Spaces:
Running
Running
Remove sub_nodes/sub_flow/parentId.
Browse files- server/lynxkite_ops.py +177 -148
- server/ops.py +184 -149
- server/workspace.py +16 -17
- web/src/apiTypes.ts +0 -1
- web/src/index.css +44 -6
server/lynxkite_ops.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
from . import ops
|
3 |
from collections import deque
|
4 |
import dataclasses
|
@@ -9,72 +10,85 @@ import pandas as pd
|
|
9 |
import traceback
|
10 |
import typing
|
11 |
|
12 |
-
op = ops.op_registration(
|
|
|
13 |
|
14 |
@dataclasses.dataclass
|
15 |
class RelationDefinition:
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
@dataclasses.dataclass
|
26 |
class Bundle:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
)
|
54 |
-
]
|
55 |
-
)
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
61 |
|
62 |
|
63 |
def nx_node_attribute_func(name):
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
74 |
|
75 |
|
76 |
def disambiguate_edges(ws):
|
77 |
-
|
78 |
seen = set()
|
79 |
for edge in reversed(ws.edges):
|
80 |
if (edge.target, edge.targetHandle) in seen:
|
@@ -82,20 +96,15 @@ def disambiguate_edges(ws):
|
|
82 |
seen.add((edge.target, edge.targetHandle))
|
83 |
|
84 |
|
85 |
-
@ops.register_executor(
|
86 |
async def execute(ws):
|
87 |
-
catalog = ops.CATALOGS[
|
88 |
# Nodes are responsible for interpreting/executing their child nodes.
|
89 |
-
nodes = [n for n in ws.nodes if not n.parentId]
|
90 |
disambiguate_edges(ws)
|
91 |
-
children = {}
|
92 |
-
for n in ws.nodes:
|
93 |
-
if n.parentId:
|
94 |
-
children.setdefault(n.parentId, []).append(n)
|
95 |
outputs = {}
|
96 |
failed = 0
|
97 |
-
while len(outputs) + failed < len(nodes):
|
98 |
-
for node in nodes:
|
99 |
if node.id in outputs:
|
100 |
continue
|
101 |
# TODO: Take the input/output handles into account.
|
@@ -107,118 +116,138 @@ async def execute(ws):
|
|
107 |
params = {**data.params}
|
108 |
# Convert inputs.
|
109 |
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
try:
|
115 |
-
|
116 |
except Exception as e:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
if len(op.inputs) == 1 and op.inputs.get(
|
122 |
# It's a flexible input. Create n+1 handles.
|
123 |
-
data.inputs = {f
|
124 |
data.error = None
|
125 |
outputs[node.id] = output
|
126 |
-
if
|
|
|
|
|
|
|
|
|
127 |
data.display = output
|
128 |
|
|
|
129 |
@op("Import Parquet")
|
130 |
def import_parquet(*, filename: str):
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
@op("Create scale-free graph")
|
135 |
def create_scale_free_graph(*, nodes: int = 10):
|
136 |
-
|
137 |
-
|
|
|
138 |
|
139 |
@op("Compute PageRank")
|
140 |
-
@nx_node_attribute_func(
|
141 |
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
|
142 |
-
|
|
|
143 |
|
144 |
@op("Discard loop edges")
|
145 |
def discard_loop_edges(graph: nx.Graph):
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
@op("Sample graph")
|
151 |
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
164 |
|
165 |
def _map_color(value):
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
170 |
|
171 |
@op("Visualize graph", view="visualization")
|
172 |
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
213 |
|
214 |
@op("View tables", view="table_view")
|
215 |
def view_tables(bundle: Bundle):
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
|
1 |
+
"""Some operations. To be split into separate files when we have more."""
|
2 |
+
|
3 |
from . import ops
|
4 |
from collections import deque
|
5 |
import dataclasses
|
|
|
10 |
import traceback
|
11 |
import typing
|
12 |
|
13 |
+
op = ops.op_registration("LynxKite")
|
14 |
+
|
15 |
|
16 |
@dataclasses.dataclass
|
17 |
class RelationDefinition:
|
18 |
+
"""Defines a set of edges."""
|
19 |
+
|
20 |
+
df: str # The DataFrame that contains the edges.
|
21 |
+
source_column: (
|
22 |
+
str # The column in the edge DataFrame that contains the source node ID.
