Spaces:
Running
Running
admin
commited on
Commit
Β·
284b9fd
1
Parent(s):
b82980a
upl base
Browse files- .gitignore +10 -0
- app.py +552 -0
- conda.txt +5 -0
- convert.py +91 -0
- model.py +350 -0
- requirements.txt +8 -0
- utils.py +62 -0
- xml2abc.py +0 -0
.gitignore
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*__pycache__*
|
2 |
+
output/*
|
3 |
+
rename.sh
|
4 |
+
test.py
|
5 |
+
gpt2-abcmusic/*
|
6 |
+
*.pth
|
7 |
+
flagged/*
|
8 |
+
mscore3/*
|
9 |
+
key.txt
|
10 |
+
feedbacks/*
|
app.py
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import shutil
|
8 |
+
import argparse
|
9 |
+
import warnings
|
10 |
+
import gradio as gr
|
11 |
+
import soundfile as sf
|
12 |
+
from transformers import GPT2Config
|
13 |
+
from model import Patchilizer, TunesFormer
|
14 |
+
from convert import abc2xml, xml2img, xml2, transpose_octaves_abc
|
15 |
+
from utils import (
|
16 |
+
PATCH_NUM_LAYERS,
|
17 |
+
PATCH_LENGTH,
|
18 |
+
CHAR_NUM_LAYERS,
|
19 |
+
PATCH_SIZE,
|
20 |
+
SHARE_WEIGHTS,
|
21 |
+
TEMP_DIR,
|
22 |
+
WEIGHTS_DIR,
|
23 |
+
DEVICE,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def get_args(parser: argparse.ArgumentParser):
|
28 |
+
parser.add_argument(
|
29 |
+
"-num_tunes",
|
30 |
+
type=int,
|
31 |
+
default=1,
|
32 |
+
help="the number of independently computed returned tunes",
|
33 |
+
)
|
34 |
+
parser.add_argument(
|
35 |
+
"-max_patch",
|
36 |
+
type=int,
|
37 |
+
default=128,
|
38 |
+
help="integer to define the maximum length in tokens of each tune",
|
39 |
+
)
|
40 |
+
parser.add_argument(
|
41 |
+
"-top_p",
|
42 |
+
type=float,
|
43 |
+
default=0.8,
|
44 |
+
help="float to define the tokens that are within the sample operation of text generation",
|
45 |
+
)
|
46 |
+
parser.add_argument(
|
47 |
+
"-top_k",
|
48 |
+
type=int,
|
49 |
+
default=8,
|
50 |
+
help="integer to define the tokens that are within the sample operation of text generation",
|
51 |
+
)
|
52 |
+
parser.add_argument(
|
53 |
+
"-temperature",
|
54 |
+
type=float,
|
55 |
+
default=1.2,
|
56 |
+
help="the temperature of the sampling operation",
|
57 |
+
)
|
58 |
+
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
|
59 |
+
parser.add_argument(
|
60 |
+
"-show_control_code",
|
61 |
+
type=bool,
|
62 |
+
default=False,
|
63 |
+
help="whether to show control code",
|
64 |
+
)
|
65 |
+
return parser.parse_args()
|
66 |
+
|
67 |
+
|
68 |
+
def get_abc_key_val(text: str, key="K"):
|
69 |
+
pattern = re.escape(key) + r":(.*?)\n"
|
70 |
+
match = re.search(pattern, text)
|
71 |
+
if match:
|
72 |
+
return match.group(1).strip()
|
73 |
+
else:
|
74 |
+
return None
|
75 |
+
|
76 |
+
|
77 |
+
def adjust_volume(in_audio: str, dB_change: int):
|
78 |
+
y, sr = sf.read(in_audio)
|
79 |
+
sf.write(in_audio, y * 10 ** (dB_change / 20), sr)
|
80 |
+
|
81 |
+
|
82 |
+
def generate_music(
|
83 |
+
args,
|
84 |
+
emo: str,
|
85 |
+
weights: str,
|
86 |
+
outdir=TEMP_DIR,
|
87 |
+
fix_tempo=None,
|
88 |
+
fix_pitch=None,
|
89 |
+
fix_volume=None,
|
90 |
+
):
|
91 |
+
patchilizer = Patchilizer()
|
92 |
+
patch_config = GPT2Config(
|
93 |
+
num_hidden_layers=PATCH_NUM_LAYERS,
|
94 |
+
max_length=PATCH_LENGTH,
|
95 |
+
max_position_embeddings=PATCH_LENGTH,
|
96 |
+
vocab_size=1,
|
97 |
+
)
|
98 |
+
char_config = GPT2Config(
|
99 |
+
num_hidden_layers=CHAR_NUM_LAYERS,
|
100 |
+
max_length=PATCH_SIZE,
|
101 |
+
max_position_embeddings=PATCH_SIZE,
|
102 |
+
vocab_size=128,
|
103 |
+
)
|
104 |
+
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
|
105 |
+
checkpoint = torch.load(weights)
|
106 |
+
model.load_state_dict(checkpoint["model"])
|
107 |
+
model = model.to(DEVICE)
|
108 |
+
model.eval()
|
109 |
+
prompt = f"A:{emo}\n"
|
110 |
+
tunes = ""
|
111 |
+
num_tunes = args.num_tunes
|
112 |
+
max_patch = args.max_patch
|
113 |
+
top_p = args.top_p
|
114 |
+
top_k = args.top_k
|
115 |
+
temperature = args.temperature
|
116 |
+
seed = args.seed
|
117 |
+
show_control_code = args.show_control_code
|
118 |
+
print(" Hyper parms ".center(60, "#"), "\n")
|
119 |
+
args_dict: dict = vars(args)
|
120 |
+
for arg in args_dict.keys():
|
121 |
+
print(f"{arg}: {str(args_dict[arg])}")
|
122 |
+
|
123 |
+
print("\n", " Output tunes ".center(60, "#"))
|
124 |
+
start_time = time.time()
|
125 |
+
for i in range(num_tunes):
|
126 |
+
title = f"T:{emo} Fragment\n"
|
127 |
+
artist = f"C:Generated by AI\n"
|
128 |
+
