File size: 14,577 Bytes
69f2bad
8e5115d
 
 
 
 
 
 
69f2bad
1431767
 
 
 
 
 
e6fb807
 
 
 
 
 
8e5115d
e632d6b
 
8e5115d
e6fb807
 
1431767
e6fb807
 
 
 
 
 
 
1431767
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
e6fb807
 
 
 
 
1431767
e6fb807
 
8e5115d
e6fb807
1431767
e6fb807
8e5115d
e6fb807
 
 
 
 
 
8e5115d
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
e6fb807
8e5115d
e6fb807
 
 
 
 
 
 
 
1431767
e6fb807
 
 
8e5115d
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
e6fb807
 
8e5115d
 
e6fb807
8e5115d
e6fb807
e632d6b
e6fb807
 
1431767
8e5115d
1431767
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431767
 
8e5115d
 
 
1431767
8e5115d
 
 
 
 
 
e6fb807
e632d6b
e6fb807
 
8e5115d
 
 
 
 
e6fb807
 
 
1431767
 
8e5115d
e6fb807
 
 
 
8e5115d
1431767
 
 
8e5115d
 
e6fb807
8e5115d
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e632d6b
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
e6fb807
 
 
 
 
 
e632d6b
8e5115d
1431767
8e5115d
 
 
 
 
e6fb807
8e5115d
e6fb807
 
 
 
 
1431767
 
 
e6fb807
 
 
 
 
1431767
e6fb807
 
 
 
 
 
 
 
 
 
e632d6b
8e5115d
1431767
 
e632d6b
8e5115d
 
 
e6fb807
1431767
e6fb807
1431767
e6fb807
 
1431767
e6fb807
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
e6fb807
 
1431767
 
e6fb807
1431767
 
 
 
 
e6fb807
 
1431767
 
e6fb807
 
1431767
e6fb807
 
 
 
 
8e5115d
 
e6fb807
8e5115d
 
e6fb807
e632d6b
e6fb807
8e5115d
 
 
 
 
 
 
e6fb807
 
8e5115d
 
 
e6fb807
 
8e5115d
 
 
e6fb807
 
 
 
 
 
 
 
 
 
 
8e5115d
1431767
8e5115d
 
1431767
e6fb807
8e5115d
 
 
1431767
8e5115d
 
 
 
 
e6fb807
 
 
8e5115d
 
 
 
 
e6fb807
8e5115d
 
e632d6b
 
8e5115d
 
1431767
8e5115d
 
1431767
8e5115d
e632d6b
8e5115d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time

# ZeroGPU import
try:
    import spaces
    SPACES_AVAILABLE = True
except ImportError:
    SPACES_AVAILABLE = False
    class spaces:
        @staticmethod
        def GPU(duration=60):
            def decorator(func):
                return func
            return decorator

IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None

def load_ltx_model_manual():
    """Manually load LTX-Video model using transformers"""
    try:
        print("πŸ”„ Attempting to load LTX-Video with transformers...")
        
        from transformers import AutoModel, AutoTokenizer, AutoProcessor
        
        model_id = "Lightricks/LTX-Video"
        
        # Try loading with AutoModel
        try:
            processor = AutoProcessor.from_pretrained(model_id)
            model = AutoModel.from_pretrained(
                model_id,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
                trust_remote_code=True  # Important for new models
            )
            
            if torch.cuda.is_available():
                model = model.to("cuda")
            
            print("βœ… Model loaded with transformers")
            return model, processor, None
            
        except Exception as e:
            print(f"AutoModel failed: {e}")
            return None, None, str(e)
            
    except Exception as e:
        return None, None, f"Manual loading failed: {e}"

def load_alternative_video_model():
    """Load a working alternative video generation model"""
    try:
        print("πŸ”„ Loading alternative video model...")
        
        from diffusers import DiffusionPipeline
        
        # Use Zeroscope or ModelScope as alternatives
        alternatives = [
            "cerspense/zeroscope_v2_576w",
            "damo-vilab/text-to-video-ms-1.7b",
            "ali-vilab/text-to-video-ms-1.7b"
        ]
        
        for model_id in alternatives:
            try:
                print(f"Trying {model_id}...")
                pipe = DiffusionPipeline.from_pretrained(
                    model_id,
                    torch_dtype=torch.float16,
                    use_safetensors=True,
                    variant="fp16"
                )
                
                if torch.cuda.is_available():
                    pipe = pipe.to("cuda")
                
                # Enable optimizations
                pipe.enable_sequential_cpu_offload()
                pipe.enable_vae_slicing()
                
                print(f"βœ… Successfully loaded {model_id}")
                return pipe, model_id, None
                
            except Exception as e:
                print(f"Failed to load {model_id}: {e}")
                continue
        
        return None, None, "All alternative models failed"
        
    except Exception as e:
        return None, None, f"Alternative loading failed: {e}"

def create_mock_video(prompt, num_frames=16, width=512, height=512):
    """Create a mock video for demonstration"""
    try:
        import cv2
        from PIL import Image, ImageDraw, ImageFont
        
