File size: 12,455 Bytes
284b9fd
 
 
 
 
 
1aa8b04
4674a36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284b9fd
 
c74f66c
1aa8b04
 
284b9fd
4674a36
284b9fd
 
4674a36
284b9fd
 
4674a36
284b9fd
 
1aa8b04
 
 
 
 
 
 
 
 
 
 
 
 
 
284b9fd
 
c74f66c
284b9fd
 
 
 
 
 
 
 
1aa8b04
 
284b9fd
4674a36
284b9fd
 
4674a36
284b9fd
 
4674a36
284b9fd
 
1aa8b04
 
 
 
 
 
 
 
 
 
 
 
284b9fd
1aa8b04
 
284b9fd
1aa8b04
284b9fd
 
1aa8b04
 
 
 
284b9fd
1aa8b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4674a36
 
1aa8b04
 
 
 
 
 
 
 
 
 
 
 
284b9fd
1aa8b04
 
 
 
 
 
 
 
 
284b9fd
 
 
 
 
4674a36
 
 
 
284b9fd
 
db34083
4674a36
 
db34083
 
 
284b9fd
 
4674a36
284b9fd
 
4674a36
1aa8b04
 
 
 
 
 
 
 
4674a36
 
 
 
 
1aa8b04
 
4674a36
 
 
 
 
1aa8b04
 
4674a36
1aa8b04
 
4674a36
1aa8b04
4674a36
1aa8b04
4674a36
1aa8b04
 
4674a36
1aa8b04
 
 
 
 
 
4674a36
1aa8b04
 
 
 
 
 
4674a36
1aa8b04
 
 
 
 
 
4674a36
1aa8b04
 
4674a36
1aa8b04
 
4674a36
1aa8b04
 
4674a36
1aa8b04
4674a36
 
284b9fd
 
4674a36
 
 
 
 
 
 
 
 
284b9fd
1aa8b04
4674a36
1aa8b04
 
4674a36
 
 
db34083
4674a36
284b9fd
1aa8b04
4674a36
1aa8b04
4674a36
 
 
 
 
 
 
 
 
1aa8b04
 
 
 
816d023
c74f66c
284b9fd
 
1aa8b04
284b9fd
 
 
 
 
 
 
 
 
 
 
c74f66c
284b9fd
 
 
 
 
 
 
 
 
 
1aa8b04
284b9fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1aa8b04
284b9fd
 
1aa8b04
 
284b9fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import os
import json
import shutil
import argparse
import warnings
import gradio as gr
from generate import generate_music, get_args
from utils import WEIGHTS_DIR, TEMP_DIR, LANG

EN2ZH = {
    "Cite": "引用",
    "Submit": "提交",
    "Feedback: the emotion you believe the generated result should belong to": "反馈:你所认为的生成结果该所属的情感",
    "Status": "状态栏",
    "Staff": "五线谱",
    "ABC notation": "ABC 记谱",
    "Download MXL": "下载 MXL",
    "Download MusicXML": "下载 MusicXML",
    "Download PDF score": "下载 PDF 乐谱",
    "Download MIDI": "下载 MIDI",
    "Audio": "音频",
    "Download template": "下载模板",
    "Save template": "保存模板",
    "The emotion to which the current template belongs": "当前模板所属情感",
    "Generate": "生成",
    "Generate chords coming soon": "生成和声控制暂不可用",
    "Volume in dB": "dB 音量调节",
    "±12 octave": "±12 八度上下移",
    "BPM tempo": "BPM 速度",
    "Minor": "小调",
    "Major": "大调",
    "Mode": "大小调",
    "Pitch SD": "音高标准差",
    "Low": "低",
    "High": "高",
    "By feature control": "通过特征控制生成",
    "By template": "通过模板生成",
    "Arousal: reflects the calmness-intensity of the emotion": "唤醒度 反映情绪的 平静-激烈 程度",
    "Valence: reflects negative-positive levels of emotion": "愉悦度 反映情绪的 消极-积极 程度",
    "Video demo": "视频教程",
    "Dataset": "数据集",
    "Status": "状态栏",
}


def _L(en_txt: str):
    return en_txt if LANG else f"{en_txt} ({EN2ZH[en_txt]})"


def infer_by_template(dataset: str, v: str, a: str, add_chord: bool):
    status = "Success"
    audio = midi = pdf = xml = mxl = tunes = jpg = None
    emotion = "Q1"
    if v == _L("Low") and a == _L("High"):
        emotion = "Q2"