tune = f"X:{str(i + 1)}\n{title}{artist}{prompt}"
|
129 |
+
lines = re.split(r"(\n)", tune)
|
130 |
+
tune = ""
|
131 |
+
skip = False
|
132 |
+
for line in lines:
|
133 |
+
if show_control_code or line[:2] not in ["S:", "B:", "E:"]:
|
134 |
+
if not skip:
|
135 |
+
print(line, end="")
|
136 |
+
tune += line
|
137 |
+
|
138 |
+
skip = False
|
139 |
+
|
140 |
+
else:
|
141 |
+
skip = True
|
142 |
+
|
143 |
+
input_patches = torch.tensor(
|
144 |
+
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
|
145 |
+
device=DEVICE,
|
146 |
+
)
|
147 |
+
if tune == "":
|
148 |
+
tokens = None
|
149 |
+
|
150 |
+
else:
|
151 |
+
prefix = patchilizer.decode(input_patches[0])
|
152 |
+
remaining_tokens = prompt[len(prefix) :]
|
153 |
+
tokens = torch.tensor(
|
154 |
+
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
|
155 |
+
device=DEVICE,
|
156 |
+
)
|
157 |
+
|
158 |
+
while input_patches.shape[1] < max_patch:
|
159 |
+
predicted_patch, seed = model.generate(
|
160 |
+
input_patches,
|
161 |
+
tokens,
|
162 |
+
top_p=top_p,
|
163 |
+
top_k=top_k,
|
164 |
+
temperature=temperature,
|
165 |
+
seed=seed,
|
166 |
+
)
|
167 |
+
tokens = None
|
168 |
+
if predicted_patch[0] != patchilizer.eos_token_id:
|
169 |
+
next_bar = patchilizer.decode([predicted_patch])
|
170 |
+
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:"]:
|
171 |
+
print(next_bar, end="")
|
172 |
+
tune += next_bar
|
173 |
+
|
174 |
+
if next_bar == "":
|
175 |
+
break
|
176 |
+
|
177 |
+
next_bar = remaining_tokens + next_bar
|
178 |
+
remaining_tokens = ""
|
179 |
+
predicted_patch = torch.tensor(
|
180 |
+
patchilizer.bar2patch(next_bar),
|
181 |
+
device=DEVICE,
|
182 |
+
).unsqueeze(0)
|
183 |
+
input_patches = torch.cat(
|
184 |
+
[input_patches, predicted_patch.unsqueeze(0)],
|
185 |
+
dim=1,
|
186 |
+
)
|
187 |
+
|
188 |
+
else:
|
189 |
+
break
|
190 |
+
|
191 |
+
tunes += f"{tune}\n\n"
|
192 |
+
print("\n")
|
193 |
+
|
194 |
+
# fix tempo
|
195 |
+
if fix_tempo != None:
|
196 |
+
tempo = f"Q:{fix_tempo}\n"
|
197 |
+
|
198 |
+
else:
|
199 |
+
tempo = f"Q:{random.randint(88, 132)}\n"
|
200 |
+
if emo == "Q1":
|
201 |
+
tempo = f"Q:{random.randint(160, 184)}\n"
|
202 |
+
elif emo == "Q2":
|
203 |
+
tempo = f"Q:{random.randint(184, 228)}\n"
|
204 |
+
elif emo == "Q3":
|
205 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
206 |
+
elif emo == "Q4":
|
207 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
208 |
+
|
209 |
+
Q_val = get_abc_key_val(tunes, "Q")
|
210 |
+
if Q_val:
|
211 |
+
tunes = tunes.replace(f"Q:{Q_val}\n", "")
|
212 |
+
|
213 |
+
tunes = tunes.replace(f"A:{emo}\n", tempo)
|
214 |
+
# fix mode:major/minor
|
215 |
+
mode = "major" if emo == "Q1" or emo == "Q4" else "minor"
|
216 |
+
K_val = get_abc_key_val(tunes)
|
217 |
+
if mode == "major" and K_val and "m" in K_val:
|
218 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.split('m')[0]}\n")
|
219 |
+
|
220 |
+
elif mode == "minor" and K_val and not "m" in K_val:
|
221 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.lower()}min\n")
|
222 |
+
|
223 |
+
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
|
224 |
+
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
|
225 |
+
try:
|
226 |
+
# fix avg_pitch (octave)
|
227 |
+
if fix_pitch != None:
|
228 |
+
if fix_pitch:
|
229 |
+
tunes, xml = transpose_octaves_abc(
|
230 |
+
tunes,
|
231 |
+
f"{outdir}/{timestamp}.musicxml",
|
232 |
+
fix_pitch,
|
233 |
+
)
|
234 |
+
tunes = tunes.replace(title + title, title)
|
235 |
+
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
236 |
+
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
|
237 |
+
|
238 |
+
else:
|
239 |
+
if mode == "minor":
|
240 |
+
offset = -12
|
241 |
+
if emo == "Q2":
|
242 |
+
offset -= 12
|
243 |
+
|
244 |
+
tunes, xml = transpose_octaves_abc(
|
245 |
+
tunes,
|
246 |
+
f"{outdir}/{timestamp}.musicxml",
|
247 |
+
offset,
|
248 |
+
)
|
249 |
+
tunes = tunes.replace(title + title, title)
|
250 |
+
os.rename(xml, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
251 |
+
xml = f"{outdir}/[{emo}]{timestamp}.musicxml"
|
252 |
+
|
253 |
+
else:
|
254 |
+
xml = abc2xml(tunes, f"{outdir}/[{emo}]{timestamp}.musicxml")
|
255 |
+
|
256 |
+
audio = xml2(xml, "wav")
|
257 |
+
if fix_volume != None:
|
258 |
+
if fix_volume:
|
259 |
+
adjust_volume(audio, fix_volume)
|
260 |
+
|
261 |
+
elif os.path.exists(audio):
|
262 |
+
if emo == "Q1":
