Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from roboflow import Roboflow
|
4 |
+
import tempfile
|
5 |
+
import os
|
6 |
+
import requests
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# ========== Konfigurasi ==========
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Roboflow Config
|
14 |
+
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
|
15 |
+
workspace = os.getenv("ROBOFLOW_WORKSPACE")
|
16 |
+
project_name = os.getenv("ROBOFLOW_PROJECT")
|
17 |
+
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
|
18 |
+
|
19 |
+
# OWLv2 API Config
|
20 |
+
OWLV2_API_URL = "https://api.landing.ai/v1/tools/text-to-object-detection"
|
21 |
+
OWLV2_PROMPTS = ["beverage", "bottle", "cans", "boxed milk", "milk"]
|
22 |
+
|
23 |
+
# Inisialisasi Model YOLO
|
24 |
+
rf = Roboflow(api_key=rf_api_key)
|
25 |
+
project = rf.workspace(workspace).project(project_name)
|
26 |
+
yolo_model = project.version(model_version).model
|
27 |
+
|
28 |
+
# ========== Fungsi Deteksi Kombinasi ==========
|
29 |
+
def detect_combined(image):
|
30 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
|
31 |
+
image.save(temp_file, format="JPEG")
|
32 |
+
temp_path = temp_file.name
|
33 |
+
|
34 |
+
try:
|
35 |
+
# ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ==========
|
36 |
+
yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json()
|
37 |
+
|
38 |
+
nestle_class_count = {}
|
39 |
+
nestle_boxes = []
|
40 |
+
for pred in yolo_pred['predictions']:
|
41 |
+
class_name = pred['class']
|
42 |
+
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
|
43 |
+
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
|
44 |
+
|
45 |
+
total_nestle = sum(nestle_class_count.values())
|
46 |
+
|
47 |
+
# ========== [2] OWLv2: Deteksi Kompetitor ==========
|
48 |
+
with open(temp_path, "rb") as image_file:
|
49 |
+
response = requests.post(OWLV2_API_URL,
|
50 |
+
files={"image": image_file},
|
51 |
+
data={"prompts": OWLV2_PROMPTS, "model": "owlv2"})
|
52 |
+
|
53 |
+
owlv2_pred = response.json().get("objects", [])
|
54 |
+
|
55 |
+
competitor_class_count = {}
|
56 |
+
competitor_boxes = []
|
57 |
+
for obj in owlv2_pred:
|
58 |
+
x1, y1, x2, y2 = obj["bbox"]
|
59 |
+
class_name = obj["label"].strip().lower()
|
60 |
+
if not is_overlap((x1, y1, x2, y2), nestle_boxes):
|
61 |
+
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
|
62 |
+
competitor_boxes.append({"class": class_name, "box": (x1, y1, x2, y2), "confidence": obj["score"]})
|
63 |
+
|
64 |
+
total_competitor = sum(competitor_class_count.values())
|
65 |
+
|
66 |
+
# ========== [3] Format Output ==========
|
67 |
+
result_text = "Product Nestle\n\n"
|
68 |
+
for class_name, count in nestle_class_count.items():
|
69 |
+
result_text += f"{class_name}: {count}\n"
|
70 |
+
result_text += f"\nTotal Products Nestle: {total_nestle}\n\n"
|
71 |
+
result_text += f"Total Unclassified Products: {total_competitor}\n" if competitor_class_count else "No Unclassified Products detected\n"
|
72 |
+
|
73 |
+
# ========== [4] Visualisasi ==========
|
74 |
+
img = cv2.imread(temp_path)
|
75 |
+
|
76 |
+
for pred in yolo_pred['predictions']:
|
77 |
+
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
|
78 |
+
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
|
79 |
+
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2)
|
80 |
+
|
81 |
+
for comp in competitor_boxes:
|
82 |
+
x1, y1, x2, y2 = comp['box']
|
83 |
+
display_name = "unclassified" if comp['class'] in OWLV2_PROMPTS else comp['class']
|
84 |
+
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
|
85 |
+
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2)
|
86 |
+
|
87 |
+
output_path = "/tmp/combined_output.jpg"
|
88 |
+
cv2.imwrite(output_path, img)
|
89 |
+
|
90 |
+
return output_path, result_text
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
return temp_path, f"Error: {str(e)}"
|
94 |
+
finally:
|
95 |
+
os.remove(temp_path)
|
96 |
+
|
97 |
+
|
98 |
+
def is_overlap(box1, boxes2, threshold=0.3):
|
99 |
+
x1_min, y1_min, x1_max, y1_max = box1
|
100 |
+
for b2 in boxes2:
|
101 |
+
x2, y2, w2, h2 = b2
|
102 |
+
x2_min = x2 - w2/2
|
103 |
+
x2_max = x2 + w2/2
|
104 |
+
y2_min = y2 - h2/2
|
105 |
+
y2_max = y2 + h2/2
|
106 |
+
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
|
107 |
+
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
|
108 |
+
if (dx >= 0) and (dy >= 0):
|
109 |
+
area_overlap = dx * dy
|
110 |
+
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
|
111 |
+
if area_overlap / area_box1 > threshold:
|
112 |
+
return True
|
113 |
+
return False
|
114 |
+
|
115 |
+
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
|
116 |
+
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
|
117 |
+
with gr.Row():
|
118 |
+
with gr.Column():
|
119 |
+
input_image = gr.Image(type="pil", label="Input Image")
|
120 |
+
with gr.Column():
|
121 |
+
output_image = gr.Image(label="Detect Object")
|
122 |
+
with gr.Column():
|
123 |
+
output_text = gr.Textbox(label="Counting Object")
|
124 |
+
|
125 |
+
# Tombol untuk memproses input
|
126 |
+
detect_button = gr.Button("Detect")
|
127 |
+
|
128 |
+
# Hubungkan tombol dengan fungsi deteksi
|
129 |
+
detect_button.click(
|
130 |
+
fn=detect_combined,
|
131 |
+
inputs=input_image,
|
132 |
+
outputs=[output_image, output_text]
|
133 |
+
)
|