    elif v == _L("Low") and a == _L("Low"):
        emotion = "Q3"

    elif v == _L("High") and a == _L("Low"):
        emotion = "Q4"

    try:
        parser = argparse.ArgumentParser()
        args = get_args(parser)
        args.template = True
        audio, midi, pdf, xml, mxl, tunes, jpg = generate_music(
            args,
            emo=emotion,
            weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
        )

    except Exception as e:
        status = f"{e}"

    return status, audio, midi, pdf, xml, mxl, tunes, jpg


def infer_by_features(
    dataset: str,
    pitch_std: str,
    mode: str,
    tempo: int,
    octave: int,
    rms: int,
    add_chord: bool,
):
    status = "Success"
    audio = midi = pdf = xml = mxl = tunes = jpg = None
    emotion = "Q1"
    if mode == _L("Minor") and pitch_std == _L("High"):
        emotion = "Q2"

    elif mode == _L("Minor") and pitch_std == _L("Low"):
        emotion = "Q3"

    elif mode == _L("Major") and pitch_std == _L("Low"):
        emotion = "Q4"

    try:
        parser = argparse.ArgumentParser()
        args = get_args(parser)
        args.template = False
        audio, midi, pdf, xml, mxl, tunes, jpg = generate_music(
            args,
            emo=emotion,
            weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
            fix_tempo=tempo,
            fix_pitch=octave,
            fix_volume=rms,
        )

    except Exception as e:
        status = f"{e}"

    return status, audio, midi, pdf, xml, mxl, tunes, jpg


def feedback(
    fixed_emo: str,
    source_dir=f"./{TEMP_DIR}/output",
    target_dir=f"./{TEMP_DIR}/feedback",
):
    try:
        if not fixed_emo:
            raise ValueError("Please select feedback before submitting! ")

        os.makedirs(target_dir, exist_ok=True)
        for root, _, files in os.walk(source_dir):
            for file in files:
                if file.endswith(".mxl"):
                    prompt_emo = file.split("]")[0][1:]
                    if prompt_emo != fixed_emo:
                        file_path = os.path.join(root, file)
                        target_path = os.path.join(
                            target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
                        )
                        shutil.copy(file_path, target_path)
                        return f"Copied {file_path} to {target_path}"

                    else:
                        return "Thanks for your feedback!"

        return "No .mxl files found in the source directory."

    except Exception as e:
        return f"{e}"


def save_template(label: str, pitch_std: str, mode: str, tempo: int, octave: int, rms):
    status = "Success"
    template = None
    try:
        if (
            label
            and pitch_std
            and mode
            and tempo != None
            and octave != None
            and rms != None
        ):
            json_str = json.dumps(
                {
                    "label": label,
                    "pitch_std": pitch_std == _L("High"),
                    "mode": mode == _L("Major"),
                    "tempo": tempo,
                    "octave": octave,
                    "volume": rms,
                }
            )

            with open(
                f"./{TEMP_DIR}/feedback/templates.jsonl",
                "a",
                encoding="utf-8",
            ) as file:
                file.write(json_str + "\n")

            template = f"./{TEMP_DIR}/feedback/templates.jsonl"

        else:
            raise ValueError("Please check features")

    except Exception as e:
        status = f"{e}"

    return status, template


if __name__ == "__main__":
    warnings.filterwarnings("ignore")
    with gr.Blocks() as demo:
        if LANG:
            gr.Markdown(
                "## The current CPU-based version on HuggingFace has slow inference, you can access the GPU-based mirror on [ModelScope](https://www.modelscope.cn/studios/monetjoe/EMelodyGen)"
            )
        with gr.Row():
            with gr.Column():
                gr.Video(
                    "./demo.mp4" if LANG else "./src/tutorial.mp4",
                    label=_L("Video demo"),
                    show_download_button=False,
                    show_share_button=False,
                )
                dataset_option = gr.Dropdown(
                    ["VGMIDI", "EMOPIA", "Rough4Q"],
                    label=_L("Dataset"),
                    value="Rough4Q",
                )
                with gr.Tab(_L("By template")):
                    gr.Image(
                        "https://www.modelscope.cn/studio/monetjoe/EMelodyGen/resolve/master/src/4q.jpg",
                        show_label=False,
                        show_download_button=False,
                        show_fullscreen_button=False,
                        show_share_button=False,
                    )
                    valence_radio = gr.Radio(
                        [_L("Low"), _L("High")],
                        label=_L(
                            "Valence: reflects negative-positive levels of emotion"
                        ),
                        value=_L("High"),
                    )
                    arousal_radio = gr.Radio(
                        [_L("Low"), _L("High")],
                        label=_L(
                            "Arousal: reflects the calmness-intensity of the emotion"
                        ),
                        value=_L("High"),
                    )
                    chord_check = gr.Checkbox(
                        label=_L("Generate chords coming soon"),
                        value=False,
                    )
                    gen_btn_1 = gr.Button(_L("Generate"))