|
23 |
+
)
|
24 |
+
target_column: (
|
25 |
+
str # The column in the edge DataFrame that contains the target node ID.
|
26 |
+
)
|
27 |
+
source_table: str # The DataFrame that contains the source nodes.
|
28 |
+
target_table: str # The DataFrame that contains the target nodes.
|
29 |
+
source_key: str # The column in the source table that contains the node ID.
|
30 |
+
target_key: str # The column in the target table that contains the node ID.
|
31 |
+
|
32 |
|
33 |
@dataclasses.dataclass
|
34 |
class Bundle:
|
35 |
+
"""A collection of DataFrames and other data.
|
36 |
+
|
37 |
+
Can efficiently represent a knowledge graph (homogeneous or heterogeneous) or tabular data.
|
38 |
+
It can also carry other data, such as a trained model.
|
39 |
+
"""
|
40 |
+
|
41 |
+
dfs: dict[str, pd.DataFrame] = dataclasses.field(default_factory=dict)
|
42 |
+
relations: list[RelationDefinition] = dataclasses.field(default_factory=list)
|
43 |
+
other: dict[str, typing.Any] = None
|
44 |
+
|
45 |
+
@classmethod
|
46 |
+
def from_nx(cls, graph: nx.Graph):
|
47 |
+
edges = nx.to_pandas_edgelist(graph)
|
48 |
+
d = dict(graph.nodes(data=True))
|
49 |
+
nodes = pd.DataFrame(d.values(), index=d.keys())
|
50 |
+
nodes["id"] = nodes.index
|
51 |
+
return cls(
|
52 |
+
dfs={"edges": edges, "nodes": nodes},
|
53 |
+
relations=[
|
54 |
+
RelationDefinition(
|
55 |
+
df="edges",
|
56 |
+
source_column="source",
|
57 |
+
target_column="target",
|
58 |
+
source_table="nodes",
|
59 |
+
target_table="nodes",
|
60 |
+
source_key="id",
|
61 |
+
target_key="id",
|
62 |
+
)
|
63 |
+
],
|
64 |
)
|
|
|
|
|
65 |
|
66 |
+
def to_nx(self):
|
67 |
+
graph = nx.from_pandas_edgelist(self.dfs["edges"])
|
68 |
+
nx.set_node_attributes(
|
69 |
+
graph, self.dfs["nodes"].set_index("id").to_dict("index")
|
70 |
+
)
|
71 |
+
return graph
|
72 |
|
73 |
|
74 |
def nx_node_attribute_func(name):
|
75 |
+
"""Decorator for wrapping a function that adds a NetworkX node attribute."""
|
76 |
+
|
77 |
+
def decorator(func):
|
78 |
+
@functools.wraps(func)
|
79 |
+
def wrapper(graph: nx.Graph, **kwargs):
|
80 |
+
graph = graph.copy()
|
81 |
+
attr = func(graph, **kwargs)
|
82 |
+
nx.set_node_attributes(graph, attr, name)
|
83 |
+
return graph
|
84 |
+
|
85 |
+
return wrapper
|
86 |
+
|
87 |
+
return decorator
|
88 |
|
89 |
|
90 |
def disambiguate_edges(ws):
|
91 |
+
"""If an input plug is connected to multiple edges, keep only the last edge."""
|
92 |
seen = set()
|
93 |
for edge in reversed(ws.edges):
|
94 |
if (edge.target, edge.targetHandle) in seen:
|
|
|
96 |
seen.add((edge.target, edge.targetHandle))
|
97 |
|
98 |
|
99 |
+
@ops.register_executor("LynxKite")
|
100 |
async def execute(ws):
|
101 |
+
catalog = ops.CATALOGS["LynxKite"]
|
102 |
# Nodes are responsible for interpreting/executing their child nodes.
|
|
|
103 |
disambiguate_edges(ws)
|
|
|
|
|
|
|
|
|
104 |
outputs = {}
|
105 |
failed = 0
|
106 |
+
while len(outputs) + failed < len(ws.nodes):
|
107 |
+
for node in ws.nodes:
|
108 |
if node.id in outputs:
|
109 |
continue
|
110 |
# TODO: Take the input/output handles into account.
|
|
|
116 |
params = {**data.params}
|
117 |
# Convert inputs.
|
118 |
for i, (x, p) in enumerate(zip(inputs, op.inputs.values())):
|
119 |
+
if p.type == nx.Graph and isinstance(x, Bundle):
|
120 |
+
inputs[i] = x.to_nx()
|
121 |
+
elif p.type == Bundle and isinstance(x, nx.Graph):
|
122 |
+
inputs[i] = Bundle.from_nx(x)
|
123 |
try:
|
124 |
+
output = op(*inputs, **params)
|
125 |
except Exception as e:
|
126 |
+
traceback.print_exc()
|
127 |
+
data.error = str(e)
|
128 |
+
failed += 1
|
129 |
+
continue
|
130 |
+
if len(op.inputs) == 1 and op.inputs.get("multi") == "*":
|
131 |
# It's a flexible input. Create n+1 handles.
|
132 |
+
data.inputs = {f"input{i}": None for i in range(len(inputs) + 1)}
|
133 |
data.error = None
|
134 |
outputs[node.id] = output
|
135 |
+
if (
|
136 |
+
op.type == "visualization"
|
137 |
+
or op.type == "table_view"
|
138 |
+
or op.type == "image"
|
139 |
+
):
|
140 |
data.display = output
|
141 |
|
142 |
+
|
143 |
@op("Import Parquet")
|
144 |
def import_parquet(*, filename: str):
|
145 |
+
"""Imports a parquet file."""
|
146 |
+
return pd.read_parquet(filename)
|
147 |
+
|
148 |
|
149 |
@op("Create scale-free graph")
|
150 |
def create_scale_free_graph(*, nodes: int = 10):
|
151 |
+
"""Creates a scale-free graph with the given number of nodes."""
|
152 |
+
return nx.scale_free_graph(nodes)
|
153 |
+
|
154 |
|
155 |
@op("Compute PageRank")
|
156 |
+
@nx_node_attribute_func("pagerank")
|
157 |
def compute_pagerank(graph: nx.Graph, *, damping=0.85, iterations=100):
|
158 |
+
return nx.pagerank(graph, alpha=damping, max_iter=iterations)
|
159 |
+
|
160 |
|
161 |
@op("Discard loop edges")
|
162 |
def discard_loop_edges(graph: nx.Graph):
|
163 |
+
graph = graph.copy()
|
164 |
+
graph.remove_edges_from(nx.selfloop_edges(graph))
|
165 |
+
return graph
|
166 |
+
|
167 |
|
168 |
@op("Sample graph")
|
169 |
def sample_graph(graph: nx.Graph, *, nodes: int = 100):
|
170 |
+
"""Takes a (preferably connected) subgraph."""
|
171 |
+
sample = set()
|
172 |
+
to_expand = deque([0])
|
173 |
+
while to_expand and len(sample) < nodes:
|
174 |
+
node = to_expand.pop()
|
175 |
+
for n in graph.neighbors(node):
|
176 |
+
if n not in sample:
|
177 |
+
sample.add(n)
|
178 |
+
to_expand.append(n)
|
179 |
+
if len(sample) == nodes:
|
180 |
+
break
|
181 |
+
return nx.Graph(graph.subgraph(sample))
|
182 |
+
|
183 |
|
184 |
def _map_color(value):
|
185 |
+
cmap = matplotlib.cm.get_cmap("viridis")
|
186 |
+
value = (value - value.min()) / (value.max() - value.min())
|
187 |
+
rgba = cmap(value)
|
188 |
+
return [
|
189 |
+
"#{:02x}{:02x}{:02x}".format(int(r * 255), int(g * 255), int(b * 255))
|
190 |
+
for r, g, b in rgba[:, :3]
|
191 |
+
]
|
192 |
+
|
193 |
|
194 |
@op("Visualize graph", view="visualization")
|
195 |
def visualize_graph(graph: Bundle, *, color_nodes_by: ops.NodeAttribute = None):
|
196 |
+
nodes = graph.dfs["nodes"].copy()
|
197 |
+
if color_nodes_by:
|
198 |
+
nodes["color"] = _map_color(nodes[color_nodes_by])
|
199 |
+
nodes = nodes.to_records()
|
200 |
+
edges = graph.dfs["edges"].drop_duplicates(["source", "target"])
|
201 |
+
edges = edges.to_records()
|
202 |
+
pos = nx.spring_layout(graph.to_nx(), iterations=max(1, int(10000 / len(nodes))))
