Spaces:
Running
Running
admin
commited on
Commit
Β·
1aa8b04
1
Parent(s):
f2b9c94
upd ui
Browse files- app.py +193 -439
- generate.py +290 -0
- requirements.txt +0 -1
- utils.py +8 -3
app.py
CHANGED
@@ -1,296 +1,16 @@
|
|
1 |
-
import re
|
2 |
import os
|
3 |
import json
|
4 |
-
import time
|
5 |
-
import torch
|
6 |
-
import random
|
7 |
import shutil
|
8 |
import argparse
|
9 |
import warnings
|
10 |
import gradio as gr
|
11 |
-
import
|
12 |
-
from
|
13 |
-
from model import Patchilizer, TunesFormer
|
14 |
-
from convert import abc2xml, xml2img, xml2, transpose_octaves_abc
|
15 |
-
from utils import (
|
16 |
-
PATCH_NUM_LAYERS,
|
17 |
-
PATCH_LENGTH,
|
18 |
-
CHAR_NUM_LAYERS,
|
19 |
-
PATCH_SIZE,
|
20 |
-
SHARE_WEIGHTS,
|
21 |
-
TEMP_DIR,
|
22 |
-
WEIGHTS_DIR,
|
23 |
-
DEVICE,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
def get_args(parser: argparse.ArgumentParser):
|
28 |
-
parser.add_argument(
|
29 |
-
"-num_tunes",
|
30 |
-
type=int,
|
31 |
-
default=1,
|
32 |
-
help="the number of independently computed returned tunes",
|
33 |
-
)
|
34 |
-
parser.add_argument(
|
35 |
-
"-max_patch",
|
36 |
-
type=int,
|
37 |
-
default=128,
|
38 |
-
help="integer to define the maximum length in tokens of each tune",
|
39 |
-
)
|
40 |
-
parser.add_argument(
|
41 |
-
"-top_p",
|
42 |
-
type=float,
|
43 |
-
default=0.8,
|
44 |
-
help="float to define the tokens that are within the sample operation of text generation",
|
45 |
-
)
|
46 |
-
parser.add_argument(
|
47 |
-
"-top_k",
|
48 |
-
type=int,
|
49 |
-
default=8,
|
50 |
-
help="integer to define the tokens that are within the sample operation of text generation",
|
51 |
-
)
|
52 |
-
parser.add_argument(
|
53 |
-
"-temperature",
|
54 |
-
type=float,
|
55 |
-
default=1.2,
|
56 |
-
help="the temperature of the sampling operation",
|
57 |
-
)
|
58 |
-
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
|
59 |
-
parser.add_argument(
|
60 |
-
"-show_control_code",
|
61 |
-
type=bool,
|
62 |
-
default=False,
|
63 |
-
help="whether to show control code",
|
64 |
-
)
|
65 |
-
parser.add_argument(
|
66 |
-
"-template",
|
67 |
-
type=bool,
|
68 |
-
default=True,
|
69 |
-
help="whether to generate by template",
|
70 |
-
)
|
71 |
-
return parser.parse_args()
|
72 |
-
|
73 |
-
|
74 |
-
def get_abc_key_val(text: str, key="K"):
|
75 |
-
pattern = re.escape(key) + r":(.*?)\n"
|
76 |
-
match = re.search(pattern, text)
|
77 |
-
if match:
|
78 |
-
return match.group(1).strip()
|
79 |
-
else:
|
80 |
-
return None
|
81 |
-
|
82 |
-
|
83 |
-
def adjust_volume(in_audio: str, dB_change: int):
|
84 |
-
y, sr = sf.read(in_audio)
|
85 |
-
sf.write(in_audio, y * 10 ** (dB_change / 20), sr)
|
86 |
-
|
87 |
-
|
88 |
-
def generate_music(
|
89 |
-
args,
|
90 |
-
emo: str,
|
91 |
-
weights: str,
|
92 |
-
outdir=TEMP_DIR,
|
93 |
-
fix_tempo=None,
|
94 |
-
fix_pitch=None,
|
95 |
-
fix_volume=None,
|
96 |
-
):
|
97 |
-
patchilizer = Patchilizer()
|
98 |
-
patch_config = GPT2Config(
|
99 |
-
num_hidden_layers=PATCH_NUM_LAYERS,
|
100 |
-
max_length=PATCH_LENGTH,
|
101 |
-
max_position_embeddings=PATCH_LENGTH,
|
102 |
-
vocab_size=1,
|
103 |
-
)
|
104 |
-
char_config = GPT2Config(
|
105 |
-
num_hidden_layers=CHAR_NUM_LAYERS,
|
106 |
-
max_length=PATCH_SIZE,
|
107 |
-
max_position_embeddings=PATCH_SIZE,
|
108 |
-
vocab_size=128,
|
109 |
-
)
|
110 |
-
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
|
111 |
-
checkpoint = torch.load(weights, map_location=DEVICE)
|
112 |
-
model.load_state_dict(checkpoint["model"])
|
113 |
-
model = model.to(DEVICE)
|
114 |
-
model.eval()
|
115 |
-
prompt = f"A:{emo}\n"
|
116 |
-
tunes = ""
|
117 |
-
num_tunes = args.num_tunes
|
118 |
-
max_patch = args.max_patch
|
119 |
-
top_p = args.top_p
|
120 |
-
top_k = args.top_k
|
121 |
-
temperature = args.temperature
|
122 |
-
seed = args.seed
|
123 |
-
show_control_code = args.show_control_code
|
124 |
-
fname_prefix = emo if args.template else "Melody"
|
125 |
-
