Spaces:
Running
Running
File size: 12,470 Bytes
56cf2e9 15bcc0e 10c9dc3 9a98e24 d6c271c 5826642 56cf2e9 5abeb6f f1233a2 b6d30cb ca01fa3 b6d30cb 9a98e24 45b3519 ca01fa3 896d563 56cf2e9 a07e9cb 15bcc0e 10c9dc3 e7fa7ee ca01fa3 9a98e24 15bcc0e ca01fa3 9a98e24 896d563 9a98e24 d6c271c 896d563 6c9b792 d6c271c 6c9b792 d6c271c 896d563 ef3b791 5826642 15bcc0e b6d30cb f1233a2 9a98e24 56cf2e9 9a98e24 03b7855 9a98e24 5abeb6f 56cf2e9 5abeb6f e22b028 5abeb6f e22b028 5abeb6f 9a98e24 e7fa7ee 15bcc0e 1b0481a 15bcc0e 942065e b6d30cb cc511e2 dbf89c5 cc511e2 1c50522 cc511e2 15bcc0e ca01fa3 da1ea6b eae3c5d 56cf2e9 eae3c5d 56cf2e9 15bcc0e 1c50522 ef3b791 15bcc0e 56cf2e9 121b6ff eae3c5d 15bcc0e eae3c5d 15bcc0e eae3c5d 15bcc0e ef3b791 15bcc0e eae3c5d 15bcc0e eae3c5d 121b6ff eae3c5d 15bcc0e eae3c5d 121b6ff eae3c5d 15bcc0e a18645a da1ea6b 56cf2e9 45b3519 e22b028 45b3519 56cf2e9 45b3519 b662a59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
"""Graph analytics operations."""
import enum
import os
import fsspec
from lynxkite.core import ops
from collections import deque
from . import core
import grandcypher
import joblib
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import json
mem = joblib.Memory(".joblib-cache")
op = ops.op_registration(core.ENV)
class FileFormat(enum.StrEnum):
csv = "csv"
parquet = "parquet"
json = "json"
excel = "excel"
@op(
"Import file",
params={
"file_format": ops.ParameterGroup(
name="file_format",
selector=ops.Parameter(
name="file_format", type=FileFormat, default=FileFormat.csv
),
groups={
"csv": [
ops.Parameter.basic("columns", type=str, default="<from file>"),
ops.Parameter.basic("separator", type=str, default="<auto>"),
],
"parquet": [],
"json": [],
"excel": [
ops.Parameter.basic("sheet_name", type=str, default="Sheet1")
],
},
default=FileFormat.csv,
),
},
)
def import_file(
*, file_path: str, table_name: str, file_format: FileFormat, **kwargs
) -> core.Bundle:
"""Read the contents of the a file into a `Bundle`.
Args:
file_path: Path to the file to import.
table_name: Name to use for identifying the table in the bundle.
file_format: Format of the file. Has to be one of the values in the `FileFormat` enum.
Returns:
Bundle: Bundle with a single table with the contents of the file.
"""
if file_format == "csv":
names = kwargs.pop("columns", "<from file>")
names = (
pd.api.extensions.no_default if names == "<from file>" else names.split(",")
)
sep = kwargs.pop("separator", "<auto>")
sep = pd.api.extensions.no_default if sep == "<auto>" else sep
df = pd.read_csv(file_path, names=names, sep=sep, **kwargs)
elif file_format == "json":
df = pd.read_json(file_path, **kwargs)
elif file_format == "parquet":
df = pd.read_parquet(file_path, **kwargs)
elif file_format == "excel":
df = pd.read_excel(file_path, **kwargs)
else:
df = ValueError(f"Unsupported file format: {file_format}")
return core.Bundle(dfs={table_name: df})
@op("Import Parquet")
def import_parquet(*, filename: str):
"""Imports a Parquet file."""
return pd.read_parquet(filename)
@op("Import CSV")
@mem.cache
def import_csv(
*, filename: str, columns: str = "<from file>", separator: str = "<auto>"
):
"""Imports a CSV file."""
return pd.read_csv(
filename,
names=pd.api.extensions.no_default
if columns == "<from file>"
else columns.split(","),
sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
)
@op("Import GraphML")
@mem.cache
def import_graphml(*, filename: str):
"""Imports a GraphML file."""
files = fsspec.open_files(filename, compression="infer")
for f in files:
if ".graphml" in f.path:
with f as f:
return nx.read_graphml(f)
raise ValueError(f"No .graphml file found at {filename}")
@op("Graph from OSM")
@mem.cache
def import_osm(*, location: str):
import osmnx as ox
return ox.graph.graph_from_place(location, network_type="drive")
@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
graph = graph.copy()
graph.remove_edges_from(nx.selfloop_edges(graph))
return graph
@op("Discard parallel edges")
def discard_parallel_edges(graph: nx.Graph):
return nx.DiGraph(graph)
@op("SQL")
def sql(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
with pl.Config() as cfg:
cfg.set_verbose(True)
res = (
pl.SQLContext(bundle.dfs)
.execute(query)
.collect(engine="gpu")
.to_pandas()
)
# TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
# which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
else:
res = pl.SQLContext(bundle.dfs).execute(query).collect().to_pandas()
bundle.dfs[save_as] = res
return bundle
@op("Cypher")
def cypher(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
"""Run a Cypher query on the graph in the bundle. Save the results as a new DataFrame."""
bundle = bundle.copy()
graph = bundle.to_nx()
res = grandcypher.GrandCypher(graph).run(query)
bundle.dfs[save_as] = pd.DataFrame(res)
return bundle
@op("Organize")
def organize(bundle: list[core.Bundle], *, code: ops.LongStr) -> core.Bundle:
"""Lets you rename/copy/delete DataFrames, and modify relations.