|
203 |
+
v = {
|
204 |
+
"animationDuration": 500,
|
205 |
+
"animationEasingUpdate": "quinticInOut",
|
206 |
+
"series": [
|
207 |
+
{
|
208 |
+
"type": "graph",
|
209 |
+
"roam": True,
|
210 |
+
"lineStyle": {
|
211 |
+
"color": "gray",
|
212 |
+
"curveness": 0.3,
|
213 |
+
},
|
214 |
+
"emphasis": {
|
215 |
+
"focus": "adjacency",
|
216 |
+
"lineStyle": {
|
217 |
+
"width": 10,
|
218 |
+
},
|
219 |
+
},
|
220 |
+
"data": [
|
221 |
+
{
|
222 |
+
"id": str(n.id),
|
223 |
+
"x": float(pos[n.id][0]),
|
224 |
+
"y": float(pos[n.id][1]),
|
225 |
+
# Adjust node size to cover the same area no matter how many nodes there are.
|
226 |
+
"symbolSize": 50 / len(nodes) ** 0.5,
|
227 |
+
"itemStyle": {"color": n.color} if color_nodes_by else {},
|
228 |
+
}
|
229 |
+
for n in nodes
|
230 |
+
],
|
231 |
+
"links": [
|
232 |
+
{"source": str(r.source), "target": str(r.target)} for r in edges
|
233 |
+
],
|
234 |
+
},
|
235 |
+
],
|
236 |
+
}
|
237 |
+
return v
|
238 |
+
|
239 |
|
240 |
@op("View tables", view="table_view")
|
241 |
def view_tables(bundle: Bundle):
|
242 |
+
v = {
|
243 |
+
"dataframes": {
|
244 |
+
name: {
|
245 |
+
"columns": [str(c) for c in df.columns],
|
246 |
+
"data": df.values.tolist(),
|
247 |
+
}
|
248 |
+
for name, df in bundle.dfs.items()
|
249 |
+
},
|
250 |
+
"relations": bundle.relations,
|
251 |
+
"other": bundle.other,
|
252 |
+
}
|
253 |
+
return v
|
server/ops.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
from __future__ import annotations
|
3 |
import enum
|
4 |
import functools
|
@@ -10,180 +11,214 @@ from typing_extensions import Annotated
|
|
10 |
CATALOGS = {}
|
11 |
EXECUTORS = {}
|
12 |
|
13 |
-
typeof = type
|
|
|
|
|
14 |
def type_to_json(t):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
]
|
23 |
-
LongStr = Annotated[
|
24 |
-
|
25 |
-
]
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
str, {'format': 'collapsed'}
|
31 |
-
]
|
32 |
-
NodeAttribute = Annotated[
|
33 |
-
str, {'format': 'node attribute'}
|
34 |
-
]
|
35 |
-
EdgeAttribute = Annotated[
|
36 |
-
str, {'format': 'edge attribute'}
|
37 |
-
]
|
38 |
class BaseConfig(pydantic.BaseModel):
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
|
43 |
|
44 |
class Parameter(BaseConfig):
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
66 |
|
67 |
class Input(BaseConfig):
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
|
72 |
class Output(BaseConfig):
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
MULTI_INPUT = Input(name='multi', type='*')
|
78 |
def basic_inputs(*names):
|
79 |
-
|
|
|
|
|
80 |
def basic_outputs(*names):
|
81 |
-
|
82 |
|
83 |
|
84 |
class Op(BaseConfig):
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
def input_position(**kwargs):
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
142 |
|
143 |
def output_position(**kwargs):
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
151 |
|
152 |
def no_op(*args, **kwargs):
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
def register_executor(env: str):
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
|
|
|
|
|
|
179 |
|
180 |
def op_registration(env: str):
|
181 |
-
|
|
|
182 |
|
183 |
def passive_op_registration(env: str):
|
184 |
-
|
|
|
185 |
|
186 |
def register_area(env, name, params=[]):
|
187 |
-
|
188 |
-
|
189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""API for implementing LynxKite operations."""
|
2 |
+
|
3 |
from __future__ import annotations
|
4 |
import enum
|
5 |
import functools
|
|
|
11 |
CATALOGS = {}
|
12 |
EXECUTORS = {}
|
13 |
|
14 |
+
typeof = type # We have some arguments called "type".