|
263 |
+
adjust_volume(audio, 5)
|
264 |
+
|
265 |
+
elif emo == "Q2":
|
266 |
+
adjust_volume(audio, 10)
|
267 |
+
|
268 |
+
mxl = xml2(xml, "mxl")
|
269 |
+
midi = xml2(xml, "mid")
|
270 |
+
pdf, jpg = xml2img(xml)
|
271 |
+
return audio, midi, pdf, xml, mxl, tunes, jpg
|
272 |
+
|
273 |
+
except Exception as e:
|
274 |
+
print(f"{e}")
|
275 |
+
return generate_music(args, emo, weights)
|
276 |
+
|
277 |
+
|
278 |
+
def inference(dataset: str, v: str, a: str, add_chord: bool):
|
279 |
+
if os.path.exists(TEMP_DIR):
|
280 |
+
shutil.rmtree(TEMP_DIR)
|
281 |
+
|
282 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
283 |
+
emotion = "Q1"
|
284 |
+
if v == "Low" and a == "High":
|
285 |
+
emotion = "Q2"
|
286 |
+
|
287 |
+
elif v == "Low" and a == "Low":
|
288 |
+
emotion = "Q3"
|
289 |
+
|
290 |
+
elif v == "High" and a == "Low":
|
291 |
+
emotion = "Q4"
|
292 |
+
|
293 |
+
parser = argparse.ArgumentParser()
|
294 |
+
args = get_args(parser)
|
295 |
+
return generate_music(
|
296 |
+
args,
|
297 |
+
emo=emotion,
|
298 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
299 |
+
)
|
300 |
+
|
301 |
+
|
302 |
+
def infer(
|
303 |
+
dataset: str,
|
304 |
+
pitch_std: str,
|
305 |
+
mode: str,
|
306 |
+
tempo: int,
|
307 |
+
octave: int,
|
308 |
+
rms: int,
|
309 |
+
add_chord: bool,
|
310 |
+
):
|
311 |
+
if os.path.exists(TEMP_DIR):
|
312 |
+
shutil.rmtree(TEMP_DIR)
|
313 |
+
|
314 |
+
os.makedirs(TEMP_DIR, exist_ok=True)
|
315 |
+
emotion = "Q1"
|
316 |
+
if mode == "Minor" and pitch_std == "High":
|
317 |
+
emotion = "Q2"
|
318 |
+
|
319 |
+
elif mode == "Minor" and pitch_std == "Low":
|
320 |
+
emotion = "Q3"
|
321 |
+
|
322 |
+
elif mode == "Major" and pitch_std == "Low":
|
323 |
+
emotion = "Q4"
|
324 |
+
|
325 |
+
parser = argparse.ArgumentParser()
|
326 |
+
args = get_args(parser)
|
327 |
+
return generate_music(
|
328 |
+
args,
|
329 |
+
emo=emotion,
|
330 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
331 |
+
fix_tempo=tempo,
|
332 |
+
fix_pitch=octave,
|
333 |
+
fix_volume=rms,
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
def feedback(fixed_emo: str, source_dir="./flagged", target_dir="./feedbacks"):
|
338 |
+
if not fixed_emo:
|
339 |
+
return "Please select feedback before submitting! "
|
340 |
+
|
341 |
+
os.makedirs(target_dir, exist_ok=True)
|
342 |
+
for root, _, files in os.walk(source_dir):
|
343 |
+
for file in files:
|
344 |
+
if file.endswith(".mxl"):
|
345 |
+
prompt_emo = file.split("]")[0][1:]
|
346 |
+
if prompt_emo != fixed_emo:
|
347 |
+
file_path = os.path.join(root, file)
|
348 |
+
target_path = os.path.join(
|
349 |
+
target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
|
350 |
+
)
|
351 |
+
shutil.copy(file_path, target_path)
|
352 |
+
return f"Copied {file_path} to {target_path}"
|
353 |
+
|
354 |
+
else:
|
355 |
+
return "Thanks for your feedback!"
|
356 |
+
|
357 |
+
return "No .mxl files found in the source directory."
|
358 |
+
|
359 |
+
|
360 |
+
def save_template(
|
361 |
+
label: str,
|
362 |
+
pitch_std: str,
|
363 |
+
mode: str,
|
364 |
+
tempo: int,
|
365 |
+
octave: int,
|
366 |
+
rms: int,
|
367 |
+
):
|
368 |
+
if (
|
369 |
+
label
|
370 |
+
and pitch_std
|
371 |
+
and mode
|
372 |
+
and tempo != None
|
373 |
+
and octave != None
|
374 |
+
and rms != None
|
375 |
+
):
|
376 |
+
json_str = json.dumps(
|
377 |
+
{
|
378 |
+
"label": label,
|
379 |
+
"pitch_std": pitch_std == "High",
|
380 |
+
"mode": mode == "Major",
|
381 |
+
"tempo": tempo,
|
382 |
+
"octave": octave,
|
383 |
+
"volume": rms,
|
384 |
+
}
|
385 |
+
)
|
386 |
+
|
387 |
+
with open("./feedbacks/templates.jsonl", "a", encoding="utf-8") as file:
|
388 |
+
file.write(json_str + "\n")
|
389 |
+
|
390 |
+
|
391 |
+
if __name__ == "__main__":
|
392 |
+
warnings.filterwarnings("ignore")
|
393 |
+
if os.path.exists("./flagged"):
|
394 |
+
shutil.rmtree("./flagged")
|
395 |
+
|
396 |
+
with gr.Blocks() as demo:
|
397 |
+
with gr.Row():
|
398 |
+
with gr.Column():
|
399 |
+
dataset_option = gr.Dropdown(
|
400 |
+
["VGMIDI", "EMOPIA", "Rough4Q"],
|
401 |
+
label="Dataset",
|
402 |
+
value="Rough4Q",
|
403 |
+
)
|
404 |
+
gr.Markdown(
|
405 |
+
"# Generate by emotion condition<br><img width='100%' src='https://www.modelscope.cn/studio/monetjoe/EMusicGen/resolve/master/4q.jpg'>"
|
406 |
+
)
|
407 |
+
valence_radio = gr.Radio(
|
408 |
+
["Low", "High"],
|
409 |