print(" Hyper parms ".center(60, "#"), "\n")
|
126 |
-
args_dict: dict = vars(args)
|
127 |
-
for arg in args_dict.keys():
|
128 |
-
print(f"{arg}: {str(args_dict[arg])}")
|
129 |
-
|
130 |
-
print("\n", " Output tunes ".center(60, "#"))
|
131 |
-
start_time = time.time()
|
132 |
-
for i in range(num_tunes):
|
133 |
-
title = f"T:{fname_prefix} Fragment\n"
|
134 |
-
artist = f"C:Generated by AI\n"
|
135 |
-
tune = f"X:{str(i + 1)}\n{title}{artist}{prompt}"
|
136 |
-
lines = re.split(r"(\n)", tune)
|
137 |
-
tune = ""
|
138 |
-
skip = False
|
139 |
-
for line in lines:
|
140 |
-
if show_control_code or line[:2] not in ["S:", "B:", "E:", "D:"]:
|
141 |
-
if not skip:
|
142 |
-
print(line, end="")
|
143 |
-
tune += line
|
144 |
-
|
145 |
-
skip = False
|
146 |
-
|
147 |
-
else:
|
148 |
-
skip = True
|
149 |
-
|
150 |
-
input_patches = torch.tensor(
|
151 |
-
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
|
152 |
-
device=DEVICE,
|
153 |
-
)
|
154 |
-
if tune == "":
|
155 |
-
tokens = None
|
156 |
-
|
157 |
-
else:
|
158 |
-
prefix = patchilizer.decode(input_patches[0])
|
159 |
-
remaining_tokens = prompt[len(prefix) :]
|
160 |
-
tokens = torch.tensor(
|
161 |
-
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
|
162 |
-
device=DEVICE,
|
163 |
-
)
|
164 |
-
|
165 |
-
while input_patches.shape[1] < max_patch:
|
166 |
-
predicted_patch, seed = model.generate(
|
167 |
-
input_patches,
|
168 |
-
tokens,
|
169 |
-
top_p=top_p,
|
170 |
-
top_k=top_k,
|
171 |
-
temperature=temperature,
|
172 |
-
seed=seed,
|
173 |
-
)
|
174 |
-
tokens = None
|
175 |
-
if predicted_patch[0] != patchilizer.eos_token_id:
|
176 |
-
next_bar = patchilizer.decode([predicted_patch])
|
177 |
-
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:", "D:"]:
|
178 |
-
print(next_bar, end="")
|
179 |
-
tune += next_bar
|
180 |
-
|
181 |
-
if next_bar == "":
|
182 |
-
break
|
183 |
-
|
184 |
-
next_bar = remaining_tokens + next_bar
|
185 |
-
remaining_tokens = ""
|
186 |
-
predicted_patch = torch.tensor(
|
187 |
-
patchilizer.bar2patch(next_bar),
|
188 |
-
device=DEVICE,
|
189 |
-
).unsqueeze(0)
|
190 |
-
input_patches = torch.cat(
|
191 |
-
[input_patches, predicted_patch.unsqueeze(0)],
|
192 |
-
dim=1,
|
193 |
-
)
|
194 |
-
|
195 |
-
else:
|
196 |
-
break
|
197 |
-
|
198 |
-
tunes += f"{tune}\n\n"
|
199 |
-
print("\n")
|
200 |
-
|
201 |
-
# fix tempo
|
202 |
-
if fix_tempo != None:
|
203 |
-
tempo = f"Q:{fix_tempo}\n"
|
204 |
-
|
205 |
-
else:
|
206 |
-
tempo = f"Q:{random.randint(88, 132)}\n"
|
207 |
-
if emo == "Q1":
|
208 |
-
tempo = f"Q:{random.randint(160, 184)}\n"
|
209 |
-
elif emo == "Q2":
|
210 |
-
tempo = f"Q:{random.randint(184, 228)}\n"
|
211 |
-
elif emo == "Q3":
|
212 |
-
tempo = f"Q:{random.randint(40, 69)}\n"
|
213 |
-
elif emo == "Q4":
|
214 |
-
tempo = f"Q:{random.randint(40, 69)}\n"
|
215 |
-
|
216 |
-
Q_val = get_abc_key_val(tunes, "Q")
|
217 |
-
if Q_val:
|
218 |
-
tunes = tunes.replace(f"Q:{Q_val}\n", "")
|
219 |
-
|
220 |
-
K_val = get_abc_key_val(tunes)
|
221 |
-
if K_val == "none":
|
222 |
-
K_val = "C"
|
223 |
-
tunes = tunes.replace("K:none\n", f"K:{K_val}\n")
|
224 |
-
|
225 |
-
tunes = tunes.replace(f"A:{emo}\n", tempo)
|
226 |
-
# fix mode:major/minor
|
227 |
-
mode = "major" if emo == "Q1" or emo == "Q4" else "minor"
|
228 |
-
if (mode == "major") and ("m" in K_val):
|
229 |
-
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.split('m')[0]}\n")
|
230 |
-
|
231 |
-
elif (mode == "minor") and (not "m" in K_val):
|
232 |
-
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.replace('dor', '')}min\n")
|
233 |
-
|
234 |
-
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
|
235 |
-
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
|
236 |
-
try:
|
237 |
-
# fix avg_pitch (octave)
|
238 |
-
if fix_pitch != None:
|
239 |
-
if fix_pitch:
|
240 |
-
tunes, xml = transpose_octaves_abc(
|
241 |
-
tunes,
|
242 |
-
f"{outdir}/{timestamp}.musicxml",
|
243 |
-
fix_pitch,
|
244 |
-
)
