File size: 13,884 Bytes
69f2bad
8e5115d
 
 
 
 
 
 
1431767
 
69f2bad
1431767
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
1431767
e632d6b
 
8e5115d
1431767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
1431767
 
 
8e5115d
1431767
8e5115d
1431767
8e5115d
1431767
 
 
 
 
 
 
e632d6b
1431767
e632d6b
 
1431767
e632d6b
8e5115d
1431767
 
e632d6b
1431767
 
 
 
e632d6b
 
1431767
 
 
8e5115d
e632d6b
1431767
 
 
 
 
 
8e5115d
 
1431767
 
 
8e5115d
1431767
e632d6b
1431767
8e5115d
1431767
 
 
 
 
 
 
 
 
8e5115d
 
 
1431767
8e5115d
 
 
 
 
 
e632d6b
 
1431767
e632d6b
1431767
 
 
 
8e5115d
 
 
 
 
1431767
 
8e5115d
1431767
 
 
 
 
8e5115d
 
1431767
 
 
8e5115d
 
1431767
e632d6b
8e5115d
 
1431767
e632d6b
1431767
8e5115d
 
 
1431767
e632d6b
8e5115d
1431767
8e5115d
 
 
 
 
e632d6b
8e5115d
 
 
 
 
1431767
8e5115d
 
 
1431767
 
 
 
 
 
 
 
8e5115d
e632d6b
1431767
 
e632d6b
 
1431767
 
 
 
 
 
 
 
 
 
 
8e5115d
 
 
 
1431767
 
e632d6b
1431767
e632d6b
8e5115d
1431767
 
e632d6b
8e5115d
 
 
1431767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e632d6b
1431767
 
 
 
 
8e5115d
1431767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e5115d
1431767
 
 
 
 
 
 
 
 
 
8e5115d
1431767
 
 
 
 
 
8e5115d
1431767
 
 
 
 
 
 
 
8e5115d
 
1431767
8e5115d
 
1431767
e632d6b
1431767
8e5115d
 
1431767
 
 
 
 
 
e632d6b
8e5115d
 
 
 
 
1431767
8e5115d
 
 
 
 
 
1431767
8e5115d
 
 
1431767
e632d6b
1431767
 
8e5115d
e632d6b
1431767
 
8e5115d
e632d6b
1431767
 
8e5115d
1431767
8e5115d
 
1431767
 
8e5115d
1431767
8e5115d
 
1431767
8e5115d
 
 
1431767
8e5115d
 
1431767
 
 
8e5115d
 
 
 
 
1431767
8e5115d
 
e632d6b
 
8e5115d
1431767
 
 
e632d6b
1431767
8e5115d
1431767
8e5115d
1431767
8e5115d
 
1431767
8e5115d
e632d6b
8e5115d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import gradio as gr
import torch
import os
import gc
import numpy as np
import tempfile
from typing import Optional, Tuple
import time
import subprocess
import sys

# ZeroGPU import
try:
    import spaces
    SPACES_AVAILABLE = True
    print("βœ… Spaces library loaded successfully")
except ImportError:
    print("⚠️ Spaces library not available")
    SPACES_AVAILABLE = False
    # Create dummy decorator
    def spaces_gpu_decorator(duration=60):
        def decorator(func):
            return func
        return decorator
    spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()

# Environment checks
IS_ZERO_GPU = os.environ.get("SPACES_ZERO_GPU") == "true"
IS_SPACES = os.environ.get("SPACE_ID") is not None

print(f"Environment: ZeroGPU={IS_ZERO_GPU}, Spaces={IS_SPACES}")

def check_and_install_requirements():
    """Check and install missing requirements"""
    try:
        import diffusers
        print(f"βœ… Diffusers version: {diffusers.__version__}")
        return True
    except ImportError:
        print("❌ Diffusers not found, attempting to install...")
        try:
            subprocess.check_call([sys.executable, "-m", "pip", "install", "diffusers[torch]>=0.30.0"])
            subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers>=4.35.0"])
            subprocess.check_call([sys.executable, "-m", "pip", "install", "accelerate"])
            import diffusers
            print(f"βœ… Diffusers installed successfully: {diffusers.__version__}")
            return True
        except Exception as e:
            print(f"❌ Failed to install diffusers: {e}")
            return False

def load_model_safe():
    """Safely load the LTX-Video model with comprehensive error handling"""
    