|
15 |
+
|
16 |
+
|
17 |
def type_to_json(t):
|
18 |
+
if isinstance(t, type) and issubclass(t, enum.Enum):
|
19 |
+
return {"enum": list(t.__members__.keys())}
|
20 |
+
if getattr(t, "__metadata__", None):
|
21 |
+
return t.__metadata__[-1]
|
22 |
+
return {"type": str(t)}
|
23 |
+
|
24 |
+
|
25 |
+
Type = Annotated[typing.Any, pydantic.PlainSerializer(type_to_json, return_type=dict)]
|
26 |
+
LongStr = Annotated[str, {"format": "textarea"}]
|
27 |
+
PathStr = Annotated[str, {"format": "path"}]
|
28 |
+
CollapsedStr = Annotated[str, {"format": "collapsed"}]
|
29 |
+
NodeAttribute = Annotated[str, {"format": "node attribute"}]
|
30 |
+
EdgeAttribute = Annotated[str, {"format": "edge attribute"}]
|
31 |
+
|
32 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
class BaseConfig(pydantic.BaseModel):
|
34 |
+
model_config = pydantic.ConfigDict(
|
35 |
+
arbitrary_types_allowed=True,
|
36 |
+
)
|
37 |
|
38 |
|
39 |
class Parameter(BaseConfig):
|
40 |
+
"""Defines a parameter for an operation."""
|
41 |
+
|
42 |
+
name: str
|
43 |
+
default: typing.Any
|
44 |
+
type: Type = None
|
45 |
+
|
46 |
+
@staticmethod
|
47 |
+
def options(name, options, default=None):
|
48 |
+
e = enum.Enum(f"OptionsFor_{name}", options)
|
49 |
+
return Parameter.basic(name, e[default or options[0]], e)
|
50 |
+
|
51 |
+
@staticmethod
|
52 |
+
def collapsed(name, default, type=None):
|
53 |
+
return Parameter.basic(name, default, CollapsedStr)
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def basic(name, default=None, type=None):
|
57 |
+
if default is inspect._empty:
|
58 |
+
default = None
|
59 |
+
if type is None or type is inspect._empty:
|
60 |
+
type = typeof(default) if default is not None else None
|
61 |
+
return Parameter(name=name, default=default, type=type)
|
62 |
+
|
63 |
|
64 |
class Input(BaseConfig):
|
65 |
+
name: str
|
66 |
+
type: Type
|
67 |
+
position: str = "left"
|
68 |
+
|
69 |
|
70 |
class Output(BaseConfig):
|
71 |
+
name: str
|
72 |
+
type: Type
|
73 |
+
position: str = "right"
|
74 |
+
|
75 |
+
|
76 |
+
MULTI_INPUT = Input(name="multi", type="*")
|
77 |
+
|
78 |
|
|
|
79 |
def basic_inputs(*names):
|
80 |
+
return {name: Input(name=name, type=None) for name in names}
|
81 |
+
|
82 |
+
|
83 |
def basic_outputs(*names):
|
84 |
+
return {name: Output(name=name, type=None) for name in names}
|
85 |
|
86 |
|
87 |
class Op(BaseConfig):
|
88 |
+
func: typing.Callable = pydantic.Field(exclude=True)
|
89 |
+
name: str
|
90 |
+
params: dict[str, Parameter]
|
91 |
+
inputs: dict[str, Input]
|
92 |
+
outputs: dict[str, Output]
|
93 |
+
type: str = "basic" # The UI to use for this operation.
|
94 |
+
|
95 |
+
def __call__(self, *inputs, **params):
|
96 |
+
# Convert parameters.
|
97 |
+
for p in params:
|
98 |
+
if p in self.params:
|
99 |
+
if self.params[p].type == int:
|
100 |
+
params[p] = int(params[p])
|
101 |
+
elif self.params[p].type == float:
|
102 |
+
params[p] = float(params[p])
|
103 |
+
elif isinstance(self.params[p].type, enum.EnumMeta):
|
104 |
+
params[p] = self.params[p].type[params[p]]
|
105 |
+
res = self.func(*inputs, **params)
|
106 |
+
return res
|
107 |
+
|
108 |
+
|
109 |
+
def op(env: str, name: str, *, view="basic", outputs=None):
|
110 |
+
"""Decorator for defining an operation."""