|
245 |
-
tunes = tunes.replace(title + title, title)
|
246 |
-
os.rename(xml, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
247 |
-
xml = f"{outdir}/[{fname_prefix}]{timestamp}.musicxml"
|
248 |
-
|
249 |
-
else:
|
250 |
-
if mode == "minor":
|
251 |
-
offset = -12
|
252 |
-
if emo == "Q2":
|
253 |
-
offset -= 12
|
254 |
-
|
255 |
-
tunes, xml = transpose_octaves_abc(
|
256 |
-
tunes,
|
257 |
-
f"{outdir}/{timestamp}.musicxml",
|
258 |
-
offset,
|
259 |
-
)
|
260 |
-
tunes = tunes.replace(title + title, title)
|
261 |
-
os.rename(xml, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
262 |
-
xml = f"{outdir}/[{fname_prefix}]{timestamp}.musicxml"
|
263 |
-
|
264 |
-
else:
|
265 |
-
xml = abc2xml(tunes, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
266 |
-
|
267 |
-
audio = xml2(xml, "wav")
|
268 |
-
if fix_volume != None:
|
269 |
-
if fix_volume:
|
270 |
-
adjust_volume(audio, fix_volume)
|
271 |
-
|
272 |
-
elif os.path.exists(audio):
|
273 |
-
if emo == "Q1":
|
274 |
-
adjust_volume(audio, 5)
|
275 |
-
|
276 |
-
elif emo == "Q2":
|
277 |
-
adjust_volume(audio, 10)
|
278 |
-
|
279 |
-
mxl = xml2(xml, "mxl")
|
280 |
-
midi = xml2(xml, "mid")
|
281 |
-
pdf, jpg = xml2img(xml)
|
282 |
-
return audio, midi, pdf, xml, mxl, tunes, jpg
|
283 |
-
|
284 |
-
except Exception as e:
|
285 |
-
print(f"{e}")
|
286 |
-
return generate_music(args, emo, weights)
|
287 |
|
288 |
|
289 |
def infer_by_template(dataset: str, v: str, a: str, add_chord: bool):
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
os.makedirs(TEMP_DIR, exist_ok=True)
|
294 |
emotion = "Q1"
|
295 |
if v == "Low" and a == "High":
|
296 |
emotion = "Q2"
|
@@ -301,14 +21,20 @@ def infer_by_template(dataset: str, v: str, a: str, add_chord: bool):
|
|
301 |
elif v == "High" and a == "Low":
|
302 |
emotion = "Q4"
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
|
314 |
def infer_by_features(
|
@@ -320,10 +46,8 @@ def infer_by_features(
|
|
320 |
rms: int,
|
321 |
add_chord: bool,
|
322 |
):
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
os.makedirs(TEMP_DIR, exist_ok=True)
|
327 |
emotion = "Q1"
|
328 |
if mode == "Minor" and pitch_std == "High":
|
329 |
emotion = "Q2"
|
@@ -334,78 +58,99 @@ def infer_by_features(
|
|
334 |
elif mode == "Major" and pitch_std == "Low":
|
335 |
emotion = "Q4"
|
336 |
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
def feedback(fixed_emo: str, source_dir="./flagged", target_dir="./feedbacks"):
|
351 |
-
if not fixed_emo:
|
352 |
-
return "Please select feedback before submitting! "
|
353 |
-
|
354 |
-
os.makedirs(target_dir, exist_ok=True)
|
355 |
-
for root, _, files in os.walk(source_dir):
|
356 |
-
for file in files:
|
357 |
-
if file.endswith(".mxl"):
|
358 |
-
prompt_emo = file.split("]")[0][1:]
|
359 |
-
if prompt_emo != fixed_emo:
|
360 |
-
file_path = os.path.join(root, file)
|
361 |
-
target_path = os.path.join(
|
362 |
-
target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
|
363 |
-
)
|
364 |
-
shutil.copy(file_path, target_path)
|
365 |
-
return f"Copied {file_path} to {target_path}"
|
366 |
|
367 |
-
|
368 |
-
|
369 |
|
370 |
-
return
|
371 |
|
372 |
|
373 |
-
def
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
tempo: int,
|
378 |
-
octave: int,
|
379 |
-
rms: int,
|
380 |
):
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
-
|
401 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
402 |
|
403 |
|
404 |
if __name__ == "__main__":
|
405 |
warnings.filterwarnings("ignore")
|
406 |
-
if os.path.exists("./flagged"):
|
407 |
-
shutil.rmtree("./flagged")
|
408 |
-
|
409 |
with gr.Blocks() as demo:
|
410 |
gr.Markdown(
|
411 |
"## The current CPU-based version on HuggingFace has slow inference, you can access the GPU-based mirror on [ModelScope](https://www.modelscope.cn/studios/monetjoe/EMelodyGen)"
|
@@ -423,79 +168,69 @@ if __name__ == "__main__":
|
|
423 |
label="Dataset",
|
424 |
value="Rough4Q",
|
425 |
)
|
426 |
-
gr.