    # First, ensure requirements are installed
    if not check_and_install_requirements():
        return None, "Failed to install required packages"
    
    try:
        print("πŸ”„ Attempting to load LTX-Video model...")
        
        # Import after installation
        from diffusers import LTXVideoPipeline
        import torch
        
        model_id = "Lightricks/LTX-Video"
        
        # Check available memory
        if torch.cuda.is_available():
            gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
            print(f"πŸ“Š Available GPU memory: {gpu_memory:.1f} GB")
        
        # Load with conservative settings
        print("πŸ“₯ Loading pipeline...")
        pipe = LTXVideoPipeline.from_pretrained(
            model_id,
            torch_dtype=torch.bfloat16,
            use_safetensors=True,
            variant="fp16"
        )
        
        # Move to GPU if available
        if torch.cuda.is_available():
            pipe = pipe.to("cuda")
            print("πŸš€ Model moved to GPU")
        
        # Enable optimizations
        try:
            pipe.enable_vae_slicing()
            pipe.enable_vae_tiling()
            print("⚑ Memory optimizations enabled")
        except Exception as e:
            print(f"⚠️ Some optimizations failed: {e}")
        
        print("βœ… Model loaded successfully!")
        return pipe, None
        
    except ImportError as e:
        error_msg = f"Import error: {e}. Please check if diffusers is properly installed."
        print(f"❌ {error_msg}")
        return None, error_msg
        
    except Exception as e:
        error_msg = f"Model loading failed: {str(e)}"
        print(f"❌ {error_msg}")
        return None, error_msg

# Global model variable
MODEL = None
MODEL_ERROR = None

def initialize_model():
    """Initialize model on first use"""
    global MODEL, MODEL_ERROR
    if MODEL is None and MODEL_ERROR is None:
        print("πŸš€ Initializing model for first use...")
        MODEL, MODEL_ERROR = load_model_safe()
    return MODEL is not None

@spaces.GPU(duration=120) if SPACES_AVAILABLE else lambda x: x
def generate_video(
    prompt: str,
    negative_prompt: str = "",
    num_frames: int = 16,
    height: int = 512,
    width: int = 512,
    num_inference_steps: int = 20,
    guidance_scale: float = 7.5,
    seed: int = -1
) -> Tuple[Optional[str], str]:
    """Generate video using LTX-Video with ZeroGPU"""
    
    global MODEL, MODEL_ERROR
    
    # Initialize model if needed
    if not initialize_model():
        error_msg = f"❌ Model initialization failed: {MODEL_ERROR or 'Unknown error'}"
        return None, error_msg
    
    # Input validation
    if not prompt.strip():
        return None, "❌ Please enter a valid prompt."
    
    if len(prompt) > 200:
        return None, "❌ Prompt too long. Please keep it under 200 characters."
    
    # Limit parameters for stability
    num_frames = min(max(num_frames, 8), 24)
    num_inference_steps = min(max(num_inference_steps, 10), 25)
    height = min(max(height, 256), 768)
    width = min(max(width, 256), 768)
    
    try:
        # Clear memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        
        # Set seed
        if seed == -1:
            seed = np.random.randint(0, 2**32 - 1)
        
        generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(seed)
        
        print(f"🎬 Generating: '{prompt[:50]}...'")
        start_time = time.time()
        