+
label="Valence (reflects negative-positive levels of emotion)",
|
410 |
+
value="High",
|
411 |
+
)
|
412 |
+
arousal_radio = gr.Radio(
|
413 |
+
["Low", "High"],
|
414 |
+
label="Arousal (reflects the calmness-intensity of the emotion)",
|
415 |
+
value="High",
|
416 |
+
)
|
417 |
+
chord_check = gr.Checkbox(
|
418 |
+
label="Generate chords",
|
419 |
+
value=False,
|
420 |
+
)
|
421 |
+
gen_btn = gr.Button("Generate")
|
422 |
+
gr.Markdown("# Generate by feature control")
|
423 |
+
std_option = gr.Radio(
|
424 |
+
["Low", "High"],
|
425 |
+
label="Pitch SD",
|
426 |
+
value="High",
|
427 |
+
)
|
428 |
+
mode_option = gr.Radio(
|
429 |
+
["Minor", "Major"],
|
430 |
+
label="Mode",
|
431 |
+
value="Major",
|
432 |
+
)
|
433 |
+
tempo_option = gr.Slider(
|
434 |
+
minimum=40,
|
435 |
+
maximum=228,
|
436 |
+
step=1,
|
437 |
+
value=120,
|
438 |
+
label="Tempo (BPM)",
|
439 |
+
)
|
440 |
+
octave_option = gr.Slider(
|
441 |
+
minimum=-24,
|
442 |
+
maximum=24,
|
443 |
+
step=12,
|
444 |
+
value=0,
|
445 |
+
label="Octave (Β±12)",
|
446 |
+
)
|
447 |
+
volume_option = gr.Slider(
|
448 |
+
minimum=-5,
|
449 |
+
maximum=10,
|
450 |
+
step=5,
|
451 |
+
value=0,
|
452 |
+
label="Volume (dB)",
|
453 |
+
)
|
454 |
+
chord_check_2 = gr.Checkbox(
|
455 |
+
label="Generate chords",
|
456 |
+
value=False,
|
457 |
+
)
|
458 |
+
gen_btn_2 = gr.Button("Generate")
|
459 |
+
template_radio = gr.Radio(
|
460 |
+
["Q1", "Q2", "Q3", "Q4"],
|
461 |
+
label="The emotion to which the current template belongs",
|
462 |
+
)
|
463 |
+
save_btn = gr.Button("Save template")
|
464 |
+
gr.Markdown(
|
465 |
+
"""
|
466 |
+
## Cite
|
467 |
+
```bibtex
|
468 |
+
@article{Zhou2024EMusicGen,
|
469 |
+
title = {EMusicGen: Emotion-Conditioned Melody Generation in ABC Notation},
|
470 |
+
author = {Monan Zhou, Xiaobing Li, Feng Yu and Wei Li},
|
471 |
+
month = {Sep},
|
472 |
+
year = {2024},
|
473 |
+
publisher = {GitHub},
|
474 |
+
version = {0.1},
|
475 |
+
url = {https://github.com/monetjoe/EMusicGen}
|
476 |
+
}
|
477 |
+
```
|
478 |
+
"""
|
479 |
+
)
|
480 |
+
|
481 |
+
with gr.Column():
|
482 |
+
wav_audio = gr.Audio(label="Audio", type="filepath")
|
483 |
+
midi_file = gr.File(label="Download MIDI")
|
484 |
+
pdf_file = gr.File(label="Download PDF score")
|
485 |
+
xml_file = gr.File(label="Download MusicXML")
|
486 |
+
mxl_file = gr.File(label="Download MXL")
|
487 |
+
abc_textbox = gr.Textbox(
|
488 |
+
label="ABC notation",
|
489 |
+
show_copy_button=True,
|
490 |
+
)
|
491 |
+
staff_img = gr.Image(label="Staff", type="filepath")
|
492 |
+
|
493 |
+
with gr.Row():
|
494 |
+
gr.Interface(
|
495 |
+
fn=feedback,
|
496 |
+
inputs=gr.Radio(
|
497 |
+
["Q1", "Q2", "Q3", "Q4"],
|
498 |
+
label="Feedback: the emotion you believe the generated result should belong to",
|
499 |
+
),
|
500 |
+
outputs=gr.Textbox(show_copy_button=False, show_label=False),
|
501 |
+
allow_flagging="never",
|
502 |
+
)
|
503 |
+
|
504 |
+
gen_btn.click(
|
505 |
+
fn=inference,
|
506 |
+
inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
|
507 |
+
outputs=[
|
508 |
+
wav_audio,
|
509 |
+
midi_file,
|
510 |
+
pdf_file,
|
511 |
+
xml_file,
|
512 |
+
mxl_file,
|
513 |
+
abc_textbox,
|
514 |
+
staff_img,
|
515 |
+
],
|
516 |
+
)
|
517 |
+
|
518 |
+
gen_btn_2.click(
|
519 |
+
fn=infer,
|
520 |
+
inputs=[
|
521 |
+
dataset_option,
|
522 |
+
std_option,
|
523 |
+
mode_option,
|
524 |
+
tempo_option,
|
525 |
+
octave_option,
|
526 |
+
volume_option,
|
527 |
+
chord_check,
|
528 |
+
],
|
529 |
+
outputs=[
|
530 |
+
wav_audio,
|
531 |
+
midi_file,
|
532 |
+
pdf_file,
|
533 |
+
xml_file,
|
534 |
+
mxl_file,
|
535 |
+
abc_textbox,
|
536 |
+
staff_img,
|
537 |
+
],
|
538 |
+
)
|
539 |
+
|
540 |
+
save_btn.click(
|
541 |
+
fn=save_template,
|
542 |
+
inputs=[
|
543 |
+
template_radio,
|
544 |
+
std_option,
|
545 |
+
mode_option,
|
546 |
+
tempo_option,
|
547 |
+
octave_option,
|
548 |
+
volume_option,
|
549 |
+
],
|
550 |
+
)
|
551 |
+
|
552 |
+
demo.launch()
|
conda.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python=3.10
|
2 |
+
pytorch=1.12.1
|
3 |
+
torchvision=0.13.1
|
4 |
+
torchaudio=0.12.1
|
5 |
+
cudatoolkit=11.3.1
|
convert.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import fitz
|
3 |
+
import subprocess
|
4 |
+
from PIL import Image
|
5 |
+
from music21 import converter, interval, clef, stream
|
6 |
+
from utils import MSCORE
|
7 |
+
|
8 |
+
|
9 |
+
def abc2xml(abc_content, output_xml_path):
|
10 |
+
score = converter.parse(abc_content, format="abc")
|
11 |
+
score.write("musicxml", fp=output_xml_path, encoding="utf-8")
|
12 |
+
return output_xml_path
|
13 |
+
|
14 |
+
|
15 |
+
def xml2(xml_path: str, target_fmt: str):
|
16 |
+
src_fmt = os.path.basename(xml_path).split(".")[-1]
|
17 |
+
if not "." in target_fmt:
|
18 |
+
target_fmt = "." + target_fmt
|
19 |
+
|
20 |
+
target_file = xml_path.replace(f".{src_fmt}", target_fmt)
|
21 |
+
print(subprocess.run([MSCORE, "-o", target_file, xml_path]))
|
22 |
+
return target_file
|
23 |
+
|
24 |
+
|
25 |
+
def pdf2img(pdf_path: str):
|
26 |
+
output_path = pdf_path.replace(".pdf", ".jpg")
|
27 |
+
doc = fitz.open(pdf_path)
|
28 |
+
# εε»ΊδΈδΈͺεΎεε葨
|
29 |
+
images = []
|
30 |
+
for page_number in range(doc.page_count):
|
31 |
+
page = doc[page_number]
|
32 |
+
# ε°ι‘΅ι’ζΈ²ζδΈΊεΎε
|
33 |
+
image = page.get_pixmap()
|
34 |
+
# ε°εΎεζ·»ε ε°ε葨
|
35 |
+
images.append(
|
36 |
+
Image.frombytes("RGB", [image.width, image.height], image.samples)
|
37 |
+
)
|
38 |
+
# η«εεεΉΆεΎε
|
39 |
+
merged_image = Image.new(
|
40 |
+
"RGB", (images[0].width, sum(image.height for image in images))
|
41 |
+
)
|
42 |
+
y_offset = 0
|
43 |
+
for image in images:
|
44 |
+
merged_image.paste(image, (0, y_offset))
|
45 |
+
y_offset += image.height
|
46 |
+
# δΏεεεΉΆεηεΎεδΈΊJPG
|
47 |
+
merged_image.save(output_path, "JPEG")
|
48 |
+
# ε
³ιPDFζζ‘£
|
49 |
+
doc.close()
|
50 |
+
return output_path
|
51 |
+
|
52 |
+
|
53 |
+
def xml2img(xml_file: str):
|
54 |
+
ext = os.path.basename(xml_file).split(".")[-1]
|
55 |
+
pdf_score = xml_file.replace(f".{ext}", ".pdf")
|
56 |
+
command = [MSCORE, "-o", pdf_score, xml_file]
|
57 |
+
result = subprocess.run(command)
|
58 |
+
print(result)
|
59 |
+
return pdf_score, pdf2img(pdf_score)
|
60 |
+
|
61 |
+
|
62 |
+
# xml to abc
|
63 |
+
def xml2abc(input_xml_file: str):
|
64 |
+
result = subprocess.run(
|
65 |
+
["python", "-Xfrozen_modules=off", "./xml2abc.py", input_xml_file],
|
66 |
+
stdout=subprocess.PIPE,
|
67 |
+
text=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
if result.returncode == 0:
|
71 |
+
return str(result.stdout).strip()
|
72 |
+
|
73 |
+
return ""
|
74 |
+
|
75 |
+
|
76 |
+
def transpose_octaves_abc(abc_notation: str, out_xml_file: str, offset=-12):
|
77 |
+
score = converter.parse(abc_notation)
|
78 |
+
if offset < 0:
|
79 |
+
for part in score.parts:
|
80 |
+
for measure in part.getElementsByClass(stream.Measure):
|
81 |
+
# ζ£ζ₯ε½εε°θηθ°±ε·
|
82 |
+
if measure.clef:
|
83 |
+
measure.clef = clef.BassClef()
|
84 |
+
|
85 |
+
octaves_interval = interval.Interval(offset)
|
86 |
+
# ιεζ―δΈͺι³η¬¦οΌε°ε
ΆδΈδΈη§»ε
«εΊ¦
|
87 |
+
for note in score.recurse().notes:
|
88 |
+
note.transpose(octaves_interval, inPlace=True)
|
89 |
+
|
90 |
+
score.write("musicxml", fp=out_xml_file)
|
91 |
+
return xml2abc(out_xml_file), out_xml_file
|
model.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
from tqdm import tqdm
|
5 |
+
from unidecode import unidecode
|
6 |
+
from torch.utils.data import Dataset
|
7 |
+
from transformers import GPT2Model, GPT2LMHeadModel, PreTrainedModel
|
8 |
+
from samplings import top_p_sampling, top_k_sampling, temperature_sampling
|
9 |
+
from utils import PATCH_SIZE, PATCH_LENGTH, PATCH_SAMPLING_BATCH_SIZE
|
10 |
+
|
11 |
+
|
12 |
+
class Patchilizer:
|
13 |
+
"""
|
14 |
+
A class for converting music bars to patches and vice versa.
|
15 |
+
"""
|
16 |
+
|
17 |
+
def __init__(self):
|
18 |
+
self.delimiters = ["|:", "::", ":|", "[|", "||", "|]", "|"]
|
19 |
+
self.regexPattern = f"({'|'.join(map(re.escape, self.delimiters))})"
|
20 |
+
self.pad_token_id = 0
|
21 |
+
self.bos_token_id = 1
|
22 |
+
self.eos_token_id = 2
|
23 |
+
|
24 |
+
def split_bars(self, body):
|
25 |
+
"""
|
26 |
+
Split a body of music into individual bars.
|
27 |
+
"""
|
28 |
+
bars = re.split(self.regexPattern, "".join(body))
|
29 |
+
bars = list(filter(None, bars))
|
30 |
+
# remove empty strings
|
31 |
+
if bars[0] in self.delimiters:
|
32 |
+
bars[1] = bars[0] + bars[1]
|
33 |
+
bars = bars[1:]
|
34 |
+
|
35 |
+
bars = [bars[i * 2] + bars[i * 2 + 1] for i in range(len(bars) // 2)]
|
36 |
+
return bars
|
37 |
+
|
38 |
+
def bar2patch(self, bar, patch_size=PATCH_SIZE):
|
39 |
+
"""
|
40 |
+
Convert a bar into a patch of specified length.