        # Create temporary video file
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            video_path = tmp_file.name
        
        # Video settings
        fps = 8
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
        
        # Color themes
        colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100)]
        
        for i in range(num_frames):
            # Create frame
            img = Image.new('RGB', (width, height), color=colors[i % len(colors)])
            draw = ImageDraw.Draw(img)
            
            try:
                font = ImageFont.truetype("arial.ttf", 24)
            except:
                font = ImageFont.load_default()
            
            # Add text
            draw.text((50, height//2 - 50), f"Frame {i+1}/{num_frames}", fill=(255, 255, 255), font=font)
            draw.text((50, height//2), f"Prompt: {prompt[:30]}...", fill=(255, 255, 255), font=font)
            draw.text((50, height//2 + 50), "DEMO MODE", fill=(0, 0, 0), font=font)
            
            # Convert to OpenCV format
            frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
            out.write(frame)
        
        out.release()
        return video_path
        
    except Exception as e:
        return None

# Global variables
MODEL = None
PROCESSOR = None
MODEL_TYPE = None
MODEL_ERROR = None

def initialize_model():
    """Initialize model with fallback options"""
    global MODEL, PROCESSOR, MODEL_TYPE, MODEL_ERROR
    
    if MODEL is not None:
        return True
    
    if MODEL_ERROR is not None:
        return False
    
    print("πŸš€ Initializing video model...")
    
    # Strategy 1: Try manual LTX-Video loading
    print("Trying LTX-Video...")
    MODEL, PROCESSOR, error = load_ltx_model_manual()
    if MODEL is not None:
        MODEL_TYPE = "LTX-Video"
        return True
    
    print(f"LTX-Video failed: {error}")
    
    # Strategy 2: Try alternative models
    print("Trying alternative models...")
    MODEL, MODEL_TYPE, error = load_alternative_video_model()
    if MODEL is not None:
        PROCESSOR = None  # Diffusion pipeline doesn't need separate processor
        return True
    
    print(f"Alternative models failed: {error}")
    
    # Strategy 3: Use mock generation
    MODEL_TYPE = "mock"
    MODEL_ERROR = "All models failed - using demo mode"
    return False

@spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
def generate_video(
    prompt: str,
    negative_prompt: str = "",
    num_frames: int = 16,
    height: int = 512,
    width: int = 512,
    num_inference_steps: int = 20,
    guidance_scale: float = 7.5,
    seed: int = -1
) -> Tuple[Optional[str], str]:
    """Generate video with fallback strategies"""
    
    # Initialize model
    model_loaded = initialize_model()
    
    # Input validation
    if not prompt.strip():
        return None, "❌ Please enter a valid prompt."
    
    # Limit parameters
    num_frames = min(max(num_frames, 8), 25)
    num_inference_steps = min(max(num_inference_steps, 10), 30)
    height = min(max(height, 256), 768)
    width = min(max(width, 256), 768)
    
    # Set seed
    if seed == -1:
        seed = np.random.randint(0, 2**32 - 1)
    
    try:
        # Clear memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        
        start_time = time.time()
        
        if MODEL_TYPE == "mock" or not model_loaded:
            # Mock generation
            print("🎭 Using mock generation")
            video_path = create_mock_video(prompt, num_frames, width, height)
            
            if video_path:
                end_time = time.time()
                return video_path, f"""
🎭 **Demo Video Generated**

πŸ“ Prompt: {prompt}
⚠️ Note: This is a demo mode because video models couldn't be loaded.

🎬 Frames: {num_frames}
πŸ“ Resolution: {width}x{height}
⏱️ Time: {end_time - start_time:.1f}s
πŸ”§ Status: {MODEL_ERROR or 'Demo mode'}

πŸ’‘ **To enable real video generation:**
- Check if LTX-Video is available in your region
- Try upgrading diffusers: `pip install diffusers --upgrade`
- Or wait for official LTX-Video support in diffusers
                """
            else:
                return None, "❌ Even demo generation failed"
        
        elif MODEL_TYPE == "LTX-Video":
            # Manual LTX-Video generation
            print("πŸš€ Using LTX-Video")
            
            # This would need the actual implementation based on the model's API
            # For now, return a message about manual implementation needed
            return None, f"""
⚠️ **Manual Implementation Required**

LTX-Video model was loaded but requires custom generation code.
The model API is not yet standardized in diffusers.

