Spaces:
Sleeping
Sleeping
File size: 14,577 Bytes
69f2bad 8e5115d 69f2bad 1431767 e6fb807 8e5115d e632d6b 8e5115d e6fb807 1431767 e6fb807 1431767 e6fb807 1431767 e6fb807 1431767 e6fb807 8e5115d e6fb807 1431767 e6fb807 8e5115d e6fb807 8e5115d e6fb807 1431767 e6fb807 8e5115d e6fb807 1431767 e6fb807 8e5115d e6fb807 1431767 e6fb807 8e5115d e6fb807 8e5115d e6fb807 e632d6b e6fb807 1431767 8e5115d 1431767 e6fb807 1431767 8e5115d 1431767 8e5115d e6fb807 e632d6b e6fb807 8e5115d e6fb807 1431767 8e5115d e6fb807 8e5115d 1431767 8e5115d e6fb807 8e5115d e6fb807 e632d6b e6fb807 8e5115d e6fb807 e632d6b 8e5115d 1431767 8e5115d e6fb807 8e5115d e6fb807 1431767 e6fb807 1431767 e6fb807 e632d6b 8e5115d 1431767 e632d6b 8e5115d e6fb807 1431767 e6fb807 1431767 e6fb807 1431767 e6fb807 8e5115d e6fb807 1431767 e6fb807 1431767 e6fb807 1431767 e6fb807 1431767 e6fb807 8e5115d e6fb807 8e5115d e6fb807 e632d6b e6fb807 8e5115d e6fb807 8e5115d e6fb807 8e5115d e6fb807 8e5115d 1431767 8e5115d 1431767 e6fb807 8e5115d 1431767 8e5115d e6fb807 8e5115d e6fb807 8e5115d e632d6b 8e5115d 1431767 8e5115d 1431767 8e5115d e632d6b 8e5115d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time
# ZeroGPU import
try:
import spaces
SPACES_AVAILABLE = True
except ImportError:
SPACES_AVAILABLE = False
class spaces:
@staticmethod
def GPU(duration=60):
def decorator(func):
return func
return decorator
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None
def load_ltx_model_manual():
"""Manually load LTX-Video model using transformers"""
try:
print("π Attempting to load LTX-Video with transformers...")
from transformers import AutoModel, AutoTokenizer, AutoProcessor
model_id = "Lightricks/LTX-Video"
# Try loading with AutoModel
try:
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModel.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True # Important for new models
)
if torch.cuda.is_available():
model = model.to("cuda")
print("β
Model loaded with transformers")
return model, processor, None
except Exception as e:
print(f"AutoModel failed: {e}")
return None, None, str(e)
except Exception as e:
return None, None, f"Manual loading failed: {e}"
def load_alternative_video_model():
"""Load a working alternative video generation model"""
try:
print("π Loading alternative video model...")
from diffusers import DiffusionPipeline
# Use Zeroscope or ModelScope as alternatives
alternatives = [
"cerspense/zeroscope_v2_576w",
"damo-vilab/text-to-video-ms-1.7b",
"ali-vilab/text-to-video-ms-1.7b"
]
for model_id in alternatives:
try:
print(f"Trying {model_id}...")