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
author = {Monan Zhou and Xiaobing Li and Feng Yu and Wei Li},
|
490 |
-
month = {Mar},
|
491 |
-
year = {2025},
|
492 |
-
publisher = {GitHub},
|
493 |
-
version = {0.1},
|
494 |
-
url = {https://github.com/monetjoe/EMelodyGen}
|
495 |
-
}
|
496 |
-
```
|
497 |
-
"""
|
498 |
-
)
|
499 |
|
500 |
with gr.Column():
|
501 |
wav_audio = gr.Audio(label="Audio", type="filepath")
|
@@ -506,20 +241,35 @@ if __name__ == "__main__":
|
|
506 |
abc_textbox = gr.Textbox(label="ABC notation", show_copy_button=True)
|
507 |
staff_img = gr.Image(label="Staff", type="filepath")
|
508 |
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
),
|
515 |
-
outputs=gr.Textbox(show_copy_button=False, show_label=False),
|
516 |
-
allow_flagging="never",
|
517 |
)
|
|
|
518 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
519 |
gen_btn_1.click(
|
520 |
fn=infer_by_template,
|
521 |
inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
|
522 |
outputs=[
|
|
|
523 |
wav_audio,
|
524 |
midi_file,
|
525 |
pdf_file,
|
@@ -542,6 +292,7 @@ if __name__ == "__main__":
|
|
542 |
chord_check,
|
543 |
],
|
544 |
outputs=[
|
|
|
545 |
wav_audio,
|
546 |
midi_file,
|
547 |
pdf_file,
|
@@ -562,6 +313,9 @@ if __name__ == "__main__":
|
|
562 |
octave_option,
|
563 |
volume_option,
|
564 |
],
|
|
|
565 |
)
|
566 |
|
|
|
|
|
567 |
demo.launch()
|
|
|
|
|
1 |
import os
|
2 |
import json
|
|
|
|
|
|
|
3 |
import shutil
|
4 |
import argparse
|
5 |
import warnings
|
6 |
import gradio as gr
|
7 |
+
from generate import generate_music, get_args
|
8 |
+
from utils import WEIGHTS_DIR, TEMP_DIR
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
def infer_by_template(dataset: str, v: str, a: str, add_chord: bool):
|
12 |
+
status = "Success"
|
13 |
+
audio = midi = pdf = xml = mxl = tunes = jpg = None
|
|
|
|
|
14 |
emotion = "Q1"
|
15 |
if v == "Low" and a == "High":
|
16 |
emotion = "Q2"
|
|
|
21 |
elif v == "High" and a == "Low":
|
22 |
emotion = "Q4"
|
23 |
|
24 |
+
try:
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
args = get_args(parser)
|
27 |
+
args.template = True
|
28 |
+
audio, midi, pdf, xml, mxl, tunes, jpg = generate_music(
|
29 |
+
args,
|
30 |
+
emo=emotion,
|
31 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
32 |
+
)
|
33 |
+
|
34 |
+
except Exception as e:
|
35 |
+
status = f"{e}"
|
36 |
+
|
37 |
+
return status, audio, midi, pdf, xml, mxl, tunes, jpg
|
38 |
|
39 |
|
40 |
def infer_by_features(
|
|
|
46 |
rms: int,
|
47 |
add_chord: bool,
|
48 |
):
|
49 |
+
status = "Success"
|
50 |
+
audio = midi = pdf = xml = mxl = tunes = jpg = None
|
|
|
|
|
51 |
emotion = "Q1"
|
52 |
if mode == "Minor" and pitch_std == "High":
|
53 |
emotion = "Q2"
|
|
|
58 |
elif mode == "Major" and pitch_std == "Low":
|
59 |
emotion = "Q4"
|
60 |
|
61 |
+
try:
|
62 |
+
parser = argparse.ArgumentParser()
|
63 |
+
args = get_args(parser)
|
64 |
+
args.template = False
|
65 |
+
audio, midi, pdf, xml, mxl, tunes, jpg = generate_music(
|
66 |
+
args,
|
67 |
+
emo=emotion,
|
68 |
+
weights=f"{WEIGHTS_DIR}/{dataset.lower()}/weights.pth",
|
69 |
+
fix_tempo=tempo,
|
70 |
+
fix_pitch=octave,
|
71 |
+
fix_volume=rms,
|
72 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
except Exception as e:
|
75 |
+
status = f"{e}"
|
76 |
|
77 |
+
return status, audio, midi, pdf, xml, mxl, tunes, jpg
|
78 |
|
79 |
|
80 |
+
def feedback(
|
81 |
+
fixed_emo: str,
|
82 |
+
source_dir=f"./{TEMP_DIR}/output",
|
83 |
+
target_dir=f"./{TEMP_DIR}/feedback",
|
|
|
|
|
|
|
84 |
):
|
85 |
+
try:
|
86 |
+
if not fixed_emo:
|
87 |
+
raise ValueError("Please select feedback before submitting! ")
|
88 |
+
|
89 |
+
os.makedirs(target_dir, exist_ok=True)
|
90 |
+
for root, _, files in os.walk(source_dir):
|
91 |
+
for file in files:
|
92 |
+
if file.endswith(".mxl"):
|
93 |
+
prompt_emo = file.split("]")[0][1:]
|
94 |
+
if prompt_emo != fixed_emo:
|
95 |
+
file_path = os.path.join(root, file)
|
96 |
+
target_path = os.path.join(
|
97 |
+
target_dir, file.replace(".mxl", f"_{fixed_emo}.mxl")
|
98 |
+
)
|
99 |
+
shutil.copy(file_path, target_path)
|
100 |
+
return f"Copied {file_path} to {target_path}"
|
101 |
+
|
102 |
+
else:
|
103 |
+
return "Thanks for your feedback!"
|
104 |
+
|
105 |
+
return "No .mxl files found in the source directory."
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
return f"{e}"
|
109 |
+
|
110 |
+
|
111 |
+
def save_template(label: str, pitch_std: str, mode: str, tempo: int, octave: int, rms):
|
112 |
+
status = "Success"
|
113 |
+
template = None
|
114 |
+
try:
|
115 |
+
if (
|
116 |
+
label
|
117 |
+
and pitch_std
|
118 |
+
and mode
|
119 |
+
and tempo != None
|
120 |
+
and octave != None
|
121 |
+
and rms != None
|
122 |
+
):
|
123 |
+
json_str = json.dumps(
|
124 |
+
{
|
125 |
+
"label": label,
|
126 |
+
"pitch_std": pitch_std == "High",
|
127 |
+
"mode": mode == "Major",
|
128 |
+
"tempo": tempo,
|
129 |
+
"octave": octave,
|
130 |
+
"volume": rms,
|
131 |
+
}
|
132 |
+
)
|
133 |
+
|
134 |
+
with open(
|
135 |
+
f"./{TEMP_DIR}/feedback/templates.jsonl",
|
136 |
+
"a",
|
137 |
+
encoding="utf-8",
|
138 |
+
) as file:
|
139 |
+
file.write(json_str + "\n")
|
140 |
|
141 |
+
template = f"./{TEMP_DIR}/feedback/templates.jsonl"
|
142 |
+
|
143 |
+
else:
|
144 |
+
raise ValueError("Please check features")
|
145 |
+
|
146 |
+
except Exception as e:
|
147 |
+
status = f"{e}"
|
148 |
+
|
149 |
+
return status, template
|
150 |
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
warnings.filterwarnings("ignore")
|
|
|
|
|
|
|
154 |
with gr.Blocks() as demo:
|
155 |
gr.Markdown(
|
156 |
"## The current CPU-based version on HuggingFace has slow inference, you can access the GPU-based mirror on [ModelScope](https://www.modelscope.cn/studios/monetjoe/EMelodyGen)"
|
|
|
168 |
label="Dataset",
|
169 |
value="Rough4Q",
|
170 |
)
|
171 |
+
with gr.Tab("By template"):
|
172 |
+
gr.Image(
|
173 |
+
"https://www.modelscope.cn/studio/monetjoe/EMelodyGen/resolve/master/src/4q.jpg",
|
174 |
+
show_label=False,
|
175 |
+
show_download_button=False,
|
176 |
+
show_fullscreen_button=False,
|
177 |
+
show_share_button=False,
|
178 |
+
)
|
179 |
+
valence_radio = gr.Radio(
|
180 |
+
["Low", "High"],
|
181 |
+
label="Valence (reflects negative-positive levels of emotion)",
|
182 |
+
value="High",
|
183 |
+
)
|
184 |
+
arousal_radio = gr.Radio(
|
185 |
+
["Low", "High"],
|
186 |
+
label="Arousal (reflects the calmness-intensity of the emotion)",
|
187 |
+
value="High",
|
188 |
+
)
|
189 |
+
chord_check = gr.Checkbox(
|
190 |
+
label="Generate chords (coming soon)",
|
191 |
+
value=False,
|
192 |
+
)
|
193 |
+
gen_btn_1 = gr.Button("Generate")
|
194 |
+
|
195 |
+
with gr.Tab("By feature control"):
|
196 |
+
std_option = gr.Radio(
|
197 |
+
["Low", "High"], label="Pitch SD", value="High"
|
198 |
+
)
|
199 |
+
mode_option = gr.Radio(
|
200 |
+
["Minor", "Major"], label="Mode", value="Major"
|
201 |
+
)
|
202 |
+
tempo_option = gr.Slider(
|
203 |
+
minimum=40,
|
204 |
+
maximum=228,
|
205 |
+
step=1,
|
206 |
+
value=120,
|
207 |
+
label="Tempo (BPM)",
|
208 |
+
)
|
209 |
+
octave_option = gr.Slider(
|
210 |
+
minimum=-24,
|
211 |
+
maximum=24,
|
212 |
+
step=12,
|
213 |
+
value=0,
|
214 |
+
label="Octave (Β±12)",
|
215 |
+
)
|
216 |
+
volume_option = gr.Slider(
|
217 |
+
minimum=-5,
|
218 |
+
maximum=10,
|
219 |
+
step=5,
|
220 |
+
value=0,
|
221 |
+
label="Volume (dB)",
|
222 |
+
)
|
223 |
+
chord_check_2 = gr.Checkbox(
|
224 |
+
label="Generate chords (coming soon)",
|
225 |
+
value=False,
|
226 |
+
)
|
227 |
+
gen_btn_2 = gr.Button("Generate")
|
228 |
+
template_radio = gr.Radio(
|
229 |
+
["Q1", "Q2", "Q3", "Q4"],
|
230 |
+
label="The emotion to which the current template belongs",
|
231 |
+
)
|
232 |
+
save_btn = gr.Button("Save template")
|
233 |
+
dld_template = gr.File(label="Download template")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
with gr.Column():
|
236 |
wav_audio = gr.Audio(label="Audio", type="filepath")
|
|
|
241 |
abc_textbox = gr.Textbox(label="ABC notation", show_copy_button=True)
|
242 |
staff_img = gr.Image(label="Staff", type="filepath")
|
243 |
|
244 |
+
with gr.Column():
|
245 |
+
status_bar = gr.Textbox(label="Status", show_copy_button=True)
|
246 |
+
fdb_radio = gr.Radio(
|
247 |
+