πŸ“‹ **Next Steps:**
1. Check Lightricks/LTX-Video model documentation
2. Implement custom inference pipeline
3. Or wait for official diffusers support

πŸ”§ **Current Status:** Model loaded, awaiting implementation
            """
        
        else:
            # Alternative model generation
            print(f"πŸ”„ Using {MODEL_TYPE}")
            
            generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
            
            result = MODEL(
                prompt=prompt,
                negative_prompt=negative_prompt if negative_prompt.strip() else None,
                num_frames=num_frames,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                generator=generator
            )
            
            # Export video
            video_frames = result.frames[0]
            
            with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
                from diffusers.utils import export_to_video
                export_to_video(video_frames, tmp_file.name, fps=8)
                video_path = tmp_file.name
            
            end_time = time.time()
            
            return video_path, f"""
βœ… **Video Generated Successfully!**

πŸ“ Prompt: {prompt}
πŸ€– Model: {MODEL_TYPE}
🎬 Frames: {num_frames}
πŸ“ Resolution: {width}x{height}
βš™οΈ Steps: {num_inference_steps}
🎯 Guidance: {guidance_scale}
🎲 Seed: {seed}
⏱️ Time: {end_time - start_time:.1f}s
πŸ–₯️ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}
            """
    
    except Exception as e:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        return None, f"❌ Generation failed: {str(e)}"

def get_system_info():
    """Get system information"""
    
    # Check what's available
    try:
        from diffusers import __version__ as diffusers_version
        available_pipelines = []
        try:
            from diffusers import LTXVideoPipeline
            available_pipelines.append("βœ… LTXVideoPipeline")
        except ImportError:
            available_pipelines.append("❌ LTXVideoPipeline")
        
        try:
            from diffusers import DiffusionPipeline
            available_pipelines.append("βœ… DiffusionPipeline")
        except ImportError:
            available_pipelines.append("❌ DiffusionPipeline")
            
    except ImportError:
        diffusers_version = "❌ Not installed"
        available_pipelines = ["❌ Diffusers not available"]
    
    return f"""
## πŸ–₯️ System Information

**Environment:**
- πŸš€ ZeroGPU: {'βœ… Active' if IS_ZERO_GPU else '❌ Not detected'}
- 🏠 HF Spaces: {'βœ…' if IS_SPACES else '❌'}
- πŸ”₯ CUDA: {'βœ…' if torch.cuda.is_available() else '❌'}

**Packages:**
- PyTorch: {torch.__version__}
- Diffusers: {diffusers_version}
- Available Pipelines: {', '.join(available_pipelines)}

**Model Status:**
- Current Model: {MODEL_TYPE or 'Not loaded'}
- Status: {'βœ… Ready' if MODEL is not None else '⚠️ ' + (MODEL_ERROR or 'Not initialized')}

**Recommendation:**
- LTX-Video is very new and may not be in stable diffusers yet
- Using alternative models or demo mode
- Check back later for official support
    """

# Create Gradio interface
with gr.Blocks(title="Video Generator with Fallbacks", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # 🎬 Advanced Video Generator
    
    Attempts to use LTX-Video, falls back to alternative models, or provides demo mode.
    """)
    
    with gr.Tab("πŸŽ₯ Generate Video"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ“ Video Prompt",
                    placeholder="A serene mountain lake at sunrise...",
                    lines=3
                )
                
                negative_prompt_input = gr.Textbox(
                    label="🚫 Negative Prompt",
                    placeholder="blurry, low quality...",
                    lines=2
                )
                
                with gr.Row():
                    num_frames = gr.Slider(8, 25, value=16, step=1, label="🎬 Frames")
                    num_steps = gr.Slider(10, 30, value=20, step=1, label="πŸ”„ Steps")
                
                with gr.Row():
                    width = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Width")
                    height = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Height")
                
                with gr.Row():
                    guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="🎯 Guidance")
                    seed = gr.Number(value=-1, precision=0, label="🎲 Seed")
                
                generate_btn = gr.Button("πŸš€ Generate Video", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                video_output = gr.Video(label="πŸŽ₯ Generated Video", height=400)
                result_text = gr.Textbox(label="πŸ“‹ Results", lines=8, show_copy_button=True)
        
        generate_btn.click(
            fn=generate_video,
            inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
            outputs=[video_output, result_text]
        )
        
        gr.Examples(
            examples=[
                ["A peaceful cat in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
                ["Ocean waves at golden hour", "blurry", 20, 512, 512, 20, 8.0, 123],
                ["A butterfly on a flower", "", 16, 512, 512, 15, 7.0, 456]
            ],
            inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
        )
    
    with gr.Tab("ℹ️ System Info"):
        info_btn = gr.Button("πŸ” Check System")
        system_output = gr.Markdown()
        
        info_btn.click(fn=get_system_info, outputs=system_output)
        demo.load(fn=get_system_info, outputs=system_output)

if __name__ == "__main__":
    demo.queue(max_size=5)
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )