Spaces:
Running
Running
Training and inference.
Browse files- examples/Model definition +334 -0
- examples/Model use +288 -0
- examples/uploads/plus-one-dataset.parquet +0 -0
- lynxkite-core/src/lynxkite/core/ops.py +11 -4
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py +2 -2
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py +48 -12
- lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py +26 -4
examples/Model definition
ADDED
|
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"edges": [
|
| 3 |
+
{
|
| 4 |
+
"id": "Input: embedding 1 Linear 1",
|
| 5 |
+
"source": "Input: embedding 1",
|
| 6 |
+
"sourceHandle": "x",
|
| 7 |
+
"target": "Linear 1",
|
| 8 |
+
"targetHandle": "x"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"id": "Input: label 1 MSE loss 1",
|
| 12 |
+
"source": "Input: label 1",
|
| 13 |
+
"sourceHandle": "y",
|
| 14 |
+
"target": "MSE loss 1",
|
| 15 |
+
"targetHandle": "y"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "Linear 1 Activation 2",
|
| 19 |
+
"source": "Linear 1",
|
| 20 |
+
"sourceHandle": "x",
|
| 21 |
+
"target": "Activation 2",
|
| 22 |
+
"targetHandle": "x"
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"id": "Activation 2 MSE loss 1",
|
| 26 |
+
"source": "Activation 2",
|
| 27 |
+
"sourceHandle": "x",
|
| 28 |
+
"target": "MSE loss 1",
|
| 29 |
+
"targetHandle": "x"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "MSE loss 1 Optimizer 2",
|
| 33 |
+
"source": "MSE loss 1",
|
| 34 |
+
"sourceHandle": "loss",
|
| 35 |
+
"target": "Optimizer 2",
|
| 36 |
+
"targetHandle": "loss"
|
| 37 |
+
}
|
| 38 |
+
],
|
| 39 |
+
"env": "PyTorch model",
|
| 40 |
+
"nodes": [
|
| 41 |
+
{
|
| 42 |
+
"data": {
|
| 43 |
+
"display": null,
|
| 44 |
+
"error": null,
|
| 45 |
+
"meta": {
|
| 46 |
+
"inputs": {},
|
| 47 |
+
"name": "Input: embedding",
|
| 48 |
+
"outputs": {
|
| 49 |
+
"x": {
|
| 50 |
+
"name": "x",
|
| 51 |
+
"position": "top",
|
| 52 |
+
"type": {
|
| 53 |
+
"type": "tensor"
|
| 54 |
+
}
|
| 55 |
+
}
|
| 56 |
+
},
|
| 57 |
+
"params": {},
|
| 58 |
+
"type": "basic"
|
| 59 |
+
},
|
| 60 |
+
"params": {},
|
| 61 |
+
"status": "planned",
|
| 62 |
+
"title": "Input: embedding"
|
| 63 |
+
},
|
| 64 |
+
"dragHandle": ".bg-primary",
|
| 65 |
+
"height": 200.0,
|
| 66 |
+
"id": "Input: embedding 1",
|
| 67 |
+
"position": {
|
| 68 |
+
"x": 91.0,
|
| 69 |
+
"y": 266.0
|
| 70 |
+
},
|
| 71 |
+
"type": "basic",
|
| 72 |
+
"width": 200.0
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"data": {
|
| 76 |
+
"display": null,
|
| 77 |
+
"error": null,
|
| 78 |
+
"meta": {
|
| 79 |
+
"inputs": {
|
| 80 |
+
"x": {
|
| 81 |
+
"name": "x",
|
| 82 |
+
"position": "bottom",
|
| 83 |
+
"type": {
|
| 84 |
+
"type": "tensor"
|
| 85 |
+
}
|
| 86 |
+
}
|
| 87 |
+
},
|
| 88 |
+
"name": "Linear",
|
| 89 |
+
"outputs": {
|
| 90 |
+
"x": {
|
| 91 |
+
"name": "x",
|
| 92 |
+
"position": "top",
|
| 93 |
+
"type": {
|
| 94 |
+
"type": "tensor"
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
},
|
| 98 |
+
"params": {
|
| 99 |
+
"output_dim": {
|
| 100 |
+
"default": "same",
|
| 101 |
+
"name": "output_dim",
|
| 102 |
+
"type": {
|
| 103 |
+
"type": "<class 'str'>"
|
| 104 |
+
}
|
| 105 |
+
}
|
| 106 |
+
},
|
| 107 |
+
"type": "basic"
|
| 108 |
+
},
|
| 109 |
+
"params": {
|
| 110 |
+
"output_dim": "same"
|
| 111 |
+
},
|
| 112 |
+
"status": "planned",
|
| 113 |
+
"title": "Linear"
|
| 114 |
+
},
|
| 115 |
+
"dragHandle": ".bg-primary",