|
41 |
+
"""
|
42 |
+
patch = [self.bos_token_id] + [ord(c) for c in bar] + [self.eos_token_id]
|
43 |
+
patch = patch[:patch_size]
|
44 |
+
patch += [self.pad_token_id] * (patch_size - len(patch))
|
45 |
+
return patch
|
46 |
+
|
47 |
+
def patch2bar(self, patch):
|
48 |
+
"""
|
49 |
+
Convert a patch into a bar.
|
50 |
+
"""
|
51 |
+
return "".join(
|
52 |
+
chr(idx) if idx > self.eos_token_id else ""
|
53 |
+
for idx in patch
|
54 |
+
if idx != self.eos_token_id
|
55 |
+
)
|
56 |
+
|
57 |
+
def encode(
|
58 |
+
self,
|
59 |
+
abc_code,
|
60 |
+
patch_length=PATCH_LENGTH,
|
61 |
+
patch_size=PATCH_SIZE,
|
62 |
+
add_special_patches=False,
|
63 |
+
):
|
64 |
+
"""
|
65 |
+
Encode music into patches of specified length.
|
66 |
+
"""
|
67 |
+
lines = unidecode(abc_code).split("\n")
|
68 |
+
lines = list(filter(None, lines)) # remove empty lines
|
69 |
+
|
70 |
+
body = ""
|
71 |
+
patches = []
|
72 |
+
|
73 |
+
for line in lines:
|
74 |
+
if len(line) > 1 and (
|
75 |
+
(line[0].isalpha() and line[1] == ":") or line.startswith("%%score")
|
76 |
+
):
|
77 |
+
if body:
|
78 |
+
bars = self.split_bars(body)
|
79 |
+
patches.extend(
|
80 |
+
self.bar2patch(
|
81 |
+
bar + "\n" if idx == len(bars) - 1 else bar, patch_size
|
82 |
+
)
|
83 |
+
for idx, bar in enumerate(bars)
|
84 |
+
)
|
85 |
+
body = ""
|
86 |
+
|
87 |
+
patches.append(self.bar2patch(line + "\n", patch_size))
|
88 |
+
|
89 |
+
else:
|
90 |
+
body += line + "\n"
|
91 |
+
|
92 |
+
if body:
|
93 |
+
patches.extend(
|
94 |
+
self.bar2patch(bar, patch_size) for bar in self.split_bars(body)
|
95 |
+
)
|
96 |
+
|
97 |
+
if add_special_patches:
|
98 |
+
bos_patch = [self.bos_token_id] * (patch_size - 1) + [self.eos_token_id]
|
99 |
+
eos_patch = [self.bos_token_id] + [self.eos_token_id] * (patch_size - 1)
|
100 |
+
patches = [bos_patch] + patches + [eos_patch]
|
101 |
+
|
102 |
+
return patches[:patch_length]
|
103 |
+
|
104 |
+
def decode(self, patches):
|
105 |
+
"""
|
106 |
+
Decode patches into music.
|
107 |
+
"""
|
108 |
+
return "".join(self.patch2bar(patch) for patch in patches)
|
109 |
+
|
110 |
+
|
111 |
+
class PatchLevelDecoder(PreTrainedModel):
|
112 |
+
"""
|
113 |
+
An Patch-level Decoder model for generating patch features in an auto-regressive manner.
|
114 |
+
It inherits PreTrainedModel from transformers.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def __init__(self, config):
|
118 |
+
super().__init__(config)
|
119 |
+
self.patch_embedding = torch.nn.Linear(PATCH_SIZE * 128, config.n_embd)
|
120 |
+
torch.nn.init.normal_(self.patch_embedding.weight, std=0.02)
|
121 |
+
self.base = GPT2Model(config)
|
122 |
+
|
123 |
+
def forward(self, patches: torch.Tensor) -> torch.Tensor:
|
124 |
+
"""
|
125 |
+
The forward pass of the patch-level decoder model.
|
126 |
+
:param patches: the patches to be encoded
|
127 |
+
:return: the encoded patches
|
128 |
+
"""
|
129 |
+
patches = torch.nn.functional.one_hot(patches, num_classes=128).float()
|
130 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE * 128)
|
131 |
+
patches = self.patch_embedding(patches.to(self.device))
|
132 |
+
|
133 |
+
return self.base(inputs_embeds=patches)
|
134 |
+
|
135 |
+
|
136 |
+
class CharLevelDecoder(PreTrainedModel):
|
137 |
+
"""
|
138 |
+
A Char-level Decoder model for generating the characters within each bar patch sequentially.
|
139 |
+
It inherits PreTrainedModel from transformers.
|
140 |
+
"""
|
141 |
+
|
142 |
+
def __init__(self, config):
|
143 |
+
super().__init__(config)
|
144 |
+
self.pad_token_id = 0
|
145 |
+
self.bos_token_id = 1
|
146 |
+
self.eos_token_id = 2
|
147 |
+
self.base = GPT2LMHeadModel(config)
|
148 |
+
|
149 |
+
def forward(
|
150 |
+
self,
|
151 |
+
encoded_patches: torch.Tensor,
|
152 |
+
target_patches: torch.Tensor,
|
153 |
+
patch_sampling_batch_size: int,
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
The forward pass of the char-level decoder model.