pipe = DiffusionPipeline.from_pretrained(
model_id,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16"
)
if torch.cuda.is_available():
pipe = pipe.to("cuda")
# Enable optimizations
pipe.enable_sequential_cpu_offload()
pipe.enable_vae_slicing()
print(f"β
Successfully loaded {model_id}")
return pipe, model_id, None
except Exception as e:
print(f"Failed to load {model_id}: {e}")
continue
return None, None, "All alternative models failed"
except Exception as e:
return None, None, f"Alternative loading failed: {e}"
def create_mock_video(prompt, num_frames=16, width=512, height=512):
"""Create a mock video for demonstration"""
try:
import cv2
from PIL import Image, ImageDraw, ImageFont
# Create temporary video file
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
video_path = tmp_file.name
# Video settings
fps = 8
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(video_path, fourcc, fps, (width, height))
# Color themes
colors = [(255, 100, 100), (100, 255, 100), (100, 100, 255), (255, 255, 100)]
for i in range(num_frames):
# Create frame
img = Image.new('RGB', (width, height), color=colors[i % len(colors)])
draw = ImageDraw.Draw(img)
try:
font = ImageFont.truetype("arial.ttf", 24)
except:
font = ImageFont.load_default()
# Add text
draw.text((50, height//2 - 50), f"Frame {i+1}/{num_frames}", fill=(255, 255, 255), font=font)
draw.text((50, height//2), f"Prompt: {prompt[:30]}...", fill=(255, 255, 255), font=font)
draw.text((50, height//2 + 50), "DEMO MODE", fill=(0, 0, 0), font=font)
# Convert to OpenCV format
frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
out.write(frame)
out.release()
return video_path
except Exception as e:
return None
# Global variables
MODEL = None
PROCESSOR = None
MODEL_TYPE = None
MODEL_ERROR = None
def initialize_model():
"""Initialize model with fallback options"""
global MODEL, PROCESSOR, MODEL_TYPE, MODEL_ERROR
if MODEL is not None:
return True
if MODEL_ERROR is not None:
return False
print("π Initializing video model...")
# Strategy 1: Try manual LTX-Video loading
print("Trying LTX-Video...")
MODEL, PROCESSOR, error = load_ltx_model_manual()
if MODEL is not None:
MODEL_TYPE = "LTX-Video"
return True
print(f"LTX-Video failed: {error}")
# Strategy 2: Try alternative models
print("Trying alternative models...")
MODEL, MODEL_TYPE, error = load_alternative_video_model()
if MODEL is not None:
PROCESSOR = None # Diffusion pipeline doesn't need separate processor
return True
print(f"Alternative models failed: {error}")
# Strategy 3: Use mock generation
MODEL_TYPE = "mock"
MODEL_ERROR = "All models failed - using demo mode"
return False
@spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
def generate_video(
prompt: str,
negative_prompt: str = "",
num_frames: int = 16,
height: int = 512,
width: int = 512,
num_inference_steps: int = 20,
guidance_scale: float = 7.5,
seed: int = -1
) -> Tuple[Optional[str], str]:
"""Generate video with fallback strategies"""
# Initialize model
model_loaded = initialize_model()
# Input validation
if not prompt.strip():
return None, "β Please enter a valid prompt."
# Limit parameters
num_frames = min(max(num_frames, 8), 25)
num_inference_steps = min(max(num_inference_steps, 10), 30)
height = min(max(height, 256), 768)
width = min(max(width, 256), 768)
# Set seed
if seed == -1:
seed = np.random.randint(0, 2**32 - 1)
try:
# Clear memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
start_time = time.time()
if MODEL_TYPE == "mock" or not model_loaded:
# Mock generation
print("π Using mock generation")
video_path = create_mock_video(prompt, num_frames, width, height)
if video_path:
end_time = time.time()
return video_path, f"""
π **Demo Video Generated**
π Prompt: {prompt}
β οΈ Note: This is a demo mode because video models couldn't be loaded.
π¬ Frames: {num_frames}
π Resolution: {width}x{height}
β±οΈ Time: {end_time - start_time:.1f}s
π§ Status: {MODEL_ERROR or 'Demo mode'}
π‘ **To enable real video generation:**
- Check if LTX-Video is available in your region
- Try upgrading diffusers: `pip install diffusers --upgrade`
- Or wait for official LTX-Video support in diffusers
"""
else:
return None, "β Even demo generation failed"
elif MODEL_TYPE == "LTX-Video":
# Manual LTX-Video generation
print("π Using LTX-Video")
# This would need the actual implementation based on the model's API
# For now, return a message about manual implementation needed
return None, f"""
β οΈ **Manual Implementation Required**
LTX-Video model was loaded but requires custom generation code.
The model API is not yet standardized in diffusers.