        # Generate video
        with torch.autocast("cuda" if torch.cuda.is_available() else "cpu", dtype=torch.bfloat16):
            result = MODEL(
                prompt=prompt,
                negative_prompt=negative_prompt if negative_prompt.strip() else None,
                num_frames=num_frames,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                guidance_scale=guidance_scale,
                generator=generator,
            )
        
        end_time = time.time()
        generation_time = end_time - start_time
        
        # Save video
        video_frames = result.frames[0]
        
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_file:
            try:
                from diffusers.utils import export_to_video
                export_to_video(video_frames, tmp_file.name, fps=8)
                video_path = tmp_file.name
            except Exception as e:
                # Fallback: save as individual frames if export fails
                print(f"⚠️ Video export failed, trying alternative: {e}")
                return None, f"❌ Video export failed: {str(e)}"
        
        # Clear memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        
        success_msg = f"""βœ… Video generated successfully!

πŸ“ **Prompt:** {prompt}
🎬 **Frames:** {num_frames}
πŸ“ **Resolution:** {width}x{height}
βš™οΈ **Inference Steps:** {num_inference_steps}
🎯 **Guidance Scale:** {guidance_scale}
🎲 **Seed:** {seed}
⏱️ **Generation Time:** {generation_time:.1f}s
πŸ–₯️ **Device:** {'CUDA' if torch.cuda.is_available() else 'CPU'}
⚑ **ZeroGPU:** {'βœ…' if IS_ZERO_GPU else '❌'}"""
        
        return video_path, success_msg
        
    except torch.cuda.OutOfMemoryError:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        return None, "❌ GPU memory exceeded. Try reducing frames/resolution or try again in a moment."
    
    except Exception as e:
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        gc.collect()
        return None, f"❌ Generation failed: {str(e)}"

def get_system_info():
    """Get comprehensive system information"""
    
    # Check package versions
    package_info = {}
    try:
        import diffusers
        package_info['diffusers'] = diffusers.__version__
    except ImportError:
        package_info['diffusers'] = '❌ Not installed'
    
    try:
        import transformers
        package_info['transformers'] = transformers.__version__
    except ImportError:
        package_info['transformers'] = '❌ Not installed'
    
    # GPU info
    gpu_info = "❌ Not available"
    gpu_memory = 0
    if torch.cuda.is_available():
        try:
            gpu_info = torch.cuda.get_device_name(0)
            gpu_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
        except:
            gpu_info = "βœ… Available (details unavailable)"
    
    return f"""## πŸ–₯️ System Information

**Environment:**
- πŸš€ ZeroGPU: {'βœ… Active' if IS_ZERO_GPU else '❌ Not detected'}  
- 🏠 HF Spaces: {'βœ…' if IS_SPACES else '❌'}
- πŸ”₯ CUDA: {'βœ…' if torch.cuda.is_available() else '❌'}
- πŸ–₯️ GPU: {gpu_info} ({gpu_memory:.1f} GB)

**Packages:**
- PyTorch: {torch.__version__}
- Diffusers: {package_info.get('diffusers', 'Unknown')}
- Transformers: {package_info.get('transformers', 'Unknown')}
- Spaces: {'βœ…' if SPACES_AVAILABLE else '❌'}

**Model Status:**
- LTX-Video: {'βœ… Loaded' if MODEL is not None else '⏳ Will load on first use' if MODEL_ERROR is None else f'❌ Error: {MODEL_ERROR}'}

**Tips:**
{'🎯 Ready to generate!' if MODEL is not None else '⚑ First generation will take longer due to model loading'}"""

def test_dependencies():
    """Test if all dependencies are working"""
    results = []
    
    # Test torch
    try:
        import torch
        results.append(f"βœ… PyTorch {torch.__version__}")
        if torch.cuda.is_available():
            results.append(f"βœ… CUDA {torch.version.cuda}")
        else:
            results.append("⚠️ CUDA not available")
    except Exception as e:
        results.append(f"❌ PyTorch: {e}")
    