|
157 |
+
:param encoded_patches: the encoded patches
|
158 |
+
:param target_patches: the target patches
|
159 |
+
:return: the decoded patches
|
160 |
+
"""
|
161 |
+
# preparing the labels for model training
|
162 |
+
target_masks = target_patches == self.pad_token_id
|
163 |
+
labels = target_patches.clone().masked_fill_(target_masks, -100)
|
164 |
+
|
165 |
+
# masking the labels for model training
|
166 |
+
target_masks = torch.ones_like(labels)
|
167 |
+
target_masks = target_masks.masked_fill_(labels == -100, 0)
|
168 |
+
|
169 |
+
# select patches
|
170 |
+
if (
|
171 |
+
patch_sampling_batch_size != 0
|
172 |
+
and patch_sampling_batch_size < target_patches.shape[0]
|
173 |
+
):
|
174 |
+
indices = list(range(len(target_patches)))
|
175 |
+
random.shuffle(indices)
|
176 |
+
selected_indices = sorted(indices[:patch_sampling_batch_size])
|
177 |
+
|
178 |
+
target_patches = target_patches[selected_indices, :]
|
179 |
+
target_masks = target_masks[selected_indices, :]
|
180 |
+
encoded_patches = encoded_patches[selected_indices, :]
|
181 |
+
labels = labels[selected_indices, :]
|
182 |
+
|
183 |
+
# get input embeddings
|
184 |
+
inputs_embeds = torch.nn.functional.embedding(
|
185 |
+
target_patches, self.base.transformer.wte.weight
|
186 |
+
)
|
187 |
+
|
188 |
+
# concatenate the encoded patches with the input embeddings
|
189 |
+
inputs_embeds = torch.cat(
|
190 |
+
(encoded_patches.unsqueeze(1), inputs_embeds[:, 1:, :]), dim=1
|
191 |
+
)
|
192 |
+
|
193 |
+
return self.base(
|
194 |
+
inputs_embeds=inputs_embeds, attention_mask=target_masks, labels=labels
|
195 |
+
)
|
196 |
+
|
197 |
+
def generate(self, encoded_patch: torch.Tensor, tokens: torch.Tensor):
|
198 |
+
"""
|
199 |
+
The generate function for generating a patch based on the encoded patch and already generated tokens.
|
200 |
+
:param encoded_patch: the encoded patch
|
201 |
+
:param tokens: already generated tokens in the patch
|
202 |
+
:return: the probability distribution of next token
|
203 |
+
"""
|
204 |
+
encoded_patch = encoded_patch.reshape(1, 1, -1)
|
205 |
+
tokens = tokens.reshape(1, -1)
|
206 |
+
|
207 |
+
# Get input embeddings
|
208 |
+
tokens = torch.nn.functional.embedding(tokens, self.base.transformer.wte.weight)
|
209 |
+
|
210 |
+
# Concatenate the encoded patch with the input embeddings
|
211 |
+
tokens = torch.cat((encoded_patch, tokens[:, 1:, :]), dim=1)
|
212 |
+
|
213 |
+
# Get output from model
|
214 |
+
outputs = self.base(inputs_embeds=tokens)
|
215 |
+
|
216 |
+
# Get probabilities of next token
|
217 |
+
probs = torch.nn.functional.softmax(outputs.logits.squeeze(0)[-1], dim=-1)
|
218 |
+
|
219 |
+
return probs
|
220 |
+
|
221 |
+
|
222 |
+
class TunesFormer(PreTrainedModel):
|
223 |
+
"""
|
224 |
+
TunesFormer is a hierarchical music generation model based on bar patching.
|
225 |
+
It includes a patch-level decoder and a character-level decoder.
|
226 |
+
It inherits PreTrainedModel from transformers.
|
227 |
+
"""
|
228 |
+
|
229 |
+
def __init__(self, encoder_config, decoder_config, share_weights=False):
|
230 |
+
super().__init__(encoder_config)
|
231 |
+
self.pad_token_id = 0
|
232 |
+
self.bos_token_id = 1
|
233 |
+
self.eos_token_id = 2
|
234 |
+
if share_weights:
|
235 |
+
max_layers = max(
|
236 |
+
encoder_config.num_hidden_layers, decoder_config.num_hidden_layers
|
237 |
+
)
|
238 |
+
|
239 |
+
max_context_size = max(encoder_config.max_length, decoder_config.max_length)
|
240 |
+
|
241 |
+
max_position_embeddings = max(
|
242 |
+
encoder_config.max_position_embeddings,
|
243 |
+
decoder_config.max_position_embeddings,
|
244 |
+
)
|
245 |
+
|
246 |
+
encoder_config.num_hidden_layers = max_layers
|
247 |
+
encoder_config.max_length = max_context_size
|
248 |
+
encoder_config.max_position_embeddings = max_position_embeddings
|
249 |
+
decoder_config.num_hidden_layers = max_layers
|
250 |
+
decoder_config.max_length = max_context_size
|
251 |
+
decoder_config.max_position_embeddings = max_position_embeddings
|
252 |
+
|
253 |
+
self.patch_level_decoder = PatchLevelDecoder(encoder_config)
|
254 |
+
self.char_level_decoder = CharLevelDecoder(decoder_config)
|
255 |
+
|
256 |
+
if share_weights:
|
257 |
+
self.patch_level_decoder.base = self.char_level_decoder.base.transformer
|
258 |
+
|
259 |
+
def forward(
|
260 |
+
self,
|
261 |
+
patches: torch.Tensor,
|
262 |
+
patch_sampling_batch_size: int = PATCH_SAMPLING_BATCH_SIZE,
|
263 |
+
):
|
264 |
+
"""
|
265 |
+
The forward pass of the TunesFormer model.
|
266 |
+
:param patches: the patches to be both encoded and decoded
|
267 |
+
:return: the decoded patches
|
268 |
+
"""
|
269 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
|
270 |
+
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
|
271 |
+
|
272 |
+
return self.char_level_decoder(
|
273 |
+
encoded_patches.squeeze(0)[:-1, :],
|
274 |
+
patches.squeeze(0)[1:, :],
|
275 |
+
patch_sampling_batch_size,
|
276 |
+
)
|
277 |
+
|
278 |
+
def generate(
|
279 |
+
self,
|
280 |
+
patches: torch.Tensor,
|
281 |
+
tokens: torch.Tensor,
|
282 |
+
top_p: float = 1,
|
283 |
+
top_k: int = 0,
|
284 |
+
temperature: float = 1,
|
285 |
+
seed: int = None,
|
286 |
+
):
|
287 |
+
"""
|
288 |
+
The generate function for generating patches based on patches.
