_temp if alg != 'origin' else None, # alg_temp only for confidence-based
            # Pass the hook function
            generation_tokens_hook_func=generation_tokens_hook_func,
            # Ensure the initial masked sequence `x` is used correctly if needed by internal logic
            # Depending on the exact implementation of diffusion_generate, passing x directly might be needed
            # Check Dream's generation_utils if issues arise. For now, assume it uses input_ids + max_new_tokens
        )
        end_time = time.time()
        print(f"Diffusion generation finished in {end_time - start_time:.2f} seconds.")

        # --- 5. Process Final Output ---
        # The hook has already built visualization_states
        final_sequence = output.sequences[0]

        # Decode the generated part, skipping special tokens for the final text output
        response_tokens = final_sequence[prompt_length:]
        # Filter out PAD tokens before final decode, keep EOS if needed conceptually, but skip for clean text
        response_tokens_cleaned = [tok for tok in response_tokens if tok != PAD_ID] # Keep EOS initially if needed

        final_text = tokenizer.decode(
            response_tokens_cleaned,
            skip_special_tokens=True, # Skip EOS, BOS, etc.
            clean_up_tokenization_spaces=True # Recommended for cleaner output
        ).strip()

        # Ensure the last state in visualization matches the final text (debug check)
        # print(f"Last Vis State Tokens: {''.join([t[0] for t in visualization_states[-1]]).strip()}")
        # print(f"Final Decoded Text: {final_text}")

    except Exception as e:
        print(f"Error during generation: {e}")
        import traceback
        traceback.print_exc()
        # Add error message to visualization
        error_msg = f"Error: {str(e)}"
        visualization_states.append([(error_msg, "red")])
        final_text = error_msg # Display error in the chatbot too

    # Make sure at least the initial state is present
    if not visualization_states:
         visualization_states.append([("Error: No states generated.", "red")])


    return visualization_states, final_text

# --- Gradio UI Definition ---

css = '''
.category-legend{display:none}
button{height: 60px}
.token-text { white-space: pre; } /* Preserve spaces in tokens */
footer { display: none !important; visibility: hidden !important; }
'''
def create_chatbot_demo():
    with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
        gr.Markdown("# Dream 7B - Diffusion Language Model Demo")
        gr.Markdown(
            "[[Model Card](https://huggingface.co/Dream-org/Dream-v0-Instruct-7B)] "
            "[[Blog Post](https://hkunlp.github.io/blog/2025/dream/)] "
             "(Note: Visualization shows token reveal steps, colors indicate status: Gray=Masked, Green=Newly Revealed, Blue=Previously Revealed)"
        )

        # STATE MANAGEMENT
        chat_history = gr.State([])
        # Store constraints parsed into token IDs
        parsed_constraints_state = gr.State({})

        # UI COMPONENTS
        with gr.Row():
            with gr.Column(scale=3):
                chatbot_ui = gr.Chatbot(
                    label="Conversation",
                    height=500,
                    bubble_full_width=False # Makes bubbles wrap content
                 )

                # Message input
                with gr.Group():
                    with gr.Row():
                        user_input = gr.Textbox(
                            label="Your Message",
                            placeholder="Type your message here...",
                            show_label=False,
                            scale=7
                        )
                        send_btn = gr.Button("Send", scale=1)

                constraints_input = gr.Textbox(
                    label="Word Constraints (Experimental)",
                    info="Place specific words at positions (0-indexed). Format: 'pos:word, pos:word'. Example: '0:Once, 5:upon, 10:time'. Multi-token words supported.",
                    placeholder="0:The, 10:story",
                    value=""
                )
            with gr.Column(scale=2):
                output_vis = gr.HighlightedText(
                    label="Denoising Process Visualization",
                    combine_adjacent=False,
                    show_legend=False, # Legend not very informative here
                    height=560, # Match chatbot height + input box approx
                    elem_classes=["token-text"] # Apply custom class for styling if needed
                )

        # Advanced generation settings
        with gr.Accordion("Generation Settings", open=False):
            with gr.Row():
                gen_length = gr.Slider(
                    minimum=16, maximum=512, value=128, step=8,
                    label="Max New Tokens"
                )
                steps = gr.Slider(
                    minimum=8, maximum=512, value=128, step=4,
                    label="Denoising Steps"
                )
            with gr.Row():
                temperature = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.2, step=0.05,
                    label="Temperature"
                )
                top_p = gr.Slider(
                    minimum=0.1, maximum=1.0, value=0.95, step=0.05,
                    label="Top-P"
                )
                top_k = gr.Slider(
                    minimum=0, maximum=200, value=0, step=5,
                    label="Top-K (0=disabled)"
                )
            with gr.Row():
                 alg = gr.Radio(
                    choices=['origin', 'maskgit_plus', 'topk_margin', 'entropy'],
                    value='entropy',
                    label="Sampling Algorithm (`alg`)"
                 )
                 alg_temp = gr.Slider(
                    minimum=0.0, maximum=1.0, value=0.0, step=0.05,
                    label="Algorithm Temp (`alg_temp`, adds randomness to confidence-based `alg`)"
                 )

            with gr.Row():
                visualization_delay = gr.Slider(
                    minimum=0.0, maximum=0.5, value=0.02, step=0.01,
                    label="Visualization Delay (seconds)"
                )

