import gradio as gr from dotenv import load_dotenv from roboflow import Roboflow import tempfile import os import requests import cv2 import numpy as np # ========== Konfigurasi ========== load_dotenv() # Roboflow Config rf_api_key = os.getenv("ROBOFLOW_API_KEY") workspace = os.getenv("ROBOFLOW_WORKSPACE") project_name = os.getenv("ROBOFLOW_PROJECT") model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION")) # OWLv2 API Config OWLV2_API_URL = "https://api.landing.ai/v1/tools/text-to-object-detection" OWLV2_PROMPTS = ["beverage", "bottle", "cans", "boxed milk", "milk"] # Inisialisasi Model YOLO rf = Roboflow(api_key=rf_api_key) project = rf.workspace(workspace).project(project_name) yolo_model = project.version(model_version).model # ========== Fungsi Deteksi Kombinasi ========== def detect_combined(image): with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: image.save(temp_file, format="JPEG") temp_path = temp_file.name try: # ========== [1] YOLO: Deteksi Produk Nestlé (Per Class) ========== yolo_pred = yolo_model.predict(temp_path, confidence=50, overlap=80).json() nestle_class_count = {} nestle_boxes = [] for pred in yolo_pred['predictions']: class_name = pred['class'] nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1 nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height'])) total_nestle = sum(nestle_class_count.values()) # ========== [2] OWLv2: Deteksi Kompetitor ========== with open(temp_path, "rb") as image_file: response = requests.post(OWLV2_API_URL, files={"image": image_file}, data={"prompts": OWLV2_PROMPTS, "model": "owlv2"}) owlv2_pred = response.json().get("objects", []) competitor_class_count = {} competitor_boxes = [] for obj in owlv2_pred: x1, y1, x2, y2 = obj["bbox"] class_name = obj["label"].strip().lower() if not is_overlap((x1, y1, x2, y2), nestle_boxes): competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1 competitor_boxes.append({"class": class_name, "box": (x1, y1, x2, y2), "confidence": obj["score"]}) total_competitor = sum(competitor_class_count.values()) # ========== [3] Format Output ========== result_text = "Product Nestle\n\n" for class_name, count in nestle_class_count.items(): result_text += f"{class_name}: {count}\n" result_text += f"\nTotal Products Nestle: {total_nestle}\n\n" result_text += f"Total Unclassified Products: {total_competitor}\n" if competitor_class_count else "No Unclassified Products detected\n" # ========== [4] Visualisasi ========== img = cv2.imread(temp_path) for pred in yolo_pred['predictions']: x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height'] cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2) cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0,255,0), 2) for comp in competitor_boxes: x1, y1, x2, y2 = comp['box'] display_name = "unclassified" if comp['class'] in OWLV2_PROMPTS else comp['class'] cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2) cv2.putText(img, f"{display_name} {comp['confidence']:.2f}", (int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 255), 2) output_path = "/tmp/combined_output.jpg" cv2.imwrite(output_path, img) return output_path, result_text except Exception as e: return temp_path, f"Error: {str(e)}" finally: os.remove(temp_path) def is_overlap(box1, boxes2, threshold=0.3): x1_min, y1_min, x1_max, y1_max = box1 for b2 in boxes2: x2, y2, w2, h2 = b2 x2_min = x2 - w2/2 x2_max = x2 + w2/2 y2_min = y2 - h2/2 y2_max = y2 + h2/2 dx = min(x1_max, x2_max) - max(x1_min, x2_min) dy = min(y1_max, y2_max) - max(y1_min, y2_min) if (dx >= 0) and (dy >= 0): area_overlap = dx * dy area_box1 = (x1_max - x1_min) * (y1_max - y1_min) if area_overlap / area_box1 > threshold: return True return False with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface: gr.Markdown("""