|
289 |
+
:param patches: the patches to be encoded
|
290 |
+
:return: the generated patches
|
291 |
+
"""
|
292 |
+
patches = patches.reshape(len(patches), -1, PATCH_SIZE)
|
293 |
+
encoded_patches = self.patch_level_decoder(patches)["last_hidden_state"]
|
294 |
+
|
295 |
+
if tokens == None:
|
296 |
+
tokens = torch.tensor([self.bos_token_id], device=self.device)
|
297 |
+
|
298 |
+
generated_patch = []
|
299 |
+
random.seed(seed)
|
300 |
+
|
301 |
+
while True:
|
302 |
+
if seed != None:
|
303 |
+
n_seed = random.randint(0, 1000000)
|
304 |
+
random.seed(n_seed)
|
305 |
+
|
306 |
+
else:
|
307 |
+
n_seed = None
|
308 |
+
|
309 |
+
prob = (
|
310 |
+
self.char_level_decoder.generate(encoded_patches[0][-1], tokens)
|
311 |
+
.cpu()
|
312 |
+
.detach()
|
313 |
+
.numpy()
|
314 |
+
)
|
315 |
+
|
316 |
+
prob = top_p_sampling(prob, top_p=top_p, return_probs=True)
|
317 |
+
prob = top_k_sampling(prob, top_k=top_k, return_probs=True)
|
318 |
+
|
319 |
+
token = temperature_sampling(prob, temperature=temperature, seed=n_seed)
|
320 |
+
|
321 |
+
generated_patch.append(token)
|
322 |
+
if token == self.eos_token_id or len(tokens) >= PATCH_SIZE - 1:
|
323 |
+
break
|
324 |
+
|
325 |
+
else:
|
326 |
+
tokens = torch.cat(
|
327 |
+
(tokens, torch.tensor([token], device=self.device)), dim=0
|
328 |
+
)
|
329 |
+
|
330 |
+
return generated_patch, n_seed
|
331 |
+
|
332 |
+
|
333 |
+
class PatchilizedData(Dataset):
|
334 |
+
def __init__(self, items, patchilizer):
|
335 |
+
self.texts = []
|
336 |
+
|
337 |
+
for item in tqdm(items):
|
338 |
+
text = item["control code"] + "\n".join(
|
339 |
+
item["abc notation"].split("\n")[1:]
|
340 |
+
)
|
341 |
+
input_patch = patchilizer.encode(text, add_special_patches=True)
|
342 |
+
input_patch = torch.tensor(input_patch)
|
343 |
+
if torch.sum(input_patch) != 0:
|
344 |
+
self.texts.append(input_patch)
|
345 |
+
|
346 |
+
def __len__(self):
|
347 |
+
return len(self.texts)
|
348 |
+
|
349 |
+
def __getitem__(self, idx):
|
350 |
+
return self.texts[idx]
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
music21
|
2 |
+
pymupdf
|
3 |
+
autopep8
|
4 |
+
unidecode
|
5 |
+
pillow==9.4.0
|
6 |
+
samplings==0.1.7
|
7 |
+
modelscope==1.15
|
8 |
+
transformers==4.18.0
|
utils.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import time
|
4 |
+
import torch
|
5 |
+
import requests
|
6 |
+
import subprocess
|
7 |
+
from tqdm import tqdm
|
8 |
+
from modelscope.hub.api import HubApi
|
9 |
+
from modelscope import snapshot_download
|
10 |
+
|
11 |
+
HubApi().login(os.getenv("ms_app_key"))
|
12 |
+
TEMP_DIR = "./flagged"
|
13 |
+
WEIGHTS_DIR = snapshot_download("monetjoe/EMusicGen", cache_dir="./__pycache__")
|
14 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
PATCH_LENGTH = 128 # Patch Length
|
16 |
+
PATCH_SIZE = 32 # Patch Size
|
17 |
+
PATCH_NUM_LAYERS = 9 # Number of layers in the encoder
|
18 |
+
CHAR_NUM_LAYERS = 3 # Number of layers in the decoder
|
19 |
+
PATCH_SAMPLING_BATCH_SIZE = 0 # Batch size for training patch, 0 for full context
|
20 |
+
LOAD_FROM_CHECKPOINT = True # Whether to load weights from a checkpoint
|
21 |
+
SHARE_WEIGHTS = False # Whether to share weights between the encoder and decoder
|
22 |
+
|
23 |
+
|
24 |
+
def download(filename: str, url: str):
|
25 |
+
try:
|
26 |
+
response = requests.get(url, stream=True)
|
27 |
+
total_size = int(response.headers.get("content-length", 0))
|
28 |
+
chunk_size = 1024
|
29 |
+
|
30 |
+
with open(filename, "wb") as file, tqdm(
|
31 |
+
desc=f"Downloading {filename} from {url}...",
|
32 |
+
total=total_size,
|
33 |
+
unit="B",
|
34 |
+
unit_scale=True,
|
35 |
+
unit_divisor=1024,
|
36 |
+
) as bar:
|
37 |
+
for data in response.iter_content(chunk_size=chunk_size):
|
38 |
+
size = file.write(data)
|
39 |
+
bar.update(size)
|
40 |
+
|
41 |
+
except Exception as e:
|
42 |
+
print(f"Error: {e}")
|
43 |
+
time.sleep(10)
|
44 |
+
download(filename, url)
|
45 |
+
|
46 |
+
|
47 |
+
if sys.platform.startswith("linux"):
|
48 |
+
apkname = "MuseScore.AppImage"
|
49 |
+
extra_dir = "squashfs-root"
|
50 |
+
download(
|
51 |
+
filename=apkname,
|
52 |
+
url="https://www.modelscope.cn/studio/MuGeminorum/piano_transcription/resolve/master/MuseScore.AppImage",
|
53 |
+
)
|
54 |
+
if not os.path.exists(extra_dir):
|
55 |
+
subprocess.run(["chmod", "+x", f"./{apkname}"])
|
56 |
+
subprocess.run([f"./{apkname}", "--appimage-extract"])
|
57 |
+
|
58 |
+
MSCORE = f"./{extra_dir}/AppRun"
|
59 |
+
os.environ["QT_QPA_PLATFORM"] = "offscreen"
|
60 |
+
|
61 |
+
else:
|
62 |
+
MSCORE = os.getenv("mscore")
|
xml2abc.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|