|
| 116 |
+
"height": 200.0,
|
| 117 |
+
"id": "Linear 1",
|
| 118 |
+
"position": {
|
| 119 |
+
"x": 86.0,
|
| 120 |
+
"y": 33.0
|
| 121 |
+
},
|
| 122 |
+
"type": "basic",
|
| 123 |
+
"width": 200.0
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"data": {
|
| 127 |
+
"display": null,
|
| 128 |
+
"error": null,
|
| 129 |
+
"meta": {
|
| 130 |
+
"inputs": {
|
| 131 |
+
"x": {
|
| 132 |
+
"name": "x",
|
| 133 |
+
"position": "bottom",
|
| 134 |
+
"type": {
|
| 135 |
+
"type": "tensor"
|
| 136 |
+
}
|
| 137 |
+
},
|
| 138 |
+
"y": {
|
| 139 |
+
"name": "y",
|
| 140 |
+
"position": "bottom",
|
| 141 |
+
"type": {
|
| 142 |
+
"type": "tensor"
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
},
|
| 146 |
+
"name": "MSE loss",
|
| 147 |
+
"outputs": {
|
| 148 |
+
"loss": {
|
| 149 |
+
"name": "loss",
|
| 150 |
+
"position": "top",
|
| 151 |
+
"type": {
|
| 152 |
+
"type": "tensor"
|
| 153 |
+
}
|
| 154 |
+
}
|
| 155 |
+
},
|
| 156 |
+
"params": {},
|
| 157 |
+
"type": "basic"
|
| 158 |
+
},
|
| 159 |
+
"params": {},
|
| 160 |
+
"status": "planned",
|
| 161 |
+
"title": "MSE loss"
|
| 162 |
+
},
|
| 163 |
+
"dragHandle": ".bg-primary",
|
| 164 |
+
"height": 200.0,
|
| 165 |
+
"id": "MSE loss 1",
|
| 166 |
+
"position": {
|
| 167 |
+
"x": 315.0,
|
| 168 |
+
"y": -510.0
|
| 169 |
+
},
|
| 170 |
+
"type": "basic",
|
| 171 |
+
"width": 200.0
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"data": {
|
| 175 |
+
"display": null,
|
| 176 |
+
"error": null,
|
| 177 |
+
"meta": {
|
| 178 |
+
"inputs": {},
|
| 179 |
+
"name": "Input: label",
|
| 180 |
+
"outputs": {
|
| 181 |
+
"y": {
|
| 182 |
+
"name": "y",
|
| 183 |
+
"position": "top",
|
| 184 |
+
"type": {
|
| 185 |
+
"type": "tensor"
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
},
|
| 189 |
+
"params": {},
|
| 190 |
+
"type": "basic"
|
| 191 |
+
},
|
| 192 |
+
"params": {},
|
| 193 |
+
"status": "planned",
|
| 194 |
+
"title": "Input: label"
|
| 195 |
+
},
|
| 196 |
+
"dragHandle": ".bg-primary",
|
| 197 |
+
"height": 200.0,
|
| 198 |
+
"id": "Input: label 1",
|
| 199 |
+
"position": {
|
| 200 |
+
"x": 615.0,
|
| 201 |
+
"y": -165.0
|
| 202 |
+
},
|
| 203 |
+
"type": "basic",
|
| 204 |
+
"width": 200.0
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"data": {
|
| 208 |
+
"__execution_delay": 0.0,
|
| 209 |
+
"collapsed": null,
|
| 210 |
+
"display": null,
|
| 211 |
+
"error": null,
|
| 212 |
+
"meta": {
|
| 213 |
+
"inputs": {
|
| 214 |
+
"x": {
|
| 215 |
+
"name": "x",
|
| 216 |
+
"position": "bottom",
|
| 217 |
+
"type": {
|
| 218 |
+
"type": "tensor"
|
| 219 |
+
}
|
| 220 |
+
}
|
| 221 |
+
},
|
| 222 |
+
"name": "Activation",
|
| 223 |
+
"outputs": {
|
| 224 |
+
"x": {
|
| 225 |
+
"name": "x",
|
| 226 |
+
"position": "top",
|
| 227 |
+
"type": {
|
| 228 |
+
"type": "tensor"
|
| 229 |
+
}
|
| 230 |
+
}
|
| 231 |
+
},
|
| 232 |
+
"params": {
|
| 233 |
+
"type": {
|
| 234 |
+
"default": "ReLU",
|
| 235 |
+
"name": "type",
|
| 236 |
+
"type": {
|
| 237 |
+
"enum": [
|
| 238 |
+
"ReLU",
|
| 239 |
+
"Leaky ReLU",
|
| 240 |
+
"Tanh",
|
| 241 |
+
"Mish"
|
| 242 |
+
]
|
| 243 |
+
}
|
| 244 |
+
}
|
| 245 |
+
},
|
| 246 |
+
"position": {
|
| 247 |
+
"x": 419.0,
|
| 248 |
+
"y": 396.0
|
| 249 |
+
},
|
| 250 |
+
"type": "basic"
|
| 251 |
+
},
|
| 252 |
+
"params": {
|
| 253 |
+
"type": "Leaky ReLU"
|
| 254 |
+
},
|
| 255 |
+
"status": "planned",
|
| 256 |
+
"title": "Activation"
|
| 257 |
+
},
|
| 258 |
+
"dragHandle": ".bg-primary",