TODO: Merge this with "Create graph".
"""
bundle = bundle.copy()
exec(code, globals(), {"bundle": bundle})
return bundle
@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
"""Takes a (preferably connected) subgraph."""
sample = set()
to_expand = deque([next(graph.nodes.keys().__iter__())])
while to_expand and len(sample) < nodes:
node = to_expand.pop()
for n in graph.neighbors(node):
if n not in sample:
sample.add(n)
to_expand.append(n)
if len(sample) == nodes:
break
return nx.Graph(graph.subgraph(sample))
def _map_color(value):
if pd.api.types.is_numeric_dtype(value):
cmap = matplotlib.cm.get_cmap("viridis")
value = (value - value.min()) / (value.max() - value.min())
rgba = cmap(value.values)
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in rgba[:, :3]
]
else:
cmap = matplotlib.cm.get_cmap("Paired")
categories = pd.Index(value.unique())
colors = cmap.colors[: len(categories)]
return [
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
for r, g, b in [
colors[min(len(colors) - 1, categories.get_loc(v))] for v in value
]
]
@op("Visualize graph", view="visualization")
def visualize_graph(
graph: core.Bundle,
*,
color_nodes_by: ops.NodeAttribute = None,
label_by: ops.NodeAttribute = None,
color_edges_by: ops.EdgeAttribute = None,
):
nodes = core.df_for_frontend(graph.dfs["nodes"], 10_000)
if color_nodes_by:
nodes["color"] = _map_color(nodes[color_nodes_by])
for cols in ["x y", "long lat"]:
x, y = cols.split()
if (
x in nodes.columns
and nodes[x].dtype == "float64"
and y in nodes.columns
and nodes[y].dtype == "float64"
):
cx, cy = nodes[x].mean(), nodes[y].mean()
dx, dy = nodes[x].std(), nodes[y].std()
# Scale up to avoid float precision issues and because eCharts omits short edges.
scale_x = 100 / max(dx, dy)
scale_y = scale_x
if y == "lat":
scale_y *= -1
pos = {
node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
for node_id, row in nodes.iterrows()
}
curveness = 0 # Street maps are better with straight streets.
break
else:
pos = nx.spring_layout(
graph.to_nx(), iterations=max(1, int(10000 / len(nodes)))
)
curveness = 0.3
nodes = nodes.to_records()
edges = core.df_for_frontend(
graph.dfs["edges"].drop_duplicates(["source", "target"]), 10_000
)
if color_edges_by:
edges["color"] = _map_color(edges[color_edges_by])
edges = edges.to_records()
v = {
"animationDuration": 500,
"animationEasingUpdate": "quinticInOut",
"tooltip": {"show": True},
"series": [
{
"type": "graph",
# Mouse zoom/panning is disabled for now. It interacts badly with ReactFlow.
# "roam": True,
"lineStyle": {
"color": "gray",
"curveness": curveness,
},
"emphasis": {
"focus": "adjacency",
"lineStyle": {
"width": 10,
},
},
"label": {"position": "top", "formatter": "{b}"},
"data": [
{
"id": str(n.id),
"x": float(pos[n.id][0]),
"y": float(pos[n.id][1]),
# Adjust node size to cover the same area no matter how many nodes there are.
"symbolSize": 50 / len(nodes) ** 0.5,
"itemStyle": {"color": n.color} if color_nodes_by else {},
"label": {"show": label_by is not None},
"name": str(getattr(n, label_by, "")) if label_by else None,
"value": str(getattr(n, color_nodes_by, ""))
if color_nodes_by
else None,
}
for n in nodes
],
"links": [
{
"source": str(r.source),
"target": str(r.target),
"lineStyle": {"color": r.color} if color_edges_by else {},
"value": str(getattr(r, color_edges_by, ""))
if color_edges_by
else None,
}
for r in edges
],
},
],
}
return v
@op("View tables", view="table_view")
def view_tables(bundle: core.Bundle, *, limit: int = 100):
return bundle.to_dict(limit=limit)
@op(
"Create graph",
view="graph_creation_view",
outputs=["output"],
)
def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
"""Replace relations of the given bundle
relations is a stringified JSON, instead of a dict, because complex Yjs types (arrays, maps)
are not currently supported in the UI.
Args:
bundle: Bundle to modify
relations (str, optional): Set of relations to set for the bundle. The parameter
should be a JSON object where the keys are relation names and the values are
a dictionary representation of a `RelationDefinition`.
Defaults to None.
Returns:
Bundle: The input bundle with the new relations set.
"""
bundle = bundle.copy()
if not (relations is None or relations.strip() == ""):
bundle.relations = [
core.RelationDefinition(**r) for r in json.loads(relations).values()
]
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
@op("Define model")
def define_model(*, model_workspace: str, save_as: str = "model"):
"""Reads a PyTorch model workspace and returns it as a model in a bundle."""
return None
@op("Biomedical foundation graph (PLACEHOLDER)")
def biomedical_foundation_graph(*, filter_nodes: str):
"""Loads the gigantic Lynx-maintained knowledge graph. Includes drugs, diseases, genes, proteins, etc."""
return None
@op("Train model")
def train_model(
bundle: core.Bundle, *, model_name: str, model_mapping: str, epochs: int = 1
):
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
return None
@op("Model inference")
def model_inference(
bundle: core.Bundle,
*,
model_name: str,
model_mapping: str,
save_output_as: str = "prediction",
):
"""Executes a trained model."""
return None
@op("Train/test split")
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
return None
|