["Q1", "Q2", "Q3", "Q4"],
|
248 |
+
label="Feedback: the emotion you believe the generated result should belong to",
|
|
|
|
|
|
|
249 |
)
|
250 |
+
fdb_btn = gr.Button("Submit")
|
251 |
|
252 |
+
gr.Markdown(
|
253 |
+
"""## Cite
|
254 |
+
```bibtex
|
255 |
+
@inproceedings{Zhou2025EMelodyGen,
|
256 |
+
title = {EMelodyGen: Emotion-Conditioned Melody Generation in ABC Notation with the Musical Feature Template},
|
257 |
+
author = {Monan Zhou and Xiaobing Li and Feng Yu and Wei Li},
|
258 |
+
month = {Mar},
|
259 |
+
year = {2025},
|
260 |
+
publisher = {GitHub},
|
261 |
+
version = {0.1},
|
262 |
+
url = {https://github.com/monetjoe/EMelodyGen}
|
263 |
+
}
|
264 |
+
```"""
|
265 |
+
)
|
266 |
+
|
267 |
+
# actions
|
268 |
gen_btn_1.click(
|
269 |
fn=infer_by_template,
|
270 |
inputs=[dataset_option, valence_radio, arousal_radio, chord_check],
|
271 |
outputs=[
|
272 |
+
status_bar,
|
273 |
wav_audio,
|
274 |
midi_file,
|
275 |
pdf_file,
|
|
|
292 |
chord_check,
|
293 |
],
|
294 |
outputs=[
|
295 |
+
status_bar,
|
296 |
wav_audio,
|
297 |
midi_file,
|
298 |
pdf_file,
|
|
|
313 |
octave_option,
|
314 |
volume_option,
|
315 |
],
|
316 |
+
outputs=[status_bar, dld_template],
|
317 |
)
|
318 |
|
319 |
+
fdb_btn.click(fn=feedback, inputs=fdb_radio, outputs=status_bar)
|
320 |
+
|
321 |
demo.launch()
|
generate.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
import time
|
5 |
+
import torch
|
6 |
+
import random
|
7 |
+
import argparse
|
8 |
+
import soundfile as sf
|
9 |
+
from transformers import GPT2Config
|
10 |
+
from model import Patchilizer, TunesFormer
|
11 |
+
from convert import abc2xml, xml2img, xml2, transpose_octaves_abc
|
12 |
+
from utils import (
|
13 |
+
PATCH_NUM_LAYERS,
|
14 |
+
PATCH_LENGTH,
|
15 |
+
CHAR_NUM_LAYERS,
|
16 |
+
PATCH_SIZE,
|
17 |
+
SHARE_WEIGHTS,
|
18 |
+
TEMP_DIR,
|
19 |
+
DEVICE,
|
20 |
+
)
|
21 |
+
|
22 |
+
|
23 |
+
def get_args(parser: argparse.ArgumentParser):
|
24 |
+
parser.add_argument(
|
25 |
+
"-num_tunes",
|
26 |
+
type=int,
|
27 |
+
default=1,
|
28 |
+
help="the number of independently computed returned tunes",
|
29 |
+
)
|
30 |
+
parser.add_argument(
|
31 |
+
"-max_patch",
|
32 |
+
type=int,
|
33 |
+
default=128,
|
34 |
+
help="integer to define the maximum length in tokens of each tune",
|
35 |
+
)
|
36 |
+
parser.add_argument(
|
37 |
+
"-top_p",
|
38 |
+
type=float,
|
39 |
+
default=0.8,
|
40 |
+
help="float to define the tokens that are within the sample operation of text generation",
|
41 |
+
)
|
42 |
+
parser.add_argument(
|
43 |
+
"-top_k",
|
44 |
+
type=int,
|
45 |
+
default=8,
|
46 |
+
help="integer to define the tokens that are within the sample operation of text generation",
|
47 |
+
)
|
48 |
+
parser.add_argument(
|
49 |
+
"-temperature",
|
50 |
+
type=float,
|
51 |
+
default=1.2,
|
52 |
+
help="the temperature of the sampling operation",
|
53 |
+
)
|
54 |
+
parser.add_argument("-seed", type=int, default=None, help="seed for randomstate")
|
55 |
+
parser.add_argument(
|
56 |
+
"-show_control_code",
|
57 |
+
type=bool,
|
58 |
+
default=False,
|
59 |
+
help="whether to show control code",
|
60 |
+
)
|
61 |
+
parser.add_argument(
|
62 |
+
"-template",
|
63 |
+
type=bool,
|
64 |
+
default=True,
|
65 |
+
help="whether to generate by template",
|
66 |
+
)
|
67 |
+
return parser.parse_args()
|
68 |
+
|
69 |
+
|
70 |
+
def get_abc_key_val(text: str, key="K"):
|
71 |
+
pattern = re.escape(key) + r":(.*?)\n"
|
72 |
+
match = re.search(pattern, text)
|
73 |
+
if match:
|
74 |
+
return match.group(1).strip()
|
75 |
+
else:
|
76 |
+
return None
|
77 |
+
|
78 |
+
|
79 |
+
def adjust_volume(in_audio: str, dB_change: int):
|
80 |
+
y, sr = sf.read(in_audio)
|
81 |
+
sf.write(in_audio, y * 10 ** (dB_change / 20), sr)
|
82 |
+
|
83 |
+
|
84 |
+
def clean_dir(dir_path: str):
|
85 |
+
if os.path.exists(dir_path):
|
86 |
+
shutil.rmtree(dir_path)
|
87 |
+
|
88 |
+
os.makedirs(dir_path)
|
89 |
+
|
90 |
+
|
91 |
+
def generate_music(
|
92 |
+
args,
|
93 |
+
emo: str,
|
94 |
+
weights: str,
|
95 |
+
outdir=f"{TEMP_DIR}/output",
|
96 |
+
fix_tempo=None,
|
97 |
+
fix_pitch=None,
|
98 |
+
fix_volume=None,
|
99 |
+
):
|
100 |
+
clean_dir(outdir)
|
101 |
+
patchilizer = Patchilizer()
|
102 |
+
patch_config = GPT2Config(
|
103 |
+
num_hidden_layers=PATCH_NUM_LAYERS,
|
104 |
+
max_length=PATCH_LENGTH,
|
105 |
+
max_position_embeddings=PATCH_LENGTH,
|
106 |
+
vocab_size=1,
|
107 |
+
)
|
108 |
+
char_config = GPT2Config(
|
109 |
+
num_hidden_layers=CHAR_NUM_LAYERS,
|
110 |
+
max_length=PATCH_SIZE,
|
111 |
+
max_position_embeddings=PATCH_SIZE,
|
112 |
+
vocab_size=128,
|
113 |
+
)
|
114 |
+
model = TunesFormer(patch_config, char_config, share_weights=SHARE_WEIGHTS)
|
115 |
+
checkpoint = torch.load(weights, map_location=DEVICE)
|
116 |
+
model.load_state_dict(checkpoint["model"])
|
117 |
+
model = model.to(DEVICE)
|
118 |
+
model.eval()
|
119 |
+
prompt = f"A:{emo}\n"
|
120 |
+
tunes = ""
|
121 |
+
num_tunes = args.num_tunes
|
122 |
+
max_patch = args.max_patch
|
123 |
+
top_p = args.top_p
|
124 |
+
top_k = args.top_k
|
125 |
+
temperature = args.temperature
|
126 |
+
seed = args.seed
|
127 |
+
show_control_code = args.show_control_code
|
128 |
+
fname_prefix = emo if args.template else "Melody"
|
129 |
+
print(" Hyper parms ".center(60, "#"), "\n")
|
130 |
+
args_dict: dict = vars(args)
|
131 |
+
for arg in args_dict.keys():
|
132 |
+
print(f"{arg}: {str(args_dict[arg])}")
|
133 |
+
|
134 |
+
print("\n", " Output tunes ".center(60, "#"))
|
135 |
+
start_time = time.time()
|
136 |
+
for i in range(num_tunes):
|
137 |
+
title = f"T:{fname_prefix} Fragment\n"
|
138 |
+
artist = f"C:Generated by AI\n"
|
139 |
+
tune = f"X:{str(i + 1)}\n{title}{artist}{prompt}"
|
140 |
+
lines = re.split(r"(\n)", tune)
|
141 |
+
tune = ""
|
142 |
+
skip = False
|
143 |
+
for line in lines:
|
144 |
+
if show_control_code or line[:2] not in ["S:", "B:", "E:", "D:"]:
|
145 |
+
if not skip:
|
146 |
+
print(line, end="")
|
147 |
+
tune += line
|
148 |
+
|
149 |
+
skip = False
|
150 |
+
|
151 |
+
else:
|
152 |
+
skip = True
|
153 |
+
|
154 |
+
input_patches = torch.tensor(
|
155 |
+
[patchilizer.encode(prompt, add_special_patches=True)[:-1]],
|
156 |
+
device=DEVICE,
|
157 |
+
)
|
158 |
+
if tune == "":
|
159 |
+
tokens = None
|
160 |
+
|
161 |
+
else:
|
162 |
+
prefix = patchilizer.decode(input_patches[0])
|
163 |
+
remaining_tokens = prompt[len(prefix) :]
|
164 |
+
tokens = torch.tensor(
|
165 |
+
[patchilizer.bos_token_id] + [ord(c) for c in remaining_tokens],
|
166 |
+
device=DEVICE,
|
167 |
+
)
|
168 |
+
|
169 |
+
while input_patches.shape[1] < max_patch:
|
170 |
+
predicted_patch, seed = model.generate(
|
171 |
+
input_patches,
|
172 |
+
tokens,
|
173 |
+
top_p=top_p,
|
174 |
+
top_k=top_k,
|
175 |
+
temperature=temperature,
|
176 |
+
seed=seed,
|
177 |
+
)
|
178 |
+
tokens = None
|
179 |
+
if predicted_patch[0] != patchilizer.eos_token_id:
|
180 |
+
next_bar = patchilizer.decode([predicted_patch])
|
181 |
+
if show_control_code or next_bar[:2] not in ["S:", "B:", "E:", "D:"]:
|
182 |
+
print(next_bar, end="")
|
183 |
+
tune += next_bar
|
184 |
+
|
185 |
+
if next_bar == "":
|
186 |
+
break
|
187 |
+
|
188 |
+
next_bar = remaining_tokens + next_bar
|
189 |
+
remaining_tokens = ""
|
190 |
+
predicted_patch = torch.tensor(
|
191 |
+
patchilizer.bar2patch(next_bar),
|
192 |
+
device=DEVICE,
|
193 |
+
).unsqueeze(0)
|
194 |
+
input_patches = torch.cat(
|
195 |
+
[input_patches, predicted_patch.unsqueeze(0)],
|
196 |
+
dim=1,
|
197 |
+
)
|
198 |
+
|
199 |
+
else:
|
200 |
+
break
|
201 |
+
|
202 |
+
tunes += f"{tune}\n\n"
|
203 |
+
print("\n")
|
204 |
+
|
205 |
+
# fix tempo
|
206 |
+
if fix_tempo != None:
|
207 |
+
tempo = f"Q:{fix_tempo}\n"
|
208 |
+
|
209 |
+
else:
|
210 |
+
tempo = f"Q:{random.randint(88, 132)}\n"
|
211 |
+
if emo == "Q1":
|
212 |
+
tempo = f"Q:{random.randint(160, 184)}\n"
|
213 |
+
elif emo == "Q2":
|
214 |
+
tempo = f"Q:{random.randint(184, 228)}\n"
