Spaces:
Build error
Build error
import gradio as gr | |
from dotenv import load_dotenv | |
from roboflow import Roboflow | |
import tempfile | |
import os | |
import requests | |
import cv2 | |
import numpy as np | |
# ========== Konfigurasi ========== | |
load_dotenv() | |
# Roboflow Config | |
rf_api_key = os.getenv("ROBOFLOW_API_KEY") | |
workspace = os.getenv("ROBOFLOW_WORKSPACE") | |
project_name = os.getenv("ROBOFLOW_PROJECT") | |
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) | |
# OWLv2 API Config | |
OWLV2_API_URL = "https://api.landing.ai/v1/tools/text-to-object-detection" | |
OWLV2_PROMPTS = ["beverage", "bottle", "cans", "boxed milk", "milk"] | |
# Inisialisasi Model YOLO | |
rf = Roboflow(api_key=rf_api_key) | |
project = rf.workspace(workspace).project(project_name) | |
yolo_model = project.version(model_version).model | |
# ========== Fungsi Deteksi Kombinasi ========== | |
def detect_combined(image): | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
image.save(temp_file, format="JPEG") | |
temp_path = temp_file.name | |
try: | |
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== | |
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json() | |
nestle_class_count = {} | |
nestle_boxes = [] | |
for pred in yolo_pred['predictions']: | |
class_name = pred['class'] | |
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 | |
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) | |
total_nestle = sum(nestle_class_count.values()) | |
# ========== [2] OWLv2: Deteksi Kompetitor ========== | |
with open(temp_path, "rb") as image_file: | |
response = requests.post(OWLV2_API_URL, | |
files={"image": image_file}, | |
data={"prompts": OWLV2_PROMPTS, "model": "owlv2"}) | |
owlv2_pred = response.json().get("objects", []) | |
competitor_class_count = {} | |
competitor_boxes = [] | |
for obj in owlv2_pred: | |
x1, y1, x2, y2 = obj["bbox"] | |
class_name = obj["label"].strip().lower() | |
if not is_overlap((x1, y1, x2, y2), nestle_boxes): | |
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 | |
competitor_boxes.append({"class": class_name, "box": (x1, y1, x2, y2), "confidence": obj["score"]}) | |
total_competitor = sum(competitor_class_count.values()) | |
# ========== [3] Format Output ========== | |
result_text = "Product Nestle\n\n" | |
for class_name, count in nestle_class_count.items(): | |
result_text += f"{class_name}: {count}\n" | |
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n" | |
result_text += f"Total Unclassified Products: {total_competitor}\n" if competitor_class_count else "No Unclassified Products detected\n" | |
# ========== [4] Visualisasi ========== | |
img = cv2.imread(temp_path) | |
for pred in yolo_pred['predictions']: | |
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] | |
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2) | |
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2) | |
for comp in competitor_boxes: | |
x1, y1, x2, y2 = comp['box'] | |
display_name = "unclassified" if comp['class'] in OWLV2_PROMPTS else comp['class'] | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) | |
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2) | |
output_path = "/tmp/combined_output.jpg" | |
cv2.imwrite(output_path, img) | |
return output_path, result_text | |
except Exception as e: | |
return temp_path, f"Error: {str(e)}" | |
finally: | |
os.remove(temp_path) | |
def is_overlap(box1, boxes2, threshold=0.3): | |
x1_min, y1_min, x1_max, y1_max = box1 | |
for b2 in boxes2: | |
x2, y2, w2, h2 = b2 | |
x2_min = x2 - w2/2 | |
x2_max = x2 + w2/2 | |
y2_min = y2 - h2/2 | |
y2_max = y2 + h2/2 | |
dx = min(x1_max, x2_max) - max(x1_min, x2_min) | |
dy = min(y1_max, y2_max) - max(y1_min, y2_min) | |
if (dx >= 0) and (dy >= 0): | |
area_overlap = dx * dy | |
area_box1 = (x1_max - x1_min) * (y1_max - y1_min) | |
if area_overlap / area_box1 > threshold: | |
return True | |
return False | |
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface: | |
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Input Image") | |
with gr.Column(): | |
output_image = gr.Image(label="Detect Object") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Counting Object") | |
# Tombol untuk memproses input | |
detect_button = gr.Button("Detect") | |
# Hubungkan tombol dengan fungsi deteksi | |
detect_button.click( | |
fn=detect_combined, | |
inputs=input_image, | |
outputs=[output_image, output_text] | |
) |