Spaces:
Running
Running
"""For specifying an LLM agent logic flow. | |
This is very much a prototype. It might end up merged into LynxScribe | |
as an "agentic logic flow". It might just get deleted. | |
(This is why the dependencies are left hanging.) | |
""" | |
import os | |
from lynxkite.core import ops | |
import enum | |
import jinja2 | |
import json | |
import numpy as np | |
import pandas as pd | |
from lynxkite.core.executors import one_by_one | |
jinja = jinja2.Environment() | |
chroma_client = None | |
LLM_CACHE = {} | |
ENV = "LLM logic" | |
one_by_one.register(ENV) | |
op = ops.op_registration(ENV) | |
LLM_BASE_URL = os.environ.get("LLM_BASE_URL", None) | |
EMBEDDING_BASE_URL = os.environ.get("EMBEDDING_BASE_URL", None) | |
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini-2024-07-18") | |
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small") | |
def chat(*args, **kwargs): | |
import openai | |
chat_client = openai.OpenAI(base_url=LLM_BASE_URL) | |
kwargs.setdefault("model", LLM_MODEL) | |
key = json.dumps( | |
{"method": "chat", "base_url": LLM_BASE_URL, "args": args, "kwargs": kwargs} | |
) | |
if key not in LLM_CACHE: | |
completion = chat_client.chat.completions.create(*args, **kwargs) | |
LLM_CACHE[key] = [c.message.content for c in completion.choices] | |
return LLM_CACHE[key] | |
def embedding(*args, **kwargs): | |
import openai | |
embedding_client = openai.OpenAI(base_url=EMBEDDING_BASE_URL) | |
kwargs.setdefault("model", EMBEDDING_MODEL) | |
key = json.dumps( | |
{ | |
"method": "embedding", | |
"base_url": EMBEDDING_BASE_URL, | |
"args": args, | |
"kwargs": kwargs, | |
} | |
) | |
if key not in LLM_CACHE: | |
res = embedding_client.embeddings.create(*args, **kwargs) | |
[data] = res.data | |
LLM_CACHE[key] = data.embedding | |
return LLM_CACHE[key] | |
def input_csv(*, filename: ops.PathStr, key: str): | |
return pd.read_csv(filename).rename(columns={key: "text"}) | |
def input_document(*, filename: ops.PathStr): | |
with open(filename) as f: | |
return {"text": f.read()} | |
def input_chat(*, chat: str): | |
return {"text": chat} | |
def split_document(input, *, delimiter: str = "\\n\\n"): | |
delimiter = delimiter.encode().decode("unicode_escape") | |
chunks = input["text"].split(delimiter) | |
return pd.DataFrame(chunks, columns=["text"]) | |
def build_document_graph(input): | |
return [{"source": i, "target": i + 1} for i in range(len(input) - 1)] | |
def predict_links(nodes, edges): | |
"""A placeholder for a real algorithm. For now just adds 2-hop neighbors.""" | |
edge_map = {} # Source -> [Targets] | |
for edge in edges: | |
edge_map.setdefault(edge["source"], []) | |
edge_map[edge["source"]].append(edge["target"]) | |
new_edges = [] | |
for edge in edges: | |
for t in edge_map.get(edge["target"], []): | |
new_edges.append({"source": edge["source"], "target": t}) | |
return edges + new_edges | |
def add_neighbors(nodes, edges, item): | |
nodes = pd.DataFrame(nodes) | |
edges = pd.DataFrame(edges) | |
matches = item["rag"] | |
additional_matches = [] | |
for m in matches: | |
node = nodes[nodes["text"] == m].index[0] | |
neighbors = edges[edges["source"] == node]["target"].to_list() | |
additional_matches.extend(nodes.loc[neighbors, "text"]) | |
return {**item, "rag": matches + additional_matches} | |
def create_prompt(input, *, save_as="prompt", template: ops.LongStr): | |
assert template, ( | |
"Please specify the template. Refer to columns using the Jinja2 syntax." | |
) | |
t = jinja.from_string(template) | |
prompt = t.render(**input) | |
return {**input, save_as: prompt} | |
def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100): | |
assert "prompt" in input, "Please create the prompt first." | |
options = {} | |
if accepted_regex: | |
options["extra_body"] = { | |
"regex": accepted_regex, | |
} | |
results = chat( | |
max_tokens=max_tokens, | |
messages=[ | |
{"role": "user", "content": input["prompt"]}, | |
], | |
**options, | |
) | |
return [{**input, "response": r} for r in results] | |
def view(input, *, _ctx: one_by_one.Context): | |
v = _ctx.last_result | |
if v: | |
columns = v["dataframes"]["df"]["columns"] | |
v["dataframes"]["df"]["data"].append([input[c] for c in columns]) | |
else: | |
columns = [str(c) for c in input.keys() if not str(c).startswith("_")] | |
v = { | |
"dataframes": { | |
"df": { | |
"columns": columns, | |
"data": [[input[c] for c in columns]], | |
} | |
} | |
} | |
return v | |
def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context): | |
"""Data can flow back here max_iterations-1 times.""" | |
key = f"iterations-{_ctx.node.id}" | |
input[key] = input.get(key, 0) + 1 | |
if input[key] < max_iterations: | |
return input | |
def branch(input, *, expression: str): | |
res = eval(expression, input) | |
return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input) | |
class RagEngine(enum.Enum): | |
Chroma = "Chroma" | |
Custom = "Custom" | |
def rag( | |
input, | |
db, | |
*, | |
engine: RagEngine = RagEngine.Chroma, | |
input_field="text", | |
db_field="text", | |
num_matches: int = 10, | |
_ctx: one_by_one.Context, | |
): | |
global chroma_client | |
if engine == RagEngine.Chroma: | |
last = _ctx.last_result | |
if last: | |
collection = last["_collection"] | |
else: | |
collection_name = _ctx.node.id.replace(" ", "_") | |
if chroma_client is None: | |
import chromadb | |
chroma_client = chromadb.Client() | |
for c in chroma_client.list_collections(): | |
if c.name == collection_name: | |
chroma_client.delete_collection(name=collection_name) | |
collection = chroma_client.create_collection(name=collection_name) | |
collection.add( | |
documents=[r[db_field] for r in db], | |
ids=[str(i) for i in range(len(db))], | |
) | |
results = collection.query( | |
query_texts=[input[input_field]], | |
n_results=num_matches, | |
) | |
results = [db[int(r)] for r in results["ids"][0]] | |
return {**input, "rag": results, "_collection": collection} | |
if engine == RagEngine.Custom: | |
chat = input[input_field] | |
embeddings = [embedding(input=[r[db_field]]) for r in db] | |
q = embedding(input=[chat]) | |
def cosine_similarity(a, b): | |
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) | |
scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)] | |
scores.sort(key=lambda x: -x[1]) | |
matches = [db[i][db_field] for i, _ in scores[:num_matches]] | |
return {**input, "rag": matches} | |
def run_python(input, *, template: str): | |
"""TODO: Implement.""" | |
return input | |