|
| 259 |
+
"height": 200.0,
|
| 260 |
+
"id": "Activation 2",
|
| 261 |
+
"position": {
|
| 262 |
+
"x": 93.61643829835265,
|
| 263 |
+
"y": -229.04087132886406
|
| 264 |
+
},
|
| 265 |
+
"type": "basic",
|
| 266 |
+
"width": 200.0
|
| 267 |
+
},
|
| 268 |
+
{
|
| 269 |
+
"data": {
|
| 270 |
+
"__execution_delay": 0.0,
|
| 271 |
+
"collapsed": null,
|
| 272 |
+
"display": null,
|
| 273 |
+
"error": null,
|
| 274 |
+
"meta": {
|
| 275 |
+
"inputs": {
|
| 276 |
+
"loss": {
|
| 277 |
+
"name": "loss",
|
| 278 |
+
"position": "bottom",
|
| 279 |
+
"type": {
|
| 280 |
+
"type": "tensor"
|
| 281 |
+
}
|
| 282 |
+
}
|
| 283 |
+
},
|
| 284 |
+
"name": "Optimizer",
|
| 285 |
+
"outputs": {},
|
| 286 |
+
"params": {
|
| 287 |
+
"lr": {
|
| 288 |
+
"default": 0.001,
|
| 289 |
+
"name": "lr",
|
| 290 |
+
"type": {
|
| 291 |
+
"type": "<class 'float'>"
|
| 292 |
+
}
|
| 293 |
+
},
|
| 294 |
+
"type": {
|
| 295 |
+
"default": "AdamW",
|
| 296 |
+
"name": "type",
|
| 297 |
+
"type": {
|
| 298 |
+
"enum": [
|
| 299 |
+
"AdamW",
|
| 300 |
+
"Adafactor",
|
| 301 |
+
"Adagrad",
|
| 302 |
+
"SGD",
|
| 303 |
+
"Lion",
|
| 304 |
+
"Paged AdamW",
|
| 305 |
+
"Galore AdamW"
|
| 306 |
+
]
|
| 307 |
+
}
|
| 308 |
+
}
|
| 309 |
+
},
|
| 310 |
+
"position": {
|
| 311 |
+
"x": 526.0,
|
| 312 |
+
"y": 116.0
|
| 313 |
+
},
|
| 314 |
+
"type": "basic"
|
| 315 |
+
},
|
| 316 |
+
"params": {
|
| 317 |
+
"lr": "0.1",
|
| 318 |
+
"type": "SGD"
|
| 319 |
+
},
|
| 320 |
+
"status": "planned",
|
| 321 |
+
"title": "Optimizer"
|
| 322 |
+
},
|
| 323 |
+
"dragHandle": ".bg-primary",
|
| 324 |
+
"height": 200.0,
|
| 325 |
+
"id": "Optimizer 2",
|
| 326 |
+
"position": {
|
| 327 |
+
"x": 305.6132943499785,
|
| 328 |
+
"y": -804.0094318451224
|
| 329 |
+
},
|
| 330 |
+
"type": "basic",
|
| 331 |
+
"width": 200.0
|
| 332 |
+
}
|
| 333 |
+
]
|
| 334 |
+
}
|
examples/Model use
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"edges": [
|
| 3 |
+
{
|
| 4 |
+
"id": "Import Parquet 1 Train/test split 1",
|
| 5 |
+
"source": "Import Parquet 1",
|
| 6 |
+
"sourceHandle": "output",
|
| 7 |
+
"target": "Train/test split 1",
|
| 8 |
+
"targetHandle": "bundle"
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"id": "Train/test split 1 Train model 3",
|
| 12 |
+
"source": "Train/test split 1",
|
| 13 |
+
"sourceHandle": "output",
|
| 14 |
+
"target": "Train model 3",
|
| 15 |
+
"targetHandle": "bundle"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"id": "Train model 3 Model inference 1",
|
| 19 |
+
"source": "Train model 3",
|
| 20 |
+
"sourceHandle": "output",
|
| 21 |
+
"target": "Model inference 1",
|
| 22 |
+
"targetHandle": "bundle"
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"env": "LynxKite Graph Analytics",
|
| 26 |
+
"nodes": [
|
| 27 |
+
{
|
| 28 |
+
"data": {
|
| 29 |
+
"__execution_delay": 0.0,
|
| 30 |
+
"collapsed": null,
|
| 31 |
+
"display": null,
|
| 32 |
+
"error": null,
|
| 33 |
+
"meta": {
|
| 34 |
+
"inputs": {
|
| 35 |
+
"bundle": {
|
| 36 |
+
"name": "bundle",
|
| 37 |
+
"position": "left",
|
| 38 |
+
"type": {
|
| 39 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 40 |
+
}
|
| 41 |
+
}
|
| 42 |
+
},
|
| 43 |
+
"name": "Train/test split",
|
| 44 |
+
"outputs": {
|
| 45 |
+
"output": {
|
| 46 |
+
"name": "output",
|
| 47 |
+
"position": "right",
|
| 48 |
+
"type": {
|
| 49 |
+
"type": "None"
|
| 50 |
+
}
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"params": {
|
| 54 |
