File size: 3,129 Bytes
ac831c4
b34cc48
 
b83e3be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac831c4
5a61493
ac831c4
 
 
 
5a61493
b83e3be
 
 
 
 
 
 
 
93307f9
5a61493
b83e3be
93307f9
b83e3be
93307f9
b83e3be
 
93307f9
b83e3be
93307f9
b83e3be
93307f9
 
 
b83e3be
 
 
 
 
93307f9
5a61493
b83e3be
5a61493
b83e3be
5a61493
b83e3be
ac831c4
b83e3be
5a61493
5f0c190
b83e3be
5a61493
 
 
 
 
b83e3be
5a61493
b83e3be
 
 
 
 
 
5a61493
 
 
 
 
ac831c4
b83e3be
5a61493
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import tempfile
import os
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction
from PIL import Image

# Inisialisasi model deteksi menggunakan SAHI
model_path = "best.pt"  # Ganti dengan path model YOLO lokal Anda
confidence_threshold = 0.6  # Threshold kepercayaan
sahi_device = 'cuda'  # Ganti dengan 'cpu' jika tidak menggunakan GPU

# Memuat model YOLO menggunakan SAHI
sahi_model = AutoDetectionModel.from_pretrained(
    model_type="yolov11",  # Tipe model YOLO, sesuaikan jika model YOLO yang digunakan berbeda
    model_path=model_path,
    confidence_threshold=confidence_threshold,
    device=sahi_device
)

# Fungsi untuk deteksi objek menggunakan SAHI
def detect_objects(image):
    # Simpan gambar yang diupload sebagai file sementara
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
        image.save(temp_file, format="JPEG")
        temp_file_path = temp_file.name

    try:
        # Lakukan prediksi pada gambar menggunakan SAHI
        results = get_sliced_prediction(
            image=image,
            detection_model=sahi_model,
            slice_height=512,  # Ukuran potongan gambar (bisa disesuaikan)
            slice_width=512,
            overlap_height_ratio=0.2,
            overlap_width_ratio=0.2
        )

        # Menghitung jumlah objek per kelas
        class_count = {}
        total_count = 0  # Menyimpan total jumlah objek

        for prediction in results.object_prediction_list:
            class_name = prediction.category.name  # Nama kelas objek
            class_count[class_name] = class_count.get(class_name, 0) + 1
            total_count += 1  # Menambah jumlah objek

        # Menyusun output berupa string hasil perhitungan
        result_text = "Detected Objects:\n\n"
        for class_name, count in class_count.items():
            result_text += f"{class_name}: {count}\n"
        result_text += f"\nTotal Objects: {total_count}"

        # Menyimpan gambar dengan prediksi
        output_image_path = "/tmp/prediction.jpg"
        results.save(output_image_path)  # Menyimpan gambar dengan prediksi

    except Exception as err:
        # Menangani kesalahan lain
        result_text = f"An error occurred: {err}"
        output_image_path = temp_file_path  # Kembalikan gambar asli jika terjadi error

    # Hapus file sementara setelah prediksi
    os.remove(temp_file_path)

    return output_image_path, result_text

# Membuat antarmuka Gradio dengan tata letak fleksibel
with gr.Blocks() as iface:
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(type="pil", label="Input Image")
        with gr.Column():
            output_image = gr.Image(label="Detect Object")
        with gr.Column():
            output_text = gr.Textbox(label="Counting Object")

    # Tombol untuk memproses input
    detect_button = gr.Button("Detect")

    # Hubungkan tombol dengan fungsi deteksi
    detect_button.click(
        fn=detect_objects, 
        inputs=input_image, 
        outputs=[output_image, output_text]
    )

# Menjalankan antarmuka
iface.launch()