π **Next Steps:**
1. Check Lightricks/LTX-Video model documentation
2. Implement custom inference pipeline
3. Or wait for official diffusers support
π§ **Current Status:** Model loaded, awaiting implementation
"""
else:
# Alternative model generation
print(f"π Using {MODEL_TYPE}")
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
result = MODEL(
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt.strip() else None,
num_frames=num_frames,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
)
# Export video
video_frames = result.frames[0]
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
from diffusers.utils import export_to_video
export_to_video(video_frames, tmp_file.name, fps=8)
video_path = tmp_file.name
end_time = time.time()
return video_path, f"""
β
**Video Generated Successfully!**
π Prompt: {prompt}
π€ Model: {MODEL_TYPE}
π¬ Frames: {num_frames}
π Resolution: {width}x{height}
βοΈ Steps: {num_inference_steps}
π― Guidance: {guidance_scale}
π² Seed: {seed}
β±οΈ Time: {end_time - start_time:.1f}s
π₯οΈ Device: {'CUDA' if torch.cuda.is_available() else 'CPU'}
"""
except Exception as e:
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
return None, f"β Generation failed: {str(e)}"
def get_system_info():
"""Get system information"""
# Check what's available
try:
from diffusers import __version__ as diffusers_version
available_pipelines = []
try:
from diffusers import LTXVideoPipeline
available_pipelines.append("β
LTXVideoPipeline")
except ImportError:
available_pipelines.append("β LTXVideoPipeline")
try:
from diffusers import DiffusionPipeline
available_pipelines.append("β
DiffusionPipeline")
except ImportError:
available_pipelines.append("β DiffusionPipeline")
except ImportError:
diffusers_version = "β Not installed"
available_pipelines = ["β Diffusers not available"]
return f"""
## π₯οΈ System Information
**Environment:**
- π ZeroGPU: {'β
Active' if IS_ZERO_GPU else 'β Not detected'}
- π HF Spaces: {'β
' if IS_SPACES else 'β'}
- π₯ CUDA: {'β
' if torch.cuda.is_available() else 'β'}
**Packages:**
- PyTorch: {torch.__version__}
- Diffusers: {diffusers_version}
- Available Pipelines: {', '.join(available_pipelines)}
**Model Status:**
- Current Model: {MODEL_TYPE or 'Not loaded'}
- Status: {'β
Ready' if MODEL is not None else 'β οΈ ' + (MODEL_ERROR or 'Not initialized')}
**Recommendation:**
- LTX-Video is very new and may not be in stable diffusers yet
- Using alternative models or demo mode
- Check back later for official support
"""
# Create Gradio interface
with gr.Blocks(title="Video Generator with Fallbacks", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¬ Advanced Video Generator
Attempts to use LTX-Video, falls back to alternative models, or provides demo mode.
""")
with gr.Tab("π₯ Generate Video"):
with gr.Row():
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="π Video Prompt",
placeholder="A serene mountain lake at sunrise...",
lines=3
)
negative_prompt_input = gr.Textbox(
label="π« Negative Prompt",
placeholder="blurry, low quality...",
lines=2
)
with gr.Row():
num_frames = gr.Slider(8, 25, value=16, step=1, label="π¬ Frames")
num_steps = gr.Slider(10, 30, value=20, step=1, label="π Steps")
with gr.Row():
width = gr.Dropdown([256, 512, 768], value=512, label="π Width")
height = gr.Dropdown([256, 512, 768], value=512, label="π Height")
with gr.Row():
guidance_scale = gr.Slider(1.0, 15.0, value=7.5, step=0.5, label="π― Guidance")
seed = gr.Number(value=-1, precision=0, label="π² Seed")
generate_btn = gr.Button("π Generate Video", variant="primary", size="lg")
with gr.Column(scale=1):
video_output = gr.Video(label="π₯ Generated Video", height=400)
result_text = gr.Textbox(label="π Results", lines=8, show_copy_button=True)
generate_btn.click(
fn=generate_video,
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
outputs=[video_output, result_text]
)
gr.Examples(
examples=[
["A peaceful cat in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
["Ocean waves at golden hour", "blurry", 20, 512, 512, 20, 8.0, 123],
["A butterfly on a flower", "", 16, 512, 512, 15, 7.0, 456]
],
inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
)
with gr.Tab("βΉοΈ System Info"):
info_btn = gr.Button("π Check System")
system_output = gr.Markdown()
info_btn.click(fn=get_system_info, outputs=system_output)
demo.load(fn=get_system_info, outputs=system_output)
if __name__ == "__main__":
demo.queue(max_size=5)
demo.launch(
share=False,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |