"""For specifying an LLM agent logic flow. This is very much a prototype. It might end up merged into LynxScribe as an "agentic logic flow". It might just get deleted. (This is why the dependencies are left hanging.) """ import os from lynxkite.core import ops import enum import jinja2 import json import numpy as np import pandas as pd from lynxkite.core.executors import one_by_one jinja = jinja2.Environment() chroma_client = None LLM_CACHE = {} ENV = "LLM logic" one_by_one.register(ENV) op = ops.op_registration(ENV) LLM_BASE_URL = os.environ.get("LLM_BASE_URL", None) EMBEDDING_BASE_URL = os.environ.get("EMBEDDING_BASE_URL", None) LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini-2024-07-18") EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small") def chat(*args, **kwargs): import openai chat_client = openai.OpenAI(base_url=LLM_BASE_URL) kwargs.setdefault("model", LLM_MODEL) key = json.dumps( {"method": "chat", "base_url": LLM_BASE_URL, "args": args, "kwargs": kwargs} ) if key not in LLM_CACHE: completion = chat_client.chat.completions.create(*args, **kwargs) LLM_CACHE[key] = [c.message.content for c in completion.choices] return LLM_CACHE[key] def embedding(*args, **kwargs): import openai embedding_client = openai.OpenAI(base_url=EMBEDDING_BASE_URL) kwargs.setdefault("model", EMBEDDING_MODEL) key = json.dumps( { "method": "embedding", "base_url": EMBEDDING_BASE_URL, "args": args, "kwargs": kwargs, } ) if key not in LLM_CACHE: res = embedding_client.embeddings.create(*args, **kwargs) [data] = res.data LLM_CACHE[key] = data.embedding return LLM_CACHE[key] @op("Input CSV") def input_csv(*, filename: ops.PathStr, key: str): return pd.read_csv(filename).rename(columns={key: "text"}) @op("Input document") def input_document(*, filename: ops.PathStr): with open(filename) as f: return {"text": f.read()} @op("Input chat") def input_chat(*, chat: str): return {"text": chat} @op("Split document") def split_document(input, *, delimiter: str = "\\n\\n"): delimiter = delimiter.encode().decode("unicode_escape") chunks = input["text"].split(delimiter) return pd.DataFrame(chunks, columns=["text"]) @ops.input_position(input="top") @op("Build document graph") def build_document_graph(input): return [{"source": i, "target": i + 1} for i in range(len(input) - 1)] @ops.input_position(nodes="top", edges="top") @op("Predict links") def predict_links(nodes, edges): """A placeholder for a real algorithm. For now just adds 2-hop neighbors.""" edge_map = {} # Source -> [Targets] for edge in edges: edge_map.setdefault(edge["source"], []) edge_map[edge["source"]].append(edge["target"]) new_edges = [] for edge in edges: for t in edge_map.get(edge["target"], []): new_edges.append({"source": edge["source"], "target": t}) return edges + new_edges @ops.input_position(nodes="top", edges="top") @op("Add neighbors") def add_neighbors(nodes, edges, item): nodes = pd.DataFrame(nodes) edges = pd.DataFrame(edges) matches = item["rag"] additional_matches = [] for m in matches: node = nodes[nodes["text"] == m].index[0] neighbors = edges[edges["source"] == node]["target"].to_list() additional_matches.extend(nodes.loc[neighbors, "text"]) return {**item, "rag": matches + additional_matches} @op("Create prompt") def create_prompt(input, *, save_as="prompt", template: ops.LongStr): assert template, ( "Please specify the template. Refer to columns using the Jinja2 syntax." ) t = jinja.from_string(template) prompt = t.render(**input) return {**input, save_as: prompt} @op("Ask LLM") def ask_llm(input, *, accepted_regex: str = None, max_tokens: int = 100): assert "prompt" in input, "Please create the prompt first." options = {} if accepted_regex: options["extra_body"] = { "regex": accepted_regex, } results = chat( max_tokens=max_tokens, messages=[ {"role": "user", "content": input["prompt"]}, ], **options, ) return [{**input, "response": r} for r in results] @op("View", view="table_view") def view(input, *, _ctx: one_by_one.Context): v = _ctx.last_result if v: columns = v["dataframes"]["df"]["columns"] v["dataframes"]["df"]["data"].append([input[c] for c in columns]) else: columns = [str(c) for c in input.keys() if not str(c).startswith("_")] v = { "dataframes": { "df": { "columns": columns, "data": [[input[c] for c in columns]], } } } return v @ops.input_position(input="right") @ops.output_position(output="left") @op("Loop") def loop(input, *, max_iterations: int = 3, _ctx: one_by_one.Context): """Data can flow back here max_iterations-1 times.""" key = f"iterations-{_ctx.node.id}" input[key] = input.get(key, 0) + 1 if input[key] < max_iterations: return input @op("Branch", outputs=["true", "false"]) def branch(input, *, expression: str): res = eval(expression, input) return one_by_one.Output(output_handle=str(bool(res)).lower(), value=input) class RagEngine(enum.Enum): Chroma = "Chroma" Custom = "Custom" @ops.input_position(db="top") @op("RAG") def rag( input, db, *, engine: RagEngine = RagEngine.Chroma, input_field="text", db_field="text", num_matches: int = 10, _ctx: one_by_one.Context, ): global chroma_client if engine == RagEngine.Chroma: last = _ctx.last_result if last: collection = last["_collection"] else: collection_name = _ctx.node.id.replace(" ", "_") if chroma_client is None: import chromadb chroma_client = chromadb.Client() for c in chroma_client.list_collections(): if c.name == collection_name: chroma_client.delete_collection(name=collection_name) collection = chroma_client.create_collection(name=collection_name) collection.add( documents=[r[db_field] for r in db], ids=[str(i) for i in range(len(db))], ) results = collection.query( query_texts=[input[input_field]], n_results=num_matches, ) results = [db[int(r)] for r in results["ids"][0]] return {**input, "rag": results, "_collection": collection} if engine == RagEngine.Custom: chat = input[input_field] embeddings = [embedding(input=[r[db_field]]) for r in db] q = embedding(input=[chat]) def cosine_similarity(a, b): return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) scores = [(i, cosine_similarity(q, e)) for i, e in enumerate(embeddings)] scores.sort(key=lambda x: -x[1]) matches = [db[i][db_field] for i, _ in scores[:num_matches]] return {**input, "rag": matches} @op("Run Python") def run_python(input, *, template: str): """TODO: Implement.""" return input