    # Test diffusers
    try:
        import diffusers
        results.append(f"βœ… Diffusers {diffusers.__version__}")
    except Exception as e:
        results.append(f"❌ Diffusers: {e}")
    
    # Test transformers
    try:
        import transformers
        results.append(f"βœ… Transformers {transformers.__version__}")
    except Exception as e:
        results.append(f"❌ Transformers: {e}")
    
    return "\n".join(results)

# Create Gradio interface
with gr.Blocks(title="LTX-Video ZeroGPU", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown("""
    # πŸš€ LTX-Video Generator (ZeroGPU)
    
    Generate high-quality videos from text using **Lightricks LTX-Video** model with **ZeroGPU**!
    """)
    
    # Status indicator
    with gr.Row():
        gr.Markdown(f"""
        **Status:** {'🟒 ZeroGPU Active' if IS_ZERO_GPU else '🟑 CPU Mode'} | 
        **Environment:** {'HF Spaces' if IS_SPACES else 'Local'}
        """)
    
    with gr.Tab("πŸŽ₯ Generate Video"):
        with gr.Row():
            with gr.Column(scale=1):
                prompt_input = gr.Textbox(
                    label="πŸ“ Video Prompt",
                    placeholder="A majestic eagle soaring through mountain peaks...",
                    lines=3,
                    max_lines=5
                )
                
                negative_prompt_input = gr.Textbox(
                    label="🚫 Negative Prompt (Optional)",
                    placeholder="blurry, low quality, distorted...",
                    lines=2
                )
                
                with gr.Accordion("βš™οΈ Settings", open=True):
                    with gr.Row():
                        num_frames = gr.Slider(8, 24, value=16, step=1, label="🎬 Frames")
                        num_steps = gr.Slider(10, 25, value=20, step=1, label="πŸ”„ Steps") 
                    
                    with gr.Row():
                        width = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Width")
                        height = gr.Dropdown([256, 512, 768], value=512, label="πŸ“ Height")
                    
                    with gr.Row():
                        guidance_scale = gr.Slider(1.0, 12.0, value=7.5, step=0.5, label="🎯 Guidance")
                        seed = gr.Number(value=-1, precision=0, label="🎲 Seed (-1=random)")
                
                generate_btn = gr.Button("πŸš€ Generate Video", variant="primary", size="lg")
                
            with gr.Column(scale=1):
                video_output = gr.Video(label="πŸŽ₯ Generated Video", height=400)
                result_text = gr.Textbox(label="πŸ“‹ Results", lines=6, show_copy_button=True)
        
        # Event handlers
        generate_btn.click(
            fn=generate_video,
            inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed],
            outputs=[video_output, result_text]
        )
        
        # Examples
        gr.Examples(
            examples=[
                ["A peaceful cat sleeping in a sunny garden", "", 16, 512, 512, 20, 7.5, 42],
                ["Ocean waves at sunset, cinematic view", "blurry", 20, 512, 512, 20, 8.0, 123],
                ["A hummingbird hovering near red flowers", "", 16, 512, 512, 15, 7.0, 456]
            ],
            inputs=[prompt_input, negative_prompt_input, num_frames, height, width, num_steps, guidance_scale, seed]
        )
    
    with gr.Tab("ℹ️ System Info"):
        info_btn = gr.Button("πŸ” Check System", variant="secondary")
        system_output = gr.Markdown()
        
        info_btn.click(fn=get_system_info, outputs=system_output)
        demo.load(fn=get_system_info, outputs=system_output)
    
    with gr.Tab("πŸ”§ Debug"):
        test_btn = gr.Button("πŸ§ͺ Test Dependencies")
        test_output = gr.Textbox(label="Test Results", lines=10)
        
        test_btn.click(fn=test_dependencies, outputs=test_output)

# Launch
if __name__ == "__main__":
    demo.queue(max_size=5)
    demo.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )