File size: 12,470 Bytes
56cf2e9
15bcc0e
10c9dc3
9a98e24
d6c271c
 
5826642
56cf2e9
5abeb6f
f1233a2
b6d30cb
ca01fa3
b6d30cb
9a98e24
45b3519
 
ca01fa3
896d563
56cf2e9
a07e9cb
15bcc0e
10c9dc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7fa7ee
ca01fa3
9a98e24
15bcc0e
 
ca01fa3
9a98e24
896d563
9a98e24
 
 
 
 
 
 
 
 
 
 
 
 
d6c271c
896d563
6c9b792
 
d6c271c
 
 
 
 
 
6c9b792
 
d6c271c
896d563
ef3b791
 
 
 
 
 
5826642
 
15bcc0e
 
 
 
b6d30cb
f1233a2
 
 
 
 
9a98e24
56cf2e9
9a98e24
 
 
 
 
 
 
 
 
 
 
 
 
 
03b7855
9a98e24
 
 
 
5abeb6f
56cf2e9
5abeb6f
 
 
 
 
 
 
 
e22b028
 
5abeb6f
 
e22b028
5abeb6f
9a98e24
 
 
 
 
e7fa7ee
 
15bcc0e
 
1b0481a
15bcc0e
 
 
 
 
 
 
 
 
 
942065e
b6d30cb
cc511e2
 
 
dbf89c5
cc511e2
 
 
 
 
 
 
 
 
 
1c50522
 
 
cc511e2
15bcc0e
ca01fa3
da1ea6b
eae3c5d
56cf2e9
eae3c5d
 
 
 
 
56cf2e9
15bcc0e
 
1c50522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef3b791
 
 
 
 
15bcc0e
56cf2e9
121b6ff
 
eae3c5d
 
15bcc0e
 
 
 
eae3c5d
15bcc0e
 
 
eae3c5d
 
15bcc0e
 
ef3b791
15bcc0e
 
 
 
 
 
 
eae3c5d
15bcc0e
 
 
 
 
 
 
 
eae3c5d
121b6ff
 
eae3c5d
 
15bcc0e
 
 
 
eae3c5d
 
 
 
121b6ff
eae3c5d
 
 
 
15bcc0e
 
 
 
 
 
a18645a
da1ea6b
56cf2e9
45b3519
 
 
 
 
 
 
 
e22b028
45b3519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cf2e9
45b3519
 
b662a59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
"""Graph analytics operations."""

import enum
import os
import fsspec
from lynxkite.core import ops
from collections import deque
from . import core
import grandcypher
import joblib
import matplotlib
import networkx as nx
import pandas as pd
import polars as pl
import json


mem = joblib.Memory(".joblib-cache")
op = ops.op_registration(core.ENV)


class FileFormat(enum.StrEnum):
    csv = "csv"
    parquet = "parquet"
    json = "json"
    excel = "excel"


@op(
    "Import file",
    params={
        "file_format": ops.ParameterGroup(
            name="file_format",
            selector=ops.Parameter(
                name="file_format", type=FileFormat, default=FileFormat.csv
            ),
            groups={
                "csv": [
                    ops.Parameter.basic("columns", type=str, default="<from file>"),
                    ops.Parameter.basic("separator", type=str, default="<auto>"),
                ],
                "parquet": [],
                "json": [],
                "excel": [
                    ops.Parameter.basic("sheet_name", type=str, default="Sheet1")
                ],
            },
            default=FileFormat.csv,
        ),
    },
)
def import_file(
    *, file_path: str, table_name: str, file_format: FileFormat, **kwargs
) -> core.Bundle:
    """Read the contents of the a file into a `Bundle`.

    Args:
        file_path: Path to the file to import.
        table_name: Name to use for identifying the table in the bundle.
        file_format: Format of the file. Has to be one of the values in the `FileFormat` enum.

    Returns:
        Bundle: Bundle with a single table with the contents of the file.
    """
    if file_format == "csv":
        names = kwargs.pop("columns", "<from file>")
        names = (
            pd.api.extensions.no_default if names == "<from file>" else names.split(",")
        )
        sep = kwargs.pop("separator", "<auto>")
        sep = pd.api.extensions.no_default if sep == "<auto>" else sep
        df = pd.read_csv(file_path, names=names, sep=sep, **kwargs)
    elif file_format == "json":
        df = pd.read_json(file_path, **kwargs)
    elif file_format == "parquet":
        df = pd.read_parquet(file_path, **kwargs)
    elif file_format == "excel":
        df = pd.read_excel(file_path, **kwargs)
    else:
        df = ValueError(f"Unsupported file format: {file_format}")
    return core.Bundle(dfs={table_name: df})


@op("Import Parquet")
def import_parquet(*, filename: str):
    """Imports a Parquet file."""
    return pd.read_parquet(filename)


@op("Import CSV")
@mem.cache
def import_csv(
    *, filename: str, columns: str = "<from file>", separator: str = "<auto>"
):
    """Imports a CSV file."""
    return pd.read_csv(
        filename,
        names=pd.api.extensions.no_default
        if columns == "<from file>"
        else columns.split(","),
        sep=pd.api.extensions.no_default if separator == "<auto>" else separator,
    )


@op("Import GraphML")
@mem.cache
def import_graphml(*, filename: str):
    """Imports a GraphML file."""
    files = fsspec.open_files(filename, compression="infer")
    for f in files:
        if ".graphml" in f.path:
            with f as f:
                return nx.read_graphml(f)
    raise ValueError(f"No .graphml file found at {filename}")


@op("Graph from OSM")
@mem.cache
def import_osm(*, location: str):
    import osmnx as ox

    return ox.graph.graph_from_place(location, network_type="drive")


@op("Discard loop edges")
def discard_loop_edges(graph: nx.Graph):
    graph = graph.copy()
    graph.remove_edges_from(nx.selfloop_edges(graph))
    return graph


@op("Discard parallel edges")
def discard_parallel_edges(graph: nx.Graph):
    return nx.DiGraph(graph)


@op("SQL")
def sql(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
    """Run a SQL query on the DataFrames in the bundle. Save the results as a new DataFrame."""
    bundle = bundle.copy()
    if os.environ.get("NX_CUGRAPH_AUTOCONFIG", "").strip().lower() == "true":
        with pl.Config() as cfg:
            cfg.set_verbose(True)
            res = (
                pl.SQLContext(bundle.dfs)
                .execute(query)
                .collect(engine="gpu")
                .to_pandas()
            )
            # TODO: Currently `collect()` moves the data from cuDF to Polars. Then we convert it to Pandas,
            # which (hopefully) puts it back into cuDF. Hopefully we will be able to keep it in cuDF.
    else:
        res = pl.SQLContext(bundle.dfs).execute(query).collect().to_pandas()
    bundle.dfs[save_as] = res
    return bundle


@op("Cypher")
def cypher(bundle: core.Bundle, *, query: ops.LongStr, save_as: str = "result"):
    """Run a Cypher query on the graph in the bundle. Save the results as a new DataFrame."""
    bundle = bundle.copy()
    graph = bundle.to_nx()
    res = grandcypher.GrandCypher(graph).run(query)
    bundle.dfs[save_as] = pd.DataFrame(res)
    return bundle


@op("Organize")
def organize(bundle: list[core.Bundle], *, code: ops.LongStr) -> core.Bundle:
    """Lets you rename/copy/delete DataFrames, and modify relations.

    TODO: Merge this with "Create graph".
    """
    bundle = bundle.copy()
    exec(code, globals(), {"bundle": bundle})
    return bundle


@op("Sample graph")
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
    """Takes a (preferably connected) subgraph."""
    sample = set()
    to_expand = deque([next(graph.nodes.keys().__iter__())])
    while to_expand and len(sample) < nodes:
        node = to_expand.pop()
        for n in graph.neighbors(node):
            if n not in sample:
                sample.add(n)
                to_expand.append(n)
            if len(sample) == nodes:
                break
    return nx.Graph(graph.subgraph(sample))


def _map_color(value):
    if pd.api.types.is_numeric_dtype(value):
        cmap = matplotlib.cm.get_cmap("viridis")
        value = (value - value.min()) / (value.max() - value.min())
        rgba = cmap(value.values)
        return [
            "#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
            for r, g, b in rgba[:, :3]
        ]
    else:
        cmap = matplotlib.cm.get_cmap("Paired")
        categories = pd.Index(value.unique())
        colors = cmap.colors[: len(categories)]
        return [
            "#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
            for r, g, b in [
                colors[min(len(colors) - 1, categories.get_loc(v))] for v in value
            ]
        ]


