mohamedrady's picture
Update app.py
0f146ca verified
raw
history blame
8.19 kB
import os
import re
from camel_tools.tokenizers.word import simple_word_tokenize
from camel_tools.ner import NERecognizer
import nltk
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer
import PyPDF2
import gradio as gr
import openai
# تعيين التوكن الخاص بـ OpenAI
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"
# تحميل وتفعيل الأدوات المطلوبة
nltk.download('punkt')
# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1
# تحميل نماذج التحليل اللغوي
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic")
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic")
arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base")
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base")
arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator")
arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02")
# دالة لتحليل النص باستخدام camel_tools
def camel_ner_analysis(text):
ner = NERecognizer.pretrained()
tokens = simple_word_tokenize(text)
entities = ner.predict(tokens)
entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
for token, tag in zip(tokens, entities):
if tag in entity_dict:
entity_dict[tag].append((token, tag))
return entity_dict
# دالة لتحليل المشاعر
def analyze_sentiments(text):
sentiments = analyzer(text)
return sentiments
# دالة لتجزئة النص إلى جمل
def nltk_extract_sentences(text):
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
return sentences
# دالة لاستخراج الاقتباسات من النص
def nltk_extract_quotes(text):
quotes = []
sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
for sentence in sentences:
if '"' in sentence or '«' in sentence or '»' in sentence:
quotes.append(sentence)
return quotes
# دالة لعد الرموز في النص
def count_tokens(text):
tokens = simple_word_tokenize(text)
return len(tokens)
# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
with open(file_path, "rb") as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
text += page.extract_text()
return text
# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
scenes = re.split(r'داخلي|خارجي', text)
scenes = [scene.strip() for scene in scenes if scene.strip()]
return scenes
# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
details = {}
location_match = re.search(r'(داخلي|خارجي)', scene)
time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
if location_match:
details['location'] = location_match.group()
if time_match:
details['time'] = time_match.group()
return details
# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
return ages
# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
return descriptions
# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
persons = [ent[0] for ent in entities['PERSON']]
frequency = Counter(persons)
return frequency
# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
return dialogues
# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_and_complete(file_paths):
results = []
output_directory = os.getenv("SPACE_DIR", "/app/output")
for file_path in file_paths:
if file_path.endswith(".pdf"):
text = extract_pdf_text(file_path)
else:
with open(file_path, "r", encoding="utf-8") as file:
text = file.read()
filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
camel_entities = camel_ner_analysis(text)
sentiments = analyze_sentiments(text)
sentences = nltk_extract_sentences(text)
quotes = nltk_extract_quotes(text)
token_count = count_tokens(text)
scenes = extract_scenes(text)
ages = extract_ages(text)
character_descriptions = extract_character_descriptions(text)
character_frequency = extract_character_frequency(camel_entities)
dialogues = extract_dialogues(text)
scene_details = [extract_scene_details(scene) for scene in scenes]
# حفظ النتائج إلى ملفات
with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
file.write(str(camel_entities))
with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
file.write(str(sentiments))
with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(sentences))
with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(quotes))
with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
file.write(str(token_count))
with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
file.write("\n".join(scenes))
with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
file.write(str(scene_details))
with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
file.write(str(ages))
with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
file.write(str(character_descriptions))
with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
file.write(str(character_frequency))
with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
file.write(str(dialogues))
results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
return results
## تعريف واجهة Gradio
interface = gr.Interface(
fn=analyze_and_complete,
inputs=gr.File(file_count="multiple", type="filepath"),
outputs=gr.JSON(),
title="Movie Script Analyzer and Completer",
description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
)
if __name__ == "__main__":
interface.launch()