Update app.py
Browse files
app.py
CHANGED
@@ -27,82 +27,85 @@ def detect_objects(image):
|
|
27 |
temp_file_path = temp_file.name
|
28 |
|
29 |
try:
|
30 |
-
# Perform sliced inference with SAHI
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
slice_height=256, # Adjust slice height as needed
|
35 |
-
slice_width=256, # Adjust slice width as needed
|
36 |
-
overlap_height_ratio=0.2, # Adjust overlap height ratio as needed
|
37 |
-
overlap_width_ratio=0.2 # Adjust overlap width ratio as needed
|
38 |
-
)
|
39 |
-
|
40 |
-
# Menghitung jumlah objek per kelas
|
41 |
-
class_count = {}
|
42 |
-
total_count = 0 # Menyimpan total jumlah objek
|
43 |
-
|
44 |
-
for prediction in result.object_prediction_list:
|
45 |
-
class_name = prediction.class_id # or prediction.class_name if available
|
46 |
-
class_count[class_name] = class_count.get(class_name, 0) + 1
|
47 |
-
total_count += 1 # Tambah jumlah objek untuk setiap prediksi
|
48 |
|
49 |
-
#
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
result.export_visuals(export_dir="/tmp/") # Export visuals for display
|
58 |
-
output_image_path = "/tmp/prediction_visual.png" # Assuming the visual output is saved here
|
59 |
|
60 |
-
#
|
61 |
-
label_annotator = sv.LabelAnnotator()
|
62 |
box_annotator = sv.BoxAnnotator()
|
|
|
63 |
|
64 |
annotated_image = box_annotator.annotate(
|
65 |
-
scene=image.copy(), detections=
|
66 |
|
67 |
annotated_image = label_annotator.annotate(
|
68 |
-
scene=annotated_image, detections=
|
69 |
|
70 |
# Save the annotated image
|
|
|
71 |
annotated_image.save(output_image_path)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
except requests.exceptions.HTTPError as http_err:
|
74 |
-
#
|
75 |
result_text = f"HTTP error occurred: {http_err}"
|
76 |
-
output_image_path = temp_file_path #
|
77 |
except Exception as err:
|
78 |
-
#
|
79 |
result_text = f"An error occurred: {err}"
|
80 |
-
output_image_path = temp_file_path #
|
81 |
|
82 |
-
#
|
83 |
os.remove(temp_file_path)
|
84 |
|
85 |
return output_image_path, result_text
|
86 |
|
87 |
-
#
|
88 |
with gr.Blocks() as iface:
|
89 |
with gr.Row():
|
90 |
with gr.Column():
|
91 |
input_image = gr.Image(type="pil", label="Input Image")
|
92 |
with gr.Column():
|
93 |
-
output_image = gr.Image(label="
|
94 |
with gr.Column():
|
95 |
-
output_text = gr.Textbox(label="
|
96 |
|
97 |
-
#
|
98 |
-
detect_button = gr.Button("Detect")
|
99 |
|
100 |
-
#
|
101 |
detect_button.click(
|
102 |
fn=detect_objects,
|
103 |
inputs=input_image,
|
104 |
outputs=[output_image, output_text]
|
105 |
)
|
106 |
|
107 |
-
#
|
108 |
iface.launch()
|
|
|
27 |
temp_file_path = temp_file.name
|
28 |
|
29 |
try:
|
30 |
+
# Perform sliced inference with SAHI using InferenceSlicer
|
31 |
+
def callback(image_slice: np.ndarray) -> sv.Detections:
|
32 |
+
results = model.infer(image_slice)[0] # Perform inference on each slice
|
33 |
+
return sv.Detections.from_inference(results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
# Configure the SAHI Slicer with specific slice dimensions and overlap
|
36 |
+
slicer = sv.InferenceSlicer(
|
37 |
+
callback=callback,
|
38 |
+
slice_wh=(320, 320), # Adjust slice dimensions as needed
|
39 |
+
overlap_wh=(0.2, 0.2), # Adjust overlap ratio for better results
|
40 |
+
overlap_filter=sv.OverlapFilter.NON_MAX_SUPPRESSION, # Filter overlapping detections
|
41 |
+
iou_threshold=0.5, # Intersection over Union threshold for NMS
|
42 |
+
)
|
43 |
|
44 |
+
# Run slicing-based inference
|
45 |
+
detections = slicer(image)
|
|
|
|
|
46 |
|
47 |
+
# Annotate the results on the image
|
|
|
48 |
box_annotator = sv.BoxAnnotator()
|
49 |
+
label_annotator = sv.LabelAnnotator()
|
50 |
|
51 |
annotated_image = box_annotator.annotate(
|
52 |
+
scene=image.copy(), detections=detections)
|
53 |
|
54 |
annotated_image = label_annotator.annotate(
|
55 |
+
scene=annotated_image, detections=detections)
|
56 |
|
57 |
# Save the annotated image
|
58 |
+
output_image_path = "/tmp/prediction_visual.png"
|
59 |
annotated_image.save(output_image_path)
|
60 |
|
61 |
+
# Count the number of detected objects per class
|
62 |
+
class_count = {}
|
63 |
+
total_count = 0
|
64 |
+
|
65 |
+
for prediction in detections:
|
66 |
+
class_name = prediction.class_id # or prediction.class_name if available
|
67 |
+
class_count[class_name] = class_count.get(class_name, 0) + 1
|
68 |
+
total_count += 1 # Increment the total object count
|
69 |
+
|
70 |
+
# Create a result text with object counts
|
71 |
+
result_text = "Detected Objects:\n\n"
|
72 |
+
for class_name, count in class_count.items():
|
73 |
+
result_text += f"{class_name}: {count}\n"
|
74 |
+
result_text += f"\nTotal objects detected: {total_count}"
|
75 |
+
|
76 |
except requests.exceptions.HTTPError as http_err:
|
77 |
+
# Handle HTTP errors
|
78 |
result_text = f"HTTP error occurred: {http_err}"
|
79 |
+
output_image_path = temp_file_path # Return the original image in case of error
|
80 |
except Exception as err:
|
81 |
+
# Handle other errors
|
82 |
result_text = f"An error occurred: {err}"
|
83 |
+
output_image_path = temp_file_path # Return the original image in case of error
|
84 |
|
85 |
+
# Clean up temporary files
|
86 |
os.remove(temp_file_path)
|
87 |
|
88 |
return output_image_path, result_text
|
89 |
|
90 |
+
# Create the Gradio interface
|
91 |
with gr.Blocks() as iface:
|
92 |
with gr.Row():
|
93 |
with gr.Column():
|
94 |
input_image = gr.Image(type="pil", label="Input Image")
|
95 |
with gr.Column():
|
96 |
+
output_image = gr.Image(label="Detected Objects")
|
97 |
with gr.Column():
|
98 |
+
output_text = gr.Textbox(label="Object Count")
|
99 |
|
100 |
+
# Button to trigger object detection
|
101 |
+
detect_button = gr.Button("Detect Objects")
|
102 |
|
103 |
+
# Link the button to the detect_objects function
|
104 |
detect_button.click(
|
105 |
fn=detect_objects,
|
106 |
inputs=input_image,
|
107 |
outputs=[output_image, output_text]
|
108 |
)
|
109 |
|
110 |
+
# Launch the interface
|
111 |
iface.launch()
|