muhammadsalmanalfaridzi commited on
Commit
b34cc48
·
verified ·
1 Parent(s): e4e39d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -38
app.py CHANGED
@@ -1,36 +1,34 @@
1
  import gradio as gr
2
- import os
3
- import tempfile
4
- from roboflow import Roboflow
5
  from dotenv import load_dotenv
 
 
 
6
 
7
- # Muat variabel lingkungan dari file .env
8
  load_dotenv()
9
-
10
- # Ambil nilai dari environment variables
11
  api_key = os.getenv("ROBOFLOW_API_KEY")
12
  workspace = os.getenv("ROBOFLOW_WORKSPACE")
13
  project_name = os.getenv("ROBOFLOW_PROJECT")
14
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
15
 
16
- # Inisialisasi Roboflow menggunakan data yang diambil dari .env
17
  rf = Roboflow(api_key=api_key)
18
  project = rf.workspace(workspace).project(project_name)
19
  model = project.version(model_version).model
20
 
21
- # Fungsi untuk menangani input dan output gambar
22
  def detect_objects(image):
23
- # Simpan gambar yang diupload sebagai file sementara
24
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
25
  image.save(temp_file, format="JPEG")
26
  temp_file_path = temp_file.name
27
 
28
- # Lakukan prediksi pada gambar
29
  predictions = model.predict(temp_file_path, confidence=60, overlap=80).json()
30
 
31
- # Menghitung jumlah objek per kelas
32
  class_count = {}
33
- total_count = 0 # Menyimpan total jumlah objek
34
 
35
  for prediction in predictions['predictions']:
36
  class_name = prediction['class']
@@ -38,40 +36,39 @@ def detect_objects(image):
38
  class_count[class_name] += 1
39
  else:
40
  class_count[class_name] = 1
41
- total_count += 1 # Tambah jumlah objek untuk setiap prediksi
42
 
43
- # Menyusun output berupa string hasil perhitungan
44
- result_text = "Product Nestle\n\n" # Tambahkan baris kosong setelah judul
 
45
  for class_name, count in class_count.items():
46
  result_text += f"{class_name}: {count} \n"
47
 
48
- result_text += f"\nTotal Product Nestle: {total_count}" # Tambahkan baris kosong antara kategori dan total
49
 
50
- # Menyimpan gambar dengan prediksi
51
- output_image = model.predict(temp_file_path, confidence=60, overlap=80).save("/tmp/prediction.jpg")
 
52
 
53
- # Hapus file sementara setelah prediksi
54
  os.remove(temp_file_path)
55
 
56
- return "/tmp/prediction.jpg", result_text
57
-
58
- # Membuat antarmuka Gradio dengan label yang telah diganti
59
- inputs = gr.Image(type="pil", label="Input Image") # Label input
60
- outputs = [gr.Image(label="Detect Object"), gr.Textbox(label="Counting Object")] # Label output
61
-
62
- # Membuat layout dengan gr.Row() untuk menampilkan input dan output berdampingan
63
- iface = gr.Interface(
64
- fn=detect_objects,
65
- inputs=inputs,
66
- outputs=outputs,
67
- live=True
68
- )
69
 
70
- # Menyusun antarmuka dengan layout horizontal
71
- iface.layout = gr.Row(
72
- inputs, # Input image component
73
- outputs # Output components (image and text)
74
- )
 
 
 
 
 
 
 
 
 
75
 
76
- # Menjalankan antarmuka
77
  iface.launch()
 
1
  import gradio as gr
 
 
 
2
  from dotenv import load_dotenv
3
+ from roboflow import Roboflow
4
+ import tempfile
5
+ import os
6
 
7
+ # Load environment variables from .env file
8
  load_dotenv()
 
 
9
  api_key = os.getenv("ROBOFLOW_API_KEY")
10
  workspace = os.getenv("ROBOFLOW_WORKSPACE")
11
  project_name = os.getenv("ROBOFLOW_PROJECT")
12
  model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
13
 
14
+ # Initialize Roboflow using the loaded environment variables
15
  rf = Roboflow(api_key=api_key)
16
  project = rf.workspace(workspace).project(project_name)
17
  model = project.version(model_version).model
18
 
19
+ # Function to handle image input and output
20
  def detect_objects(image):
21
+ # Save the uploaded image as a temporary file
22
  with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
23
  image.save(temp_file, format="JPEG")
24
  temp_file_path = temp_file.name
25
 
26
+ # Perform prediction on the image
27
  predictions = model.predict(temp_file_path, confidence=60, overlap=80).json()
28
 
29
+ # Count the number of objects per class
30
  class_count = {}
31
+ total_count = 0 # Store the total number of objects
32
 
33
  for prediction in predictions['predictions']:
34
  class_name = prediction['class']
 
36
  class_count[class_name] += 1
37
  else:
38
  class_count[class_name] = 1
39
+ total_count += 1 # Increment total object count for each prediction
40
 
41
+ # Prepare the result text
42
+ result_text = "Product Nestle\n\n"
43
+
44
  for class_name, count in class_count.items():
45
  result_text += f"{class_name}: {count} \n"
46
 
47
+ result_text += f"\nTotal Product Nestle: {total_count}"
48
 
49
+ # Save the image with predictions
50
+ output_image_path = "/tmp/prediction.jpg"
51
+ model.predict(temp_file_path, confidence=60, overlap=80).save(output_image_path)
52
 
53
+ # Remove the temporary file after prediction
54
  os.remove(temp_file_path)
55
 
56
+ return output_image_path, result_text
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
+ # Create the Gradio interface
59
+ with gr.Blocks() as iface:
60
+ with gr.Row():
61
+ image_input = gr.Image(type="pil", label="Input Image")
62
+ with gr.Row():
63
+ with gr.Column():
64
+ image_output = gr.Image(label="Detect Object")
65
+ with gr.Column():
66
+ text_output = gr.Textbox(label="Counting Object")
67
+ gr.Interface(
68
+ fn=detect_objects,
69
+ inputs=image_input,
70
+ outputs=[image_output, text_output],
71
+ )
72
 
73
+ # Launch the interface
74
  iface.launch()