Update app.py
Browse files
app.py
CHANGED
@@ -8,8 +8,9 @@ from inference import get_roboflow_model
|
|
8 |
model = get_roboflow_model(model_id="nescafe-4base/46", api_key="Otg64Ra6wNOgDyjuhMYU")
|
9 |
|
10 |
def callback(image_slice: np.ndarray) -> sv.Detections:
|
|
|
11 |
results = model.infer(image_slice)[0]
|
12 |
-
return sv.Detections.from_inference(results)
|
13 |
|
14 |
# Define the slicer
|
15 |
slicer = sv.InferenceSlicer(callback=callback)
|
@@ -29,8 +30,10 @@ def detect_objects(image):
|
|
29 |
|
30 |
# Count detected objects per class
|
31 |
class_counts = {}
|
|
|
|
|
32 |
for detection in sliced_detections:
|
33 |
-
class_name = detection.class_name
|
34 |
class_counts[class_name] = class_counts.get(class_name, 0) + 1
|
35 |
|
36 |
# Total objects detected
|
|
|
8 |
model = get_roboflow_model(model_id="nescafe-4base/46", api_key="Otg64Ra6wNOgDyjuhMYU")
|
9 |
|
10 |
def callback(image_slice: np.ndarray) -> sv.Detections:
|
11 |
+
# Perform inference on the image slice
|
12 |
results = model.infer(image_slice)[0]
|
13 |
+
return sv.Detections.from_inference(results) # Wrap inference results in the proper supervision format
|
14 |
|
15 |
# Define the slicer
|
16 |
slicer = sv.InferenceSlicer(callback=callback)
|
|
|
30 |
|
31 |
# Count detected objects per class
|
32 |
class_counts = {}
|
33 |
+
|
34 |
+
# Loop through the detections, which should now be in the correct format
|
35 |
for detection in sliced_detections:
|
36 |
+
class_name = detection.class_name # Now `detection` should be a detection object with class_name
|
37 |
class_counts[class_name] = class_counts.get(class_name, 0) + 1
|
38 |
|
39 |
# Total objects detected
|