                with gr.Tab(_L("By feature control")):
                    std_option = gr.Radio(
                        [_L("Low"), _L("High")], label=_L("Pitch SD"), value=_L("High")
                    )
                    mode_option = gr.Radio(
                        [_L("Minor"), _L("Major")], label=_L("Mode"), value=_L("Major")
                    )
                    tempo_option = gr.Slider(
                        minimum=40,
                        maximum=228,
                        step=1,
                        value=120,
                        label=_L("BPM tempo"),
                    )
                    octave_option = gr.Slider(
                        minimum=-24,
                        maximum=24,
                        step=12,
                        value=0,
                        label=_L("±12 octave"),
                    )
                    volume_option = gr.Slider(
                        minimum=-5,
                        maximum=10,
                        step=5,
                        value=0,
                        label=_L("Volume in dB"),
                    )
                    chord_check_2 = gr.Checkbox(
                        label=_L("Generate chords coming soon"),
                        value=False,
                    )
                    gen_btn_2 = gr.Button(_L("Generate"))
                    template_radio = gr.Radio(
                        ["Q1", "Q2", "Q3", "Q4"],
                        label=_L("The emotion to which the current template belongs"),
                    )
                    save_btn = gr.Button(_L("Save template"))
                    dld_template = gr.File(label=_L("Download template"))

            with gr.Column():
                wav_audio = gr.Audio(label=_L("Audio"), type="filepath")
                midi_file = gr.File(label=_L("Download MIDI"))
                pdf_file = gr.File(label=_L("Download PDF score"))
                xml_file = gr.File(label=_L("Download MusicXML"))
                mxl_file = gr.File(label=_L("Download MXL"))
                abc_textbox = gr.Textbox(
                    label=_L("ABC notation"), show_copy_button=True
                )
                staff_img = gr.Image(label=_L("Staff"), type="filepath")

            with gr.Column():
                status_bar = gr.Textbox(label=_L("Status"), show_copy_button=True)
                fdb_radio = gr.Radio(
                    ["Q1", "Q2", "Q3", "Q4"],
                    label=_L(
                        "Feedback: the emotion you believe the generated result should belong to"
                    ),
                )
                fdb_btn = gr.Button(_L("Submit"))

                gr.Markdown(
                    f"""## {_L("Cite")}
                    ```bibtex
                    @inproceedings{{Zhou2025EMelodyGen,
                        title     = {{EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template}},
                        author    = {{Monan Zhou and Xiaobing Li and Feng Yu and Wei Li}},
                        month     = {{Mar}},
                        year      = {{2025}},
                        publisher = {{GitHub}},
                        version   = {{0.1}},
                        url       = {{https://github.com/monetjoe/EMelodyGen}}
                    }}
                    ```"""
                )

        # actions
        gen_btn_1.click(
            fn=infer_by_template,
            inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
            outputs=[
                status_bar,
                wav_audio,
                midi_file,
                pdf_file,
                xml_file,
                mxl_file,
                abc_textbox,
                staff_img,
            ],
        )

        gen_btn_2.click(
            fn=infer_by_features,
            inputs=[
                dataset_option,
                std_option,
                mode_option,
                tempo_option,
                octave_option,
                volume_option,
                chord_check,
            ],
            outputs=[
                status_bar,
                wav_audio,
                midi_file,
                pdf_file,
                xml_file,
                mxl_file,
                abc_textbox,
                staff_img,
            ],
        )

        save_btn.click(
            fn=save_template,
            inputs=[
                template_radio,
                std_option,
                mode_option,
                tempo_option,
                octave_option,
                volume_option,
            ],
            outputs=[status_bar, dld_template],
        )

        fdb_btn.click(fn=feedback, inputs=fdb_radio, outputs=status_bar)

    demo.launch()