@op("Visualize graph", view="visualization")
def visualize_graph(
    graph: core.Bundle,
    *,
    color_nodes_by: ops.NodeAttribute = None,
    label_by: ops.NodeAttribute = None,
    color_edges_by: ops.EdgeAttribute = None,
):
    nodes = core.df_for_frontend(graph.dfs["nodes"], 10_000)
    if color_nodes_by:
        nodes["color"] = _map_color(nodes[color_nodes_by])
    for cols in ["x y", "long lat"]:
        x, y = cols.split()
        if (
            x in nodes.columns
            and nodes[x].dtype == "float64"
            and y in nodes.columns
            and nodes[y].dtype == "float64"
        ):
            cx, cy = nodes[x].mean(), nodes[y].mean()
            dx, dy = nodes[x].std(), nodes[y].std()
            # Scale up to avoid float precision issues and because eCharts omits short edges.
            scale_x = 100 / max(dx, dy)
            scale_y = scale_x
            if y == "lat":
                scale_y *= -1
            pos = {
                node_id: ((row[x] - cx) * scale_x, (row[y] - cy) * scale_y)
                for node_id, row in nodes.iterrows()
            }
            curveness = 0  # Street maps are better with straight streets.
            break
    else:
        pos = nx.spring_layout(
            graph.to_nx(), iterations=max(1, int(10000 / len(nodes)))
        )
        curveness = 0.3
    nodes = nodes.to_records()
    edges = core.df_for_frontend(
        graph.dfs["edges"].drop_duplicates(["source", "target"]), 10_000
    )
    if color_edges_by:
        edges["color"] = _map_color(edges[color_edges_by])
    edges = edges.to_records()
    v = {
        "animationDuration": 500,
        "animationEasingUpdate": "quinticInOut",
        "tooltip": {"show": True},
        "series": [
            {
                "type": "graph",
                # Mouse zoom/panning is disabled for now. It interacts badly with ReactFlow.
                # "roam": True,
                "lineStyle": {
                    "color": "gray",
                    "curveness": curveness,
                },
                "emphasis": {
                    "focus": "adjacency",
                    "lineStyle": {
                        "width": 10,
                    },
                },
                "label": {"position": "top", "formatter": "{b}"},
                "data": [
                    {
                        "id": str(n.id),
                        "x": float(pos[n.id][0]),
                        "y": float(pos[n.id][1]),
                        # Adjust node size to cover the same area no matter how many nodes there are.
                        "symbolSize": 50 / len(nodes) ** 0.5,
                        "itemStyle": {"color": n.color} if color_nodes_by else {},
                        "label": {"show": label_by is not None},
                        "name": str(getattr(n, label_by, "")) if label_by else None,
                        "value": str(getattr(n, color_nodes_by, ""))
                        if color_nodes_by
                        else None,
                    }
                    for n in nodes
                ],
                "links": [
                    {
                        "source": str(r.source),
                        "target": str(r.target),
                        "lineStyle": {"color": r.color} if color_edges_by else {},
                        "value": str(getattr(r, color_edges_by, ""))
                        if color_edges_by
                        else None,
                    }
                    for r in edges
                ],
            },
        ],
    }
    return v


@op("View tables", view="table_view")
def view_tables(bundle: core.Bundle, *, limit: int = 100):
    return bundle.to_dict(limit=limit)


@op(
    "Create graph",
    view="graph_creation_view",
    outputs=["output"],
)
def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
    """Replace relations of the given bundle

    relations is a stringified JSON, instead of a dict, because complex Yjs types (arrays, maps)
    are not currently supported in the UI.

    Args:
        bundle: Bundle to modify
        relations (str, optional): Set of relations to set for the bundle. The parameter
            should be a JSON object where the keys are relation names and the values are
            a dictionary representation of a `RelationDefinition`.
        Defaults to None.

    Returns:
        Bundle: The input bundle with the new relations set.
    """
    bundle = bundle.copy()
    if not (relations is None or relations.strip() == ""):
        bundle.relations = [
            core.RelationDefinition(**r) for r in json.loads(relations).values()
        ]
    return ops.Result(output=bundle, display=bundle.to_dict(limit=100))


@op("Define model")
def define_model(*, model_workspace: str, save_as: str = "model"):
    """Reads a PyTorch model workspace and returns it as a model in a bundle."""
    return None


@op("Biomedical foundation graph (PLACEHOLDER)")
def biomedical_foundation_graph(*, filter_nodes: str):
    """Loads the gigantic Lynx-maintained knowledge graph. Includes drugs, diseases, genes, proteins, etc."""
    return None


@op("Train model")
def train_model(
    bundle: core.Bundle, *, model_name: str, model_mapping: str, epochs: int = 1
):
    """Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
    return None


@op("Model inference")
def model_inference(
    bundle: core.Bundle,
    *,
    model_name: str,
    model_mapping: str,
    save_output_as: str = "prediction",
):
    """Executes a trained model."""
    return None


@op("Train/test split")
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
    """Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
    return None