+
"table_name": {
|
| 55 |
+
"default": null,
|
| 56 |
+
"name": "table_name",
|
| 57 |
+
"type": {
|
| 58 |
+
"type": "<class 'str'>"
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"test_ratio": {
|
| 62 |
+
"default": 0.1,
|
| 63 |
+
"name": "test_ratio",
|
| 64 |
+
"type": {
|
| 65 |
+
"type": "<class 'float'>"
|
| 66 |
+
}
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
"type": "basic"
|
| 70 |
+
},
|
| 71 |
+
"params": {
|
| 72 |
+
"table_name": "df",
|
| 73 |
+
"test_ratio": 0.1
|
| 74 |
+
},
|
| 75 |
+
"status": "done",
|
| 76 |
+
"title": "Train/test split"
|
| 77 |
+
},
|
| 78 |
+
"dragHandle": ".bg-primary",
|
| 79 |
+
"height": 282.0,
|
| 80 |
+
"id": "Train/test split 1",
|
| 81 |
+
"position": {
|
| 82 |
+
"x": 345.0,
|
| 83 |
+
"y": 139.0
|
| 84 |
+
},
|
| 85 |
+
"type": "basic",
|
| 86 |
+
"width": 259.0
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"data": {
|
| 90 |
+
"__execution_delay": 0.0,
|
| 91 |
+
"collapsed": null,
|
| 92 |
+
"display": null,
|
| 93 |
+
"error": null,
|
| 94 |
+
"meta": {
|
| 95 |
+
"inputs": {},
|
| 96 |
+
"name": "Import Parquet",
|
| 97 |
+
"outputs": {
|
| 98 |
+
"output": {
|
| 99 |
+
"name": "output",
|
| 100 |
+
"position": "right",
|
| 101 |
+
"type": {
|
| 102 |
+
"type": "None"
|
| 103 |
+
}
|
| 104 |
+
}
|
| 105 |
+
},
|
| 106 |
+
"params": {
|
| 107 |
+
"filename": {
|
| 108 |
+
"default": null,
|
| 109 |
+
"name": "filename",
|
| 110 |
+
"type": {
|
| 111 |
+
"type": "<class 'str'>"
|
| 112 |
+
}
|
| 113 |
+
}
|
| 114 |
+
},
|
| 115 |
+
"type": "basic"
|
| 116 |
+
},
|
| 117 |
+
"params": {
|
| 118 |
+
"filename": "uploads/plus-one-dataset.parquet"
|
| 119 |
+
},
|
| 120 |
+
"status": "done",
|
| 121 |
+
"title": "Import Parquet"
|
| 122 |
+
},
|
| 123 |
+
"dragHandle": ".bg-primary",
|
| 124 |
+
"height": 403.0,
|
| 125 |
+
"id": "Import Parquet 1",
|
| 126 |
+
"position": {
|
| 127 |
+
"x": -166.0,
|
| 128 |
+
"y": 112.0
|
| 129 |
+
},
|
| 130 |
+
"type": "basic",
|
| 131 |
+
"width": 371.0
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"data": {
|
| 135 |
+
"__execution_delay": 0.0,
|
| 136 |
+
"collapsed": null,
|
| 137 |
+
"display": null,
|
| 138 |
+
"error": null,
|
| 139 |
+
"meta": {
|
| 140 |
+
"inputs": {
|
| 141 |
+
"bundle": {
|
| 142 |
+
"name": "bundle",
|
| 143 |
+
"position": "left",
|
| 144 |
+
"type": {
|
| 145 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 146 |
+
}
|
| 147 |
+
}
|
| 148 |
+
},
|
| 149 |
+
"name": "Train model",
|
| 150 |
+
"outputs": {
|
| 151 |
+
"output": {
|
| 152 |
+
"name": "output",
|
| 153 |
+
"position": "right",
|
| 154 |
+
"type": {
|
| 155 |
+
"type": "None"
|
| 156 |
+
}
|
| 157 |
+
}
|
| 158 |
+
},
|
| 159 |
+
"params": {
|
| 160 |
+
"epochs": {
|
| 161 |
+
"default": 1.0,
|
| 162 |
+
"name": "epochs",
|
| 163 |
+
"type": {
|
| 164 |
+
"type": "<class 'int'>"
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
"input_mapping": {
|
| 168 |
+
"default": null,
|
| 169 |
+
"name": "input_mapping",
|
| 170 |
+
"type": {
|
| 171 |
+
"type": "<class 'str'>"
|
| 172 |
+
}
|
| 173 |
+
},
|
| 174 |
+
"model_workspace": {
|
| 175 |
+
"default": null,
|
| 176 |
+
"name": "model_workspace",
|
| 177 |
+
"type": {
|
| 178 |
+
"type": "<class 'str'>"
|
| 179 |
+
}
|
| 180 |
+
},
|
| 181 |
+
"save_as": {
|
| 182 |
+
"default": "model",
|
| 183 |
+
"name": "save_as",
|
| 184 |
+
"type": {
|
| 185 |
+
"type": "<class 'str'>"
|
| 186 |
+
}
|
| 187 |
+
}
|
| 188 |
+
},
|
| 189 |
+
"position": {
|
| 190 |
+
"x": 675.0,
|
| 191 |
+
"y": 144.0
|
| 192 |
+
},
|
| 193 |
+
"type": "basic"
|
| 194 |
+
},
|
| 195 |
+
"params": {
|
| 196 |
+
"epochs": "1000",
|
| 197 |
+
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_train\", \"column\": \"x\"}, \"Input__label_1_y\": {\"df\": \"df_train\", \"column\": \"y\" }}",
|
| 198 |
+
"model_workspace": "Model definition",
|
| 199 |
+
"save_as": "model"
|
| 200 |
+
},
|
| 201 |
+
"status": "done",
|
| 202 |
+
"title": "Train model"
|
| 203 |
+
},
|
| 204 |
+
"dragHandle": ".bg-primary",
|
| 205 |
+
"height": 519.0,
|
| 206 |
+
"id": "Train model 3",
|
| 207 |
+
"position": {
|
| 208 |
+
"x": 687.3818749999999,
|
| 209 |
+
"y": -34.16902777777775
|
| 210 |
+
},
|
| 211 |
+
"type": "basic",
|
| 212 |
+
"width": 640.0
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"data": {
|
| 216 |
+
"__execution_delay": 0.0,
|
| 217 |
+
"collapsed": null,
|
| 218 |
+
"display": null,
|
| 219 |
+
"error": null,
|
| 220 |
+
"meta": {
|
| 221 |
+
"inputs": {
|
| 222 |
+
"bundle": {
|
| 223 |
+
"name": "bundle",
|
| 224 |
+
"position": "left",
|
| 225 |
+
"type": {
|
| 226 |
+
"type": "<class 'lynxkite_graph_analytics.core.Bundle'>"
|
| 227 |
+
}
|
| 228 |
+
}
|
| 229 |
+
},
|
| 230 |
+
"name": "Model inference",
|
| 231 |
+
"outputs": {
|
| 232 |
+
"output": {
|
| 233 |
+
"name": "output",
|
| 234 |
+
"position": "right",
|
| 235 |
+
"type": {
|
| 236 |
+
"type": "None"
|
| 237 |
+
}
|
| 238 |
+
}
|
| 239 |
+
},
|
| 240 |
+
"params": {
|
| 241 |
+
"input_mapping": {
|
| 242 |
+
"default": "",
|
| 243 |
+
"name": "input_mapping",
|
| 244 |
+
"type": {
|
| 245 |
+
"type": "<class 'str'>"
|
| 246 |
+
}
|
| 247 |
+
},
|
| 248 |
+
"model_name": {
|
| 249 |
+
"default": "model",
|
| 250 |
+
"name": "model_name",
|
| 251 |
+
"type": {
|
| 252 |
+
"type": "<class 'str'>"
|
| 253 |
+
}
|
| 254 |
+
},
|
| 255 |
+
"output_mapping": {
|
| 256 |
+
"default": "",
|
| 257 |
+
"name": "output_mapping",
|
| 258 |
+
"type": {
|
| 259 |
+
"type": "<class 'str'>"
|
| 260 |
+
}
|
| 261 |
+
}
|
| 262 |
+
},
|
| 263 |
+
"position": {
|
| 264 |
+
"x": 506.0,
|
| 265 |
+
"y": 115.0
|
| 266 |
+
},
|
| 267 |
+
"type": "basic"
|
| 268 |
+
},
|
| 269 |
+
"params": {
|
| 270 |
+
"input_mapping": "{\"Input__embedding_1_x\": {\"df\": \"df_test\", \"column\": \"x\"}}",
|
| 271 |
+
"model_name": "model",
|
| 272 |
+
"output_mapping": "{\"Activation_2_x\": {\"df\": \"df_test\", \"column\": \"predicted\"}}"
|
| 273 |
+
},
|
| 274 |
+
"status": "done",
|
| 275 |
+
"title": "Model inference"
|
| 276 |
+
},
|
| 277 |
+
"dragHandle": ".bg-primary",
|
| 278 |
+
"height": 429.0,
|
| 279 |
+
"id": "Model inference 1",
|
| 280 |
+
"position": {
|
| 281 |
+
"x": 1445.5664910683593,
|
| 282 |
+
"y": 12.075943590382515
|
| 283 |
+
},
|
| 284 |
+
"type": "basic",
|
| 285 |
+
"width": 410.0
|
| 286 |
+
}
|
| 287 |
+
]
|
| 288 |
+
}
|
examples/uploads/plus-one-dataset.parquet
ADDED
|
Binary file (7.54 kB). View file
|
|
|
lynxkite-core/src/lynxkite/core/ops.py
CHANGED
|
@@ -61,7 +61,7 @@ class Parameter(BaseConfig):
|
|
| 61 |
@staticmethod
|
| 62 |
def options(name, options, default=None):
|
| 63 |
e = enum.Enum(f"OptionsFor_{name}", options)
|
| 64 |
-
return Parameter.basic(name,
|
| 65 |
|
| 66 |
@staticmethod
|
| 67 |
def collapsed(name, default, type=None):
|
|
@@ -154,9 +154,7 @@ class Op(BaseConfig):
|
|
| 154 |
|
| 155 |
def __call__(self, *inputs, **params):
|
| 156 |
# Convert parameters.
|
| 157 |
-
|
| 158 |
-
if p in self.params:
|
| 159 |
-
params[p] = _param_to_type(p, params[p], self.params[p].type)
|
| 160 |
res = self.func(*inputs, **params)
|
| 161 |
if not isinstance(res, Result):
|
| 162 |
# Automatically wrap the result in a Result object, if it isn't already.
|
|
@@ -172,6 +170,15 @@ class Op(BaseConfig):
|
|
| 172 |
res.display = res.output
|
| 173 |
return res
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
def op(env: str, name: str, *, view="basic", outputs=None, params=None):
|
| 177 |
"""Decorator for defining an operation."""
|
|
|
|
| 61 |
@staticmethod
|
| 62 |
def options(name, options, default=None):
|
| 63 |
e = enum.Enum(f"OptionsFor_{name}", options)
|
| 64 |
+
return Parameter.basic(name, default or options[0], e)
|
| 65 |
|
| 66 |
@staticmethod
|
| 67 |
def collapsed(name, default, type=None):
|
|
|
|
| 154 |
|
| 155 |
def __call__(self, *inputs, **params):
|
| 156 |
# Convert parameters.
|
| 157 |
+
params = self.convert_params(params)
|
|
|
|
|
|
|
| 158 |
res = self.func(*inputs, **params)
|
| 159 |
if not isinstance(res, Result):
|
| 160 |
# Automatically wrap the result in a Result object, if it isn't already.
|
|
|
|
| 170 |
res.display = res.output
|
| 171 |
return res
|
| 172 |
|
| 173 |
+
def convert_params(self, params):
|
| 174 |
+
"""Returns the parameters converted to the expected type."""
|
| 175 |
+
res = {}
|
| 176 |
+
for p in params:
|
| 177 |
+
res[p] = params[p]
|
| 178 |
+
if p in self.params:
|
| 179 |
+
res[p] = _param_to_type(p, params[p], self.params[p].type)
|
| 180 |
+
return res
|
| 181 |
+
|
| 182 |
|
| 183 |
def op(env: str, name: str, *, view="basic", outputs=None, params=None):
|
| 184 |
"""Decorator for defining an operation."""
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/core.py
CHANGED
|
@@ -42,7 +42,7 @@ class Bundle:
|
|
| 42 |
|
| 43 |
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
|
| 44 |
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
| 45 |
-
other: dict[str, typing.Any] =
|
| 46 |
|
| 47 |
@classmethod
|
| 48 |
def from_nx(cls, graph: nx.Graph):
|
|
@@ -102,7 +102,7 @@ class Bundle:
|
|
| 102 |
return Bundle(
|
| 103 |
dfs=dict(self.dfs),
|
| 104 |
relations=list(self.relations),
|
| 105 |
-
other=dict(self.other)
|
| 106 |
)
|
| 107 |
|
| 108 |
def to_dict(self, limit: int = 100):
|
|
|
|
| 42 |
|
| 43 |
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
|
| 44 |
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
| 45 |
+
other: dict[str, typing.Any] = dataclasses.field(default_factory=dict)
|
| 46 |
|
| 47 |
@classmethod
|
| 48 |
def from_nx(cls, graph: nx.Graph):
|
|
|
|
| 102 |
return Bundle(
|
| 103 |
dfs=dict(self.dfs),
|
| 104 |
relations=list(self.relations),
|
| 105 |
+
other=dict(self.other),
|
| 106 |
)
|
| 107 |
|
| 108 |
def to_dict(self, limit: int = 100):
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/lynxkite_ops.py
CHANGED
|
@@ -2,10 +2,14 @@
|
|
| 2 |
|
| 3 |
import enum
|
| 4 |
import os
|
|
|
|
| 5 |
import fsspec
|
| 6 |
from lynxkite.core import ops
|
| 7 |
from collections import deque
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
import grandcypher
|
| 10 |
import joblib
|
| 11 |
import matplotlib
|
|
@@ -344,10 +348,13 @@ def create_graph(bundle: core.Bundle, *, relations: str = None) -> core.Bundle:
|
|
| 344 |
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
|
| 345 |
|
| 346 |
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
|
|
|
| 351 |
|
| 352 |
|
| 353 |
@op("Biomedical foundation graph (PLACEHOLDER)")
|
|
@@ -358,25 +365,54 @@ def biomedical_foundation_graph(*, filter_nodes: str):
|
|
| 358 |
|
| 359 |
@op("Train model")
|
| 360 |
def train_model(
|
| 361 |
-
bundle: core.Bundle,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
):
|
| 363 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
| 364 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
|
| 367 |
@op("Model inference")
|
| 368 |
def model_inference(
|
| 369 |
bundle: core.Bundle,
|
| 370 |
*,
|
| 371 |
-
model_name: str,
|
| 372 |
-
|
| 373 |
-
|
| 374 |
):
|
| 375 |
"""Executes a trained model."""
|
| 376 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
|
| 378 |
|
| 379 |
@op("Train/test split")
|
| 380 |
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
|
| 381 |
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
|
| 382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import enum
|
| 4 |
import os
|
| 5 |
+
import pathlib
|
| 6 |
import fsspec
|
| 7 |
from lynxkite.core import ops
|
| 8 |
from collections import deque
|
| 9 |
+
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
from . import core, pytorch_model_ops
|
| 12 |
+
from lynxkite.core import workspace
|
| 13 |
import grandcypher
|
| 14 |
import joblib
|
| 15 |
import matplotlib
|
|
|
|
| 348 |
return ops.Result(output=bundle, display=bundle.to_dict(limit=100))
|
| 349 |
|
| 350 |
|
| 351 |
+
def load_ws(model_workspace: str):
|
| 352 |
+
cwd = pathlib.Path()
|
| 353 |
+
path = cwd / model_workspace
|
| 354 |
+
assert path.is_relative_to(cwd)
|
| 355 |
+
assert path.exists(), f"Workspace {path} does not exist"
|
| 356 |
+
ws = workspace.load(path)
|
| 357 |
+
return ws
|
| 358 |
|
| 359 |
|
| 360 |
@op("Biomedical foundation graph (PLACEHOLDER)")
|
|
|
|
| 365 |
|
| 366 |
@op("Train model")
|
| 367 |
def train_model(
|
| 368 |
+
bundle: core.Bundle,
|
| 369 |
+
*,
|
| 370 |
+
model_workspace: str,
|
| 371 |
+
input_mapping: str,
|
| 372 |
+
epochs: int = 1,
|
| 373 |
+
save_as: str = "model",
|
| 374 |
):
|
| 375 |
"""Trains the selected model on the selected dataset. Most training parameters are set in the model definition."""
|
| 376 |
+
ws = load_ws(model_workspace)
|
| 377 |
+
input_mapping = json.loads(input_mapping)
|
| 378 |
+
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
| 379 |
+
m = pytorch_model_ops.build_model(ws, inputs)
|
| 380 |
+
t = tqdm(range(epochs), desc="Training model")
|
| 381 |
+
for _ in t:
|
| 382 |
+
loss = m.train(inputs)
|
| 383 |
+
t.set_postfix({"loss": loss})
|
| 384 |
+
bundle = bundle.copy()
|
| 385 |
+
bundle.other[save_as] = m
|
| 386 |
+
return bundle
|
| 387 |
|
| 388 |
|
| 389 |
@op("Model inference")
|
| 390 |
def model_inference(
|
| 391 |
bundle: core.Bundle,
|
| 392 |
*,
|
| 393 |
+
model_name: str = "model",
|
| 394 |
+
input_mapping: str = "",
|
| 395 |
+
output_mapping: str = "",
|
| 396 |
):
|
| 397 |
"""Executes a trained model."""
|
| 398 |
+
m = bundle.other[model_name]
|
| 399 |
+
input_mapping = json.loads(input_mapping)
|
| 400 |
+
output_mapping = json.loads(output_mapping)
|
| 401 |
+
inputs = pytorch_model_ops.to_tensors(bundle, input_mapping)
|
| 402 |
+
outputs = m.inference(inputs)
|
| 403 |
+
bundle = bundle.copy()
|
| 404 |
+
for k, v in output_mapping.items():
|
| 405 |
+
bundle.dfs[v["df"]][v["column"]] = outputs[k].detach().numpy().tolist()
|
| 406 |
+
return bundle
|
| 407 |
|
| 408 |
|
| 409 |
@op("Train/test split")
|
| 410 |
def train_test_split(bundle: core.Bundle, *, table_name: str, test_ratio: float = 0.1):
|
| 411 |
"""Splits a dataframe in the bundle into separate "_train" and "_test" dataframes."""
|
| 412 |
+
df = bundle.dfs[table_name]
|
| 413 |
+
test = df.sample(frac=test_ratio)
|
| 414 |
+
train = df.drop(test.index)
|
| 415 |
+
bundle = bundle.copy()
|
| 416 |
+
bundle.dfs[f"{table_name}_train"] = train
|
| 417 |
+
bundle.dfs[f"{table_name}_test"] = test
|
| 418 |
+
return bundle
|
lynxkite-graph-analytics/src/lynxkite_graph_analytics/pytorch_model_ops.py
CHANGED
|
@@ -6,6 +6,7 @@ from lynxkite.core.ops import Parameter as P
|
|
| 6 |
import torch
|
| 7 |
import torch_geometric as pyg
|
| 8 |
from dataclasses import dataclass
|
|
|
|
| 9 |
|
| 10 |
ENV = "PyTorch model"
|
| 11 |
|
|
@@ -162,11 +163,18 @@ class ModelConfig:
|
|
| 162 |
self.optimizer.step()
|
| 163 |
return loss.item()
|
| 164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
def build_model(
|
| 167 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
| 168 |
) -> ModelConfig:
|
| 169 |
"""Builds the model described in the workspace."""
|
|
|
|
| 170 |
optimizers = []
|
| 171 |
nodes = {}
|
| 172 |
for node in ws.nodes:
|
|
@@ -197,7 +205,8 @@ def build_model(
|
|
| 197 |
for node_id in ts.static_order():
|
| 198 |
node = nodes[node_id]
|
| 199 |
t = node.data.title
|
| 200 |
-
|
|
|
|
| 201 |
for b in dependencies[node_id]:
|
| 202 |
if b in in_loss:
|
| 203 |
in_loss.add(node_id)
|
|
@@ -216,7 +225,9 @@ def build_model(
|
|
| 216 |
[(ib, ih)] = edges[node_id, "x"]
|
| 217 |
i = _to_id(ib) + "_" + ih
|
| 218 |
used_inputs.add(i)
|
| 219 |
-
f = getattr(
|
|
|
|
|
|
|
| 220 |
ls.append((f, f"{i} -> {nid}_x"))
|
| 221 |
sizes[f"{nid}_x"] = sizes[i]
|
| 222 |
case "MSE loss":
|
|
@@ -248,7 +259,18 @@ def build_model(
|
|
| 248 |
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
|
| 249 |
)
|
| 250 |
# Create optimizer.
|
| 251 |
-
|
| 252 |
-
|
|
|
|
| 253 |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
|
| 254 |
return ModelConfig(**cfg)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
import torch_geometric as pyg
|
| 8 |
from dataclasses import dataclass
|
| 9 |
+
from . import core
|
| 10 |
|
| 11 |
ENV = "PyTorch model"
|
| 12 |
|
|
|
|
| 163 |
self.optimizer.step()
|
| 164 |
return loss.item()
|
| 165 |
|
| 166 |
+
def copy(self):
|
| 167 |
+
"""Returns a copy of the model."""
|
| 168 |
+
c = super().copy()
|
| 169 |
+
c.model = self.model.copy()
|
| 170 |
+
return c
|
| 171 |
+
|
| 172 |
|
| 173 |
def build_model(
|
| 174 |
ws: workspace.Workspace, inputs: dict[str, torch.Tensor]
|
| 175 |
) -> ModelConfig:
|
| 176 |
"""Builds the model described in the workspace."""
|
| 177 |
+
catalog = ops.CATALOGS[ENV]
|
| 178 |
optimizers = []
|
| 179 |
nodes = {}
|
| 180 |
for node in ws.nodes:
|
|
|
|
| 205 |
for node_id in ts.static_order():
|
| 206 |
node = nodes[node_id]
|
| 207 |
t = node.data.title
|
| 208 |
+
op = catalog[t]
|
| 209 |
+
p = op.convert_params(node.data.params)
|
| 210 |
for b in dependencies[node_id]:
|
| 211 |
if b in in_loss:
|
| 212 |
in_loss.add(node_id)
|
|
|
|
| 225 |
[(ib, ih)] = edges[node_id, "x"]
|
| 226 |
i = _to_id(ib) + "_" + ih
|
| 227 |
used_inputs.add(i)
|
| 228 |
+
f = getattr(
|
| 229 |
+
torch.nn.functional, p["type"].name.lower().replace(" ", "_")
|
| 230 |
+
)
|
| 231 |
ls.append((f, f"{i} -> {nid}_x"))
|
| 232 |
sizes[f"{nid}_x"] = sizes[i]
|
| 233 |
case "MSE loss":
|
|
|
|
| 259 |
f"loss should have no parameters: {list(cfg['loss'].parameters())}"
|
| 260 |
)
|
| 261 |
# Create optimizer.
|
| 262 |
+
op = catalog["Optimizer"]
|
| 263 |
+
p = op.convert_params(nodes[optimizer].data.params)
|
| 264 |
+
o = getattr(torch.optim, p["type"].name)
|
| 265 |
cfg["optimizer"] = o(cfg["model"].parameters(), lr=p["lr"])
|
| 266 |
return ModelConfig(**cfg)
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def to_tensors(b: core.Bundle, m: dict[str, dict]) -> dict[str, torch.Tensor]:
|
| 270 |
+
"""Converts a tensor to the correct type for PyTorch."""
|
| 271 |
+
tensors = {}
|
| 272 |
+
for k, v in m.items():
|
| 273 |
+
tensors[k] = torch.tensor(
|
| 274 |
+
b.dfs[v["df"]][v["column"]].to_list(), dtype=torch.float32
|
| 275 |
+
)
|
| 276 |
+
return tensors
|