File size: 9,421 Bytes
4ec5ed1
8c2c44d
 
4ec5ed1
 
8c2c44d
 
4ec5ed1
 
c411d80
4ec5ed1
7769db5
4ec5ed1
 
7769db5
4ec5ed1
8c2c44d
c411d80
 
4ec5ed1
c411d80
 
8c2c44d
 
c411d80
 
 
 
 
 
 
 
 
 
 
8c2c44d
c411d80
 
8c2c44d
c411d80
 
8c2c44d
c411d80
 
8c2c44d
c411d80
8c2c44d
c411d80
 
8c2c44d
c411d80
 
 
8c2c44d
 
 
 
 
4ec5ed1
8c2c44d
 
 
 
 
 
4ec5ed1
8c2c44d
4ec5ed1
 
8c2c44d
4ec5ed1
 
8c2c44d
4ec5ed1
1eef0d0
4ec5ed1
 
 
8c2c44d
4ec5ed1
8c2c44d
4ec5ed1
 
8c2c44d
4ec5ed1
 
 
 
 
 
 
 
 
8c2c44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b4a700
 
c411d80
7769db5
7b4a700
 
 
 
 
 
 
 
 
8c2c44d
 
7b4a700
 
 
8c2c44d
 
 
 
 
 
 
7b4a700
7769db5
8c2c44d
 
 
 
 
7769db5
 
 
 
 
 
 
 
 
8c2c44d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7769db5
8c2c44d
7769db5
7b4a700
4ec5ed1
7769db5
4ec5ed1
 
7b4a700
7769db5
4ec5ed1
7b4a700
4ec5ed1
 
 
c3d42ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import os
import re
from camel_tools.tokenizers.word import simple_word_tokenize
import nltk
import torch
from collections import Counter
from transformers import pipeline, AutoModel, AutoTokenizer
import PyPDF2
import gradio as gr
import openai

# تحميل وتفعيل الأدوات المطلوبة
nltk.download('punkt')

# التحقق من توفر GPU واستخدامه
device = 0 if torch.cuda.is_available() else -1

# إعداد التوكنات
openai.api_key = "sk-proj-62TDbO5KABSdkZaFPPD4T3BlbkFJkhqOYpHhL6OucTzNdWSU"

# تحميل نماذج التحليل اللغوي
analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device, use_auth_token=huggingface_token)

# تحميل نماذج BERT، GPT2، ELECTRA، و AraBERT
arabic_bert_tokenizer = AutoTokenizer.from_pretrained("asafaya/bert-base-arabic", use_auth_token=huggingface_token)
arabic_bert_model = AutoModel.from_pretrained("asafaya/bert-base-arabic", use_auth_token=huggingface_token)

arabic_gpt2_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-base", use_auth_token=huggingface_token)
arabic_gpt2_model = AutoModel.from_pretrained("aubmindlab/aragpt2-base", use_auth_token=huggingface_token)

arabic_electra_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/araelectra-base-discriminator", use_auth_token=huggingface_token)
arabic_electra_model = AutoModel.from_pretrained("aubmindlab/araelectra-base-discriminator", use_auth_token=huggingface_token)

arabert_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02", use_auth_token=huggingface_token)
arabert_model = AutoModel.from_pretrained("aubmindlab/bert-base-arabertv02", use_auth_token=huggingface_token)

aragpt2_mega_tokenizer = AutoTokenizer.from_pretrained("aubmindlab/aragpt2-mega", use_auth_token=huggingface_token)
aragpt2_mega_model = AutoModel.from_pretrained("aubmindlab/aragpt2-mega", use_auth_token=huggingface_token)

xlm_roberta_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large", use_auth_token=huggingface_token)
xlm_roberta_model = AutoModel.from_pretrained("xlm-roberta-large", use_auth_token=huggingface_token)

m2m100_tokenizer = AutoTokenizer.from_pretrained("facebook/m2m100_418M", use_auth_token=huggingface_token)
m2m100_model = AutoModel.from_pretrained("facebook/m2m100_418M", use_auth_token=huggingface_token)

# دالة لتحليل النص باستخدام arabert-ner من transformers
def camel_ner_analysis(text):
    tokenizer = AutoTokenizer.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
    model = AutoModel.from_pretrained("camel-ai/arabert-ner", use_auth_token=huggingface_token)
    tokens = simple_word_tokenize(text)
    inputs = tokenizer(tokens, return_tensors="pt", is_split_into_words=True)
    outputs = model(**inputs)
    entities = outputs.logits.argmax(dim=-1).squeeze().tolist()
    entity_dict = {"PERSON": [], "LOC": [], "ORG": [], "DATE": []}
    for token, tag in zip(tokens, entities):
        if tag in entity_dict:
            entity_dict[tag].append((token, tag))
    return entity_dict

# دالة لتحليل المشاعر
def analyze_sentiments(text):
    sentiments = analyzer(text)
    return sentiments

# دالة لتجزئة النص إلى جمل
def nltk_extract_sentences(text):
    sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
    return sentences

# دالة لاستخراج الاقتباسات من النص
def nltk_extract_quotes(text):
    quotes = []
    sentences = nltk.tokenize.sent_tokenize(text, language='arabic')
    for sentence in sentences:
        if '"' in sentence or '«' in sentence or '»' in sentence:
            quotes.append(sentence)
    return quotes