        # Clear button
        clear_btn = gr.Button("Clear Conversation")

        # --- Event Handlers ---
        def add_message(history, message, response):
            """Add a message pair to the history and return the updated history"""
            # Ensure history is a list
            if not isinstance(history, list):
                 history = []
            history.append([message, response])
            return history

        def user_message_submitted(message, history):
            """Process a submitted user message"""
            if not message.strip():
                return history, history, "", [] # No change if empty

            # Add user message (response is None for now)
            history = add_message(history, message, None)

            # Return updated history for display, clear input box
            return history, history, "", [] # history, chatbot_ui, user_input, output_vis


        def bot_response_stream(
            history, # Current chat history (list of lists)
            gen_length, steps, constraints, # Generation settings
            temperature, top_p, top_k, alg, alg_temp, # Sampling settings
            delay # Visualization delay
        ):
            """Generate bot response and stream visualization states"""
            if not history or history[-1][1] is not None: # Check if history is present and last response isn't already set
                 print("Skipping bot response generation: No new user message.")
                 # Yield empty state if needed to prevent errors downstream
                 # Ensure history is returned correctly if nothing happens
                 yield history, [], "Internal Error: No user message found."
                 return

            # Format messages for the model
            # Exclude the last entry as it only contains the user message
            messages_for_model = format_chat_history(history) # Already includes system prompt

            print("\n--- Generating Bot Response ---")
            print(f"History: {history}")
            print(f"Messages for model: {messages_for_model}")
            print(f"Constraints text: '{constraints}'")
            print(f"Gen length: {gen_length}, Steps: {steps}, Temp: {temperature}, Top-P: {top_p}, Top-K: {top_k}, Alg: {alg}, Alg Temp: {alg_temp}")

            # Call the generation function
            vis_states, response_text = generate_response_with_visualization(
                messages_for_model,
                gen_length=gen_length,
                steps=steps,
                constraints_text=constraints,
                temperature=temperature,
                top_p=top_p if top_p < 1.0 else None, # None disables top-p
                top_k=top_k if top_k > 0 else None,   # None disables top-k
                alg=alg,
                alg_temp=alg_temp,
                visualization_delay=delay,
                # Pass other necessary args like tokenizer, model if not global
            )

            print(f"Generated response text: '{response_text}'")
            print(f"Number of visualization states: {len(vis_states)}")


            # Update the history with the final response
            # Make sure history is mutable if needed or reassign
            if history:
                 history[-1][1] = response_text
            else:
                 print("Warning: History was empty when trying to update response.")


            # Stream the visualization states
            if not vis_states:
                 print("Warning: No visualization states were generated.")
                 # Yield something to prevent downstream errors
                 yield history, [("Error: No visualization.", "red")], response_text
                 return

            # Yield initial state immediately if desired, or just start loop
            # yield history, vis_states[0], response_text

            for state in vis_states:
                yield history, state, response_text # Yield updated history, current vis state, final text
                time.sleep(delay) # Pause between steps

            # Final yield to ensure the last state is displayed
            yield history, vis_states[-1], response_text


        def clear_conversation():
            """Clear the conversation history and visualization"""
            return [], [], "", [] # history, chatbot, user_input, output_vis

        # --- Event Wiring ---

        # Clear button
        clear_btn.click(
            fn=clear_conversation,
            inputs=[],
            outputs=[chat_history, chatbot_ui, user_input, output_vis]
        )

        # User message submission flow (2-step using .then)
        # 1. User submits message -> Update history and chatbot UI immediately
        submit_action = user_input.submit(
            fn=user_message_submitted,
            inputs=[user_input, chat_history],
            outputs=[chat_history, chatbot_ui, user_input, output_vis] # Update chatbot, clear input
        )

        # Connect send button to the same function
        send_action = send_btn.click(
            fn=user_message_submitted,
            inputs=[user_input, chat_history],
            outputs=[chat_history, chatbot_ui, user_input, output_vis]
        )

        # 2. After UI update -> Trigger bot response generation and streaming
        # Use the updated chat_history from the first step
        submit_action.then(
            fn=bot_response_stream,
            inputs=[
                chat_history, gen_length, steps, constraints_input,
                temperature, top_p, top_k, alg, alg_temp,
                visualization_delay
            ],
            outputs=[chatbot_ui, output_vis, user_input] # Update chatbot, visualization. Keep user_input as output to potentially display final text/error? (Check Gradio docs for Textbox output binding on yield) Let's remove user_input from outputs here.
        )

        send_action.then(
            fn=bot_response_stream,
            inputs=[
                 chat_history, gen_length, steps, constraints_input,
                 temperature, top_p, top_k, alg, alg_temp,
                 visualization_delay
            ],
            outputs=[chatbot_ui, output_vis] # Update chatbot and visualization
        )

        # Clear input after send/submit (already handled in user_message_submitted)
        # submit_action.then(lambda: "", outputs=user_input)
        # send_action.then(lambda: "", outputs=user_input)


    return demo

# --- Launch the Gradio App ---
if __name__ == "__main__":
    demo = create_chatbot_demo()
    # Using queue for streaming and handling multiple users
    demo.queue().launch(debug=True, share=True)