|
215 |
+
elif emo == "Q3":
|
216 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
217 |
+
elif emo == "Q4":
|
218 |
+
tempo = f"Q:{random.randint(40, 69)}\n"
|
219 |
+
|
220 |
+
Q_val = get_abc_key_val(tunes, "Q")
|
221 |
+
if Q_val:
|
222 |
+
tunes = tunes.replace(f"Q:{Q_val}\n", "")
|
223 |
+
|
224 |
+
K_val = get_abc_key_val(tunes)
|
225 |
+
if K_val == "none":
|
226 |
+
K_val = "C"
|
227 |
+
tunes = tunes.replace("K:none\n", f"K:{K_val}\n")
|
228 |
+
|
229 |
+
tunes = tunes.replace(f"A:{emo}\n", tempo)
|
230 |
+
# fix mode:major/minor
|
231 |
+
mode = "major" if emo == "Q1" or emo == "Q4" else "minor"
|
232 |
+
if (mode == "major") and ("m" in K_val):
|
233 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.split('m')[0]}\n")
|
234 |
+
|
235 |
+
elif (mode == "minor") and (not "m" in K_val):
|
236 |
+
tunes = tunes.replace(f"\nK:{K_val}\n", f"\nK:{K_val.replace('dor', '')}min\n")
|
237 |
+
|
238 |
+
print("Generation time: {:.2f} seconds".format(time.time() - start_time))
|
239 |
+
timestamp = time.strftime("%a_%d_%b_%Y_%H_%M_%S", time.localtime())
|
240 |
+
try:
|
241 |
+
# fix avg_pitch (octave)
|
242 |
+
if fix_pitch != None:
|
243 |
+
if fix_pitch:
|
244 |
+
tunes, xml = transpose_octaves_abc(
|
245 |
+
tunes,
|
246 |
+
f"{outdir}/{timestamp}.musicxml",
|
247 |
+
fix_pitch,
|
248 |
+
)
|
249 |
+
tunes = tunes.replace(title + title, title)
|
250 |
+
os.rename(xml, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
251 |
+
xml = f"{outdir}/[{fname_prefix}]{timestamp}.musicxml"
|
252 |
+
|
253 |
+
else:
|
254 |
+
if mode == "minor":
|
255 |
+
offset = -12
|
256 |
+
if emo == "Q2":
|
257 |
+
offset -= 12
|
258 |
+
|
259 |
+
tunes, xml = transpose_octaves_abc(
|
260 |
+
tunes,
|
261 |
+
f"{outdir}/{timestamp}.musicxml",
|
262 |
+
offset,
|
263 |
+
)
|
264 |
+
tunes = tunes.replace(title + title, title)
|
265 |
+
os.rename(xml, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
266 |
+
xml = f"{outdir}/[{fname_prefix}]{timestamp}.musicxml"
|
267 |
+
|
268 |
+
else:
|
269 |
+
xml = abc2xml(tunes, f"{outdir}/[{fname_prefix}]{timestamp}.musicxml")
|
270 |
+
|
271 |
+
audio = xml2(xml, "wav")
|
272 |
+
if fix_volume != None:
|
273 |
+
if fix_volume:
|
274 |
+
adjust_volume(audio, fix_volume)
|
275 |
+
|
276 |
+
elif os.path.exists(audio):
|
277 |
+
if emo == "Q1":
|
278 |
+
adjust_volume(audio, 5)
|
279 |
+
|
280 |
+
elif emo == "Q2":
|
281 |
+
adjust_volume(audio, 10)
|
282 |
+
|
283 |
+
mxl = xml2(xml, "mxl")
|
284 |
+
midi = xml2(xml, "mid")
|
285 |
+
pdf, jpg = xml2img(xml)
|
286 |
+
return audio, midi, pdf, xml, mxl, tunes, jpg
|
287 |
+
|
288 |
+
except Exception as e:
|
289 |
+
print(f"{e}")
|
290 |
+
return generate_music(args, emo, weights)
|
requirements.txt
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
torch
|
2 |
music21
|
3 |
pymupdf
|
4 |
-
autopep8
|
5 |
soundfile
|
6 |
unidecode
|
7 |
pillow==9.4.0
|
|
|
1 |
torch
|
2 |
music21
|
3 |
pymupdf
|
|
|
4 |
soundfile
|
5 |
unidecode
|
6 |
pillow==9.4.0
|
utils.py
CHANGED
@@ -4,11 +4,16 @@ import time
|
|
4 |
import torch
|
5 |
import requests
|
6 |
import subprocess
|
|
|
|
|
7 |
from tqdm import tqdm
|
8 |
-
from huggingface_hub import snapshot_download
|
9 |
|
10 |
-
TEMP_DIR = "./
|
11 |
-
WEIGHTS_DIR =
|
|
|
|
|
|
|
|
|
12 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
PATCH_LENGTH = 128 # Patch Length
|
14 |
PATCH_SIZE = 32 # Patch Size
|
|
|
4 |
import torch
|
5 |
import requests
|
6 |
import subprocess
|
7 |
+
import modelscope
|
8 |
+
import huggingface_hub
|
9 |
from tqdm import tqdm
|
|
|
10 |
|
11 |
+
TEMP_DIR = "./__pycache__"
|
12 |
+
WEIGHTS_DIR = (
|
13 |
+
huggingface_hub.snapshot_download("monetjoe/EMelodyGen", cache_dir=TEMP_DIR)
|
14 |
+
if os.getenv("language")
|
15 |
+
else modelscope.snapshot_download("monetjoe/EMelodyGen", cache_dir=TEMP_DIR)
|
16 |
+
)
|
17 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
PATCH_LENGTH = 128 # Patch Length
|
19 |
PATCH_SIZE = 32 # Patch Size
|