# دالة لعد الرموز في النص
def count_tokens(text):
    tokens = simple_word_tokenize(text)
    return len(tokens)

# دالة لاستخراج النص من ملفات PDF
def extract_pdf_text(file_path):
    with open(file_path, "rb") as pdf_file:
        pdf_reader = PyPDF2.PdfReader(pdf_file)
        text = ""
        for page_num in range(len(pdf_reader.pages)):
            page = pdf_reader.pages[page_num]
            text += page.extract_text()
    return text

# دالة لاستخراج المشاهد من النص
def extract_scenes(text):
    scenes = re.split(r'داخلي|خارجي', text)
    scenes = [scene.strip() for scene in scenes if scene.strip()]
    return scenes

# دالة لاستخراج تفاصيل المشهد (المكان والوقت)
def extract_scene_details(scene):
    details = {}
    location_match = re.search(r'(داخلي|خارجي)', scene)
    time_match = re.search(r'(ليلاً|نهاراً|شروق|غروب)', scene)
    
    if location_match:
        details['location'] = location_match.group()
    if time_match:
        details['time'] = time_match.group()
    
    return details

# دالة لاستخراج أعمار الشخصيات
def extract_ages(text):
    ages = re.findall(r'\b(\d{1,2})\s*(?:عام|سنة|سنوات)\s*(?:من العمر|عمره|عمرها)', text)
    return ages

# دالة لاستخراج وصف الشخصيات
def extract_character_descriptions(text):
    descriptions = re.findall(r'شخصية\s*(.*?)\s*:\s*وصف\s*(.*?)\s*(?:\.|،)', text, re.DOTALL)
    return descriptions

# دالة لاستخراج تكرار الشخصيات
def extract_character_frequency(entities):
    persons = [ent[0] for ent in entities['PERSON']]
    frequency = Counter(persons)
    return frequency

# دالة لاستخراج الحوارات وتحديد المتحدثين
def extract_dialogues(text):
    dialogues = re.findall(r'(.*?)(?:\s*:\s*)(.*?)(?=\n|$)', text, re.DOTALL)
    return dialogues

# دالة لتحليل النصوص واستخراج المعلومات وحفظ النتائج
def analyze_and_complete(file_paths):
    results = []
    output_directory = "/Volumes/CLOCKWORK T/clockworkspace/first pro/out"
    
    for file_path in file_paths:
        if file_path.endswith(".pdf"):
            text = extract_pdf_text(file_path)
        else:
            with open(file_path, "r", encoding="utf-8") as file:
                text = file.read()
        
        filename_prefix = os.path.splitext(os.path.basename(file_path))[0]
        
        camel_entities = camel_ner_analysis(text)
        sentiments = analyze_sentiments(text)
        sentences = nltk_extract_sentences(text)
        quotes = nltk_extract_quotes(text)
        token_count = count_tokens(text)
        scenes = extract_scenes(text)
        ages = extract_ages(text)
        character_descriptions = extract_character_descriptions(text)
        character_frequency = extract_character_frequency(camel_entities)
        dialogues = extract_dialogues(text)
        
        scene_details = [extract_scene_details(scene) for scene in scenes]
        
        # حفظ النتائج إلى ملفات
        with open(os.path.join(output_directory, f"{filename_prefix}_entities.txt"), "w", encoding="utf-8") as file:
            file.write(str(camel_entities))

        with open(os.path.join(output_directory, f"{filename_prefix}_sentiments.txt"), "w", encoding="utf-8") as file:
            file.write(str(sentiments))

        with open(os.path.join(output_directory, f"{filename_prefix}_sentences.txt"), "w", encoding="utf-8") as file:
            file.write("\n".join(sentences))

        with open(os.path.join(output_directory, f"{filename_prefix}_quotes.txt"), "w", encoding="utf-8") as file:
            file.write("\n".join(quotes))

        with open(os.path.join(output_directory, f"{filename_prefix}_token_count.txt"), "w", encoding="utf-8") as file:
            file.write(str(token_count))

        with open(os.path.join(output_directory, f"{filename_prefix}_scenes.txt"), "w", encoding="utf-8") as file:
            file.write("\n".join(scenes))

        with open(os.path.join(output_directory, f"{filename_prefix}_scene_details.txt"), "w", encoding="utf-8") as file:
            file.write(str(scene_details))
        
        with open(os.path.join(output_directory, f"{filename_prefix}_ages.txt"), "w", encoding="utf-8") as file:
            file.write(str(ages))

        with open(os.path.join(output_directory, f"{filename_prefix}_character_descriptions.txt"), "w", encoding="utf-8") as file:
            file.write(str(character_descriptions))
        
        with open(os.path.join(output_directory, f"{filename_prefix}_character_frequency.txt"), "w", encoding="utf-8") as file:
            file.write(str(character_frequency))
        
        with open(os.path.join(output_directory, f"{filename_prefix}_dialogues.txt"), "w", encoding="utf-8") as file:
            file.write(str(dialogues))
        
        results.append((str(camel_entities), str(sentiments), "\n".join(sentences), "\n".join(quotes), str(token_count), "\n".join(scenes), str(scene_details), str(ages), str(character_descriptions), str(character_frequency), str(dialogues)))
    
    return results

# تعريف واجهة Gradio
interface = gr.Interface(
    fn=analyze_and_complete,
    inputs=gr.File(file_count="multiple", type="filepath"),
    outputs=gr.outputs.JSON(),
    title="Movie Script Analyzer and Completer",
    description="Upload text, PDF, or DOCX files to analyze and complete the movie script."
)

if __name__ == "__main__":
    interface.launch()