File size: 13,140 Bytes
1ec19be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16c0a32
2095fff
78a09b4
5c94eeb
f7ed1d0
2095fff
7394c77
a4b1bdb
fab4412
f7ed1d0
1ec19be
 
 
 
a4b1bdb
abb0e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7ed1d0
 
 
1ec19be
abb0e4d
f7ed1d0
1ec19be
 
 
abb0e4d
1ec19be
 
abb0e4d
 
1ec19be
abb0e4d
1ec19be
abb0e4d
 
 
1ec19be
 
 
abb0e4d
1ec19be
 
 
 
 
 
 
 
 
 
 
 
f7ed1d0
abb0e4d
 
 
 
 
 
 
 
4347c84
16c0a32
 
 
 
f7ed1d0
16c0a32
 
 
f7ed1d0
2580a1e
abb0e4d
 
 
 
 
 
 
 
 
 
1ec19be
abb0e4d
 
 
 
 
 
 
 
 
 
 
 
1ec19be
abb0e4d
 
 
 
 
 
 
1ec19be
abb0e4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ec19be
 
abb0e4d
 
1ec19be
 
 
 
 
 
 
 
 
 
 
 
 
abb0e4d
1ec19be
abb0e4d
 
 
 
 
 
 
 
 
 
 
1ec19be
 
 
 
abb0e4d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
```pythonimport torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
from typing import Optional, Dict, Any, ClassVar
import logging
import os
import sys
import traceback
from functools import lru_cache
import gc
import asyncio
from fastapi import BackgroundTasks
import psutil

# Initialize FastAPI
app = FastAPI()

# Debugging logging with detailed formatting
# logging.basicConfig(
#     level=logging.DEBUG,
#     format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
# )
# logger = logging.getLogger(__name__)

# Get HF token
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
    logger.warning("No HF_TOKEN found in environment variables")

MODELS = {
    "nidra-v1": "m1k3wn/nidra-v1",
    "nidra-v2": "m1k3wn/nidra-v2"
}

DEFAULT_GENERATION_CONFIGS = {
    "nidra-v1": {
        "max_length": 300,
        "min_length": 150,
        "num_beams": 8,
        "temperature": 0.55,
        "do_sample": True,
        "top_p": 0.95,
        "repetition_penalty": 4.5,
        "no_repeat_ngram_size": 4,
        "early_stopping": True,
        "length_penalty": 1.2,
    },
    "nidra-v2": {
        "max_length": 300,
        "min_length": 150,
        "num_beams": 8,
        "temperature": 0.4,
        "do_sample": True,
        "top_p": 0.95,
        "repetition_penalty": 3.5,
        "no_repeat_ngram_size": 4,
        "early_stopping": True,
        "length_penalty": 1.2,
    }
}

class ModelManager:
    _instances: ClassVar[Dict[str, tuple]] = {}
    _lock = asyncio.Lock()  # Add lock for thread safety

    @classmethod
    async def get_model_and_tokenizer(cls, model_name: str):
        async with cls._lock:
            if model_name not in cls._instances:
                try:
                    model_path = MODELS[model_name]
                    tokenizer = T5Tokenizer.from_pretrained(
                        model_path,
                        token=HF_TOKEN,
                        local_files_only=True  # Cache after first load
                    )
                    
                    model = T5ForConditionalGeneration.from_pretrained(
                        model_path,
                        token=HF_TOKEN,
                        local_files_only=True,
                        low_cpu_mem_usage=True,
                        torch_dtype=torch.float32
                    )
                    
                    # Enable parallel processing
                    model.eval()
                    torch.set_num_threads(8)  # Use all CPU cores
                    
                    cls._instances[model_name] = (model, tokenizer)
                    
                except Exception as e:
                    logger.error(f"Error loading {model_name}: {str(e)}")
                    raise
                    
            return cls._instances[model_name]

class PredictionRequest(BaseModel):
    inputs: str
    model: str = "nidra-v1"
    parameters: Optional[Dict[str, Any]] = None

class PredictionResponse(BaseModel):
    generated_text: str
    selected_model: str  # Changed from model_used to avoid namespace conflict

@app.get("/debug/memory")
async def memory_usage():
    process = psutil.Process()
    memory_info = process.memory_info()
    return {
        "memory_used_mb": memory_info.rss / 1024 / 1024,
        "memory_percent": process.memory_percent(),
        "cpu_percent": process.cpu_percent()
    }

@app.get("/version")
async def version():
    return {
        "python_version": sys.version,
        "models_available": list(MODELS.keys())
    }

@app.get("/health")
async def health():
    try:
        await ModelManager.get_model_and_tokenizer("nidra-v1")
        return {
            "status": "healthy",
            "loaded_models": list(ModelManager._instances.keys())
        }
    except Exception as e:
        logger.error(f"Health check failed: {str(e)}")
        return {
            "status": "unhealthy",
            "error": str(e)
        }

@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest, background_tasks: BackgroundTasks):
    try:
        if request.model not in MODELS:
            raise HTTPException(
                status_code=400,
                detail=f"Invalid model. Available models: {list(MODELS.keys())}"
            )

        model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
        generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()

        try:
            model_generation_config = model.generation_config
            generation_params.update({
                k: v for k, v in model_generation_config.to_dict().items()
                if v is not None
            })
        except Exception as config_load_error:
            logger.warning(f"Using default generation config: {config_load_error}")

        if request.parameters:
            generation_params.update(request.parameters)

        logger.debug(f"Final generation parameters: {generation_params}")

        full_input = "Interpret this dream: " + request.inputs
        inputs = tokenizer(
            full_input,
            return_tensors="pt",
            truncation=True,
            max_length=512,
            padding=True,
            return_attention_mask=True
        )

        async def generate():
            return model.generate(
                **inputs,
                **{k: v for k, v in generation_params.items() if k in [
                    'max_length', 'min_length', 'do_sample', 'temperature',
                    'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
                    'repetition_penalty', 'early_stopping'
                ]}
            )
            
        with torch.inference_mode():
            outputs = await asyncio.wait_for(generate(), timeout=70.0)
            
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        background_tasks.add_task(cleanup_memory)
        
        return PredictionResponse(
            generated_text=result,
            selected_model=request.model
        )

    except Exception as e:
        error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
        logger.error(error_msg)
        raise HTTPException(status_code=500, detail=error_msg)

def cleanup_memory():
    gc.collect()
    torch.cuda.empty_cache() if torch.cuda.is_available() else None

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import T5Tokenizer, T5ForConditionalGeneration, GenerationConfig
from typing import Optional, Dict, Any, ClassVar
import logging
import os
import sys
import traceback
from functools import lru_cache
import gc
import asyncio
from fastapi import BackgroundTasks
import psutil

# Initialize FastAPI
app = FastAPI()

# Set up logging with more detailed formatting
logging.basicConfig(
    level=logging.DEBUG,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# Get HF token
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
    logger.warning("No HF_TOKEN found in environment variables")

MODELS = {
    "nidra-v1": "m1k3wn/nidra-v1",
    "nidra-v2": "m1k3wn/nidra-v2"
}

DEFAULT_GENERATION_CONFIGS = {
    "nidra-v1": {
        "max_length": 300,
        "min_length": 150,
        "num_beams": 8,
        "temperature": 0.55,
        "do_sample": True,
        "top_p": 0.95,
        "repetition_penalty": 4.5,
        "no_repeat_ngram_size": 4,
        "early_stopping": True,
        "length_penalty": 1.2,
    },
    "nidra-v2": {
        "max_length": 300,
        "min_length": 150,
        "num_beams": 8,
        "temperature": 0.4,
        "do_sample": True,
        "top_p": 0.95,
        "repetition_penalty": 3.5,
        "no_repeat_ngram_size": 4,
        "early_stopping": True,
        "length_penalty": 1.2,
    }
}

class ModelManager:
    _instances: ClassVar[Dict[str, tuple]] = {}
    _lock = asyncio.Lock()  # Add lock for thread safety

    @classmethod
    async def get_model_and_tokenizer(cls, model_name: str):
        async with cls._lock:
            if model_name not in cls._instances:
                try:
                    model_path = MODELS[model_name]
                    tokenizer = T5Tokenizer.from_pretrained(
                        model_path,
                        token=HF_TOKEN,
                        local_files_only=True  # Cache after first load
                    )
                    
                    model = T5ForConditionalGeneration.from_pretrained(
                        model_path,
                        token=HF_TOKEN,
                        local_files_only=True,
                        low_cpu_mem_usage=True,
                        torch_dtype=torch.float32
                    )
                    
                    # Enable parallel processing
                    model.eval()
                    torch.set_num_threads(8)  # Use all CPU cores
                    
                    cls._instances[model_name] = (model, tokenizer)
                    
                except Exception as e:
                    logger.error(f"Error loading {model_name}: {str(e)}")
                    raise
                    
            return cls._instances[model_name]

class PredictionRequest(BaseModel):
    inputs: str
    model: str = "nidra-v1"
    parameters: Optional[Dict[str, Any]] = None

class PredictionResponse(BaseModel):
    generated_text: str
    selected_model: str  # Changed from model_used to avoid namespace conflict

@app.get("/debug/memory")
async def memory_usage():
    process = psutil.Process()
    memory_info = process.memory_info()
    return {
        "memory_used_mb": memory_info.rss / 1024 / 1024,
        "memory_percent": process.memory_percent(),
        "cpu_percent": process.cpu_percent()
    }

@app.get("/version")
async def version():
    return {
        "python_version": sys.version,
        "models_available": list(MODELS.keys())
    }

@app.get("/health")
async def health():
    try:
        await ModelManager.get_model_and_tokenizer("nidra-v1")
        return {
            "status": "healthy",
            "loaded_models": list(ModelManager._instances.keys())
        }
    except Exception as e:
        logger.error(f"Health check failed: {str(e)}")
        return {
            "status": "unhealthy",
            "error": str(e)
        }

@app.post("/predict", response_model=PredictionResponse)
async def predict(request: PredictionRequest, background_tasks: BackgroundTasks):
    try:
        if request.model not in MODELS:
            raise HTTPException(
                status_code=400,
                detail=f"Invalid model. Available models: {list(MODELS.keys())}"
            )

        model, tokenizer = await ModelManager.get_model_and_tokenizer(request.model)
        generation_params = DEFAULT_GENERATION_CONFIGS[request.model].copy()

        try:
            model_generation_config = model.generation_config
            generation_params.update({
                k: v for k, v in model_generation_config.to_dict().items()
                if v is not None
            })
        except Exception as config_load_error:
            logger.warning(f"Using default generation config: {config_load_error}")

        if request.parameters:
            generation_params.update(request.parameters)

        logger.debug(f"Final generation parameters: {generation_params}")

        full_input = "Interpret this dream: " + request.inputs
        inputs = tokenizer(
            full_input,
            return_tensors="pt",
            truncation=True,
            max_length=512,
            padding=True,
            return_attention_mask=True
        )

        async def generate():
            return model.generate(
                **inputs,
                **{k: v for k, v in generation_params.items() if k in [
                    'max_length', 'min_length', 'do_sample', 'temperature',
                    'top_p', 'top_k', 'num_beams', 'no_repeat_ngram_size',
                    'repetition_penalty', 'early_stopping'
                ]}
            )
            
        with torch.inference_mode():
            outputs = await asyncio.wait_for(generate(), timeout=70.0)
            
        result = tokenizer.decode(outputs[0], skip_special_tokens=True)
        background_tasks.add_task(cleanup_memory)
        
        return PredictionResponse(
            generated_text=result,
            selected_model=request.model
        )

    except Exception as e:
        error_msg = f"Error during prediction: {str(e)}\n{traceback.format_exc()}"
        logger.error(error_msg)
        raise HTTPException(status_code=500, detail=error_msg)

def cleanup_memory():
    gc.collect()
    torch.cuda.empty_cache() if torch.cuda.is_available() else None

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)