File size: 3,989 Bytes
ac831c4 af6e415 52b0cb8 0fc2ac3 52b0cb8 0fc2ac3 52b0cb8 0fc2ac3 93307f9 af6e415 0fc2ac3 af6e415 0fc2ac3 af6e415 0fc2ac3 af6e415 0fc2ac3 af6e415 0fc2ac3 64c6f6f 0fc2ac3 af6e415 0fc2ac3 af6e415 0fc2ac3 ac831c4 af6e415 5a61493 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import numpy as np
import cv2
import supervision as sv
from roboflow import Roboflow
import tempfile
import os
import requests
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# Initialize Roboflow with the API key
rf = Roboflow(api_key=api_key)
project = rf.workspace(workspace).project(project_name)
model = project.version(model_version).model
def detect_objects(image):
# Save the uploaded image to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file:
image.save(temp_file, format="JPEG")
temp_file_path = temp_file.name
try:
# Perform inference on the uploaded image using the Roboflow model
predictions = model.predict(temp_file_path, confidence=60, overlap=80).json()
# Initialize Supervision annotations
detections = []
for prediction in predictions['predictions']:
# Get bounding box and class for each prediction
bbox = prediction['bbox']
class_name = prediction['class']
confidence = prediction['confidence']
# Add detection to Supervision Detections list
detections.append(
sv.Detection(
x1=bbox[0],
y1=bbox[1],
x2=bbox[2],
y2=bbox[3],
confidence=confidence,
class_name=class_name
)
)
# Convert detections to a Detections object for Supervision
detections = sv.Detections(detections)
# Annotate the image with bounding boxes and labels
label_annotator = sv.LabelAnnotator()
box_annotator = sv.BoxAnnotator()
# Read the image back for OpenCV processing
image_cv = cv2.imread(temp_file_path)
annotated_image = box_annotator.annotate(scene=image_cv.copy(), detections=detections)
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
# Count detected objects per class
class_count = {}
total_count = 0
for detection in detections:
class_name = detection.class_name
class_count[class_name] = class_count.get(class_name, 0) + 1
total_count += 1
# Prepare result text
result_text = "Detected Objects:\n\n"
for class_name, count in class_count.items():
result_text += f"{class_name}: {count}\n"
result_text += f"\nTotal objects detected: {total_count}"
# Save the annotated image as output
output_image_path = "/tmp/prediction.jpg"
cv2.imwrite(output_image_path, annotated_image)
except requests.exceptions.HTTPError as http_err:
result_text = f"HTTP error occurred: {http_err}"
output_image_path = temp_file_path # Return original image on error
except Exception as err:
result_text = f"An error occurred: {err}"
output_image_path = temp_file_path # Return original image on error
# Clean up by removing the temporary file
os.remove(temp_file_path)
return output_image_path, result_text
# Gradio interface
with gr.Blocks() as iface:
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
with gr.Column():
output_image = gr.Image(label="Detected Image")
with gr.Column():
output_text = gr.Textbox(label="Object Count Results")
detect_button = gr.Button("Detect")
detect_button.click(
fn=detect_objects,
inputs=input_image,
outputs=[output_image, output_text]
)
# Launch the Gradio interface
iface.launch()
|