|
111 |
+
|
112 |
+
def decorator(func):
|
113 |
+
sig = inspect.signature(func)
|
114 |
+
# Positional arguments are inputs.
|
115 |
+
inputs = {
|
116 |
+
name: Input(name=name, type=param.annotation)
|
117 |
+
for name, param in sig.parameters.items()
|
118 |
+
if param.kind != param.KEYWORD_ONLY
|
119 |
+
}
|
120 |
+
params = {}
|
121 |
+
for n, param in sig.parameters.items():
|
122 |
+
if param.kind == param.KEYWORD_ONLY and not n.startswith("_"):
|
123 |
+
params[n] = Parameter.basic(n, param.default, param.annotation)
|
124 |
+
if outputs:
|
125 |
+
_outputs = {name: Output(name=name, type=None) for name in outputs}
|
126 |
+
else:
|
127 |
+
_outputs = (
|
128 |
+
{"output": Output(name="output", type=None)} if view == "basic" else {}
|
129 |
+
)
|
130 |
+
op = Op(
|
131 |
+
func=func,
|
132 |
+
name=name,
|
133 |
+
params=params,
|
134 |
+
inputs=inputs,
|
135 |
+
outputs=_outputs,
|
136 |
+
type=view,
|
137 |
+
)
|
138 |
+
CATALOGS.setdefault(env, {})
|
139 |
+
CATALOGS[env][name] = op
|
140 |
+
func.__op__ = op
|
141 |
+
return func
|
142 |
+
|
143 |
+
return decorator
|
144 |
+
|
145 |
|
146 |
def input_position(**kwargs):
|
147 |
+
"""Decorator for specifying unusual positions for the inputs."""
|
148 |
+
|
149 |
+
def decorator(func):
|
150 |
+
op = func.__op__
|
151 |
+
for k, v in kwargs.items():
|
152 |
+
op.inputs[k].position = v
|
153 |
+
return func
|
154 |
+
|
155 |
+
return decorator
|
156 |
+
|
157 |
|
158 |
def output_position(**kwargs):
|
159 |
+
"""Decorator for specifying unusual positions for the outputs."""
|
160 |
+
|
161 |
+
def decorator(func):
|
162 |
+
op = func.__op__
|
163 |
+
for k, v in kwargs.items():
|
164 |
+
op.outputs[k].position = v
|
165 |
+
return func
|
166 |
+
|
167 |
+
return decorator
|
168 |
+
|
169 |
|
170 |
def no_op(*args, **kwargs):
|
171 |
+
if args:
|
172 |
+
return args[0]
|
173 |
+
return None
|
174 |
+
|
175 |
+
|
176 |
+
def register_passive_op(env: str, name: str, inputs=[], outputs=["output"], params=[]):
|
177 |
+
"""A passive operation has no associated code."""
|
178 |
+
op = Op(
|
179 |
+
func=no_op,
|
180 |
+
name=name,
|
181 |
+
params={p.name: p for p in params},
|
182 |
+
inputs=dict(
|
183 |
+
(i, Input(name=i, type=None)) if isinstance(i, str) else (i.name, i)
|
184 |
+
for i in inputs
|
185 |
+
),
|
186 |
+
outputs=dict(
|
187 |
+
(o, Output(name=o, type=None)) if isinstance(o, str) else (o.name, o)
|
188 |
+
for o in outputs
|
189 |
+
),
|
190 |
+
)
|
191 |
+
CATALOGS.setdefault(env, {})
|
192 |
+
CATALOGS[env][name] = op
|
193 |
+
return op
|
194 |
+
|
195 |
|
196 |
def register_executor(env: str):
|
197 |
+
"""Decorator for registering an executor."""
|
198 |
+
|
199 |
+
def decorator(func):
|
200 |
+
EXECUTORS[env] = func
|
201 |
+
return func
|
202 |
+
|
203 |
+
return decorator
|
204 |
+
|
205 |
|
206 |
def op_registration(env: str):
|
207 |
+
return functools.partial(op, env)
|
208 |
+
|
209 |
|
210 |
def passive_op_registration(env: str):
|
211 |
+
return functools.partial(register_passive_op, env)
|
212 |
+
|
213 |
|
214 |
def register_area(env, name, params=[]):
|
215 |
+
"""A node that represents an area. It can contain other nodes, but does not restrict movement in any way."""
|
216 |
+
op = Op(
|
217 |
+
func=no_op,
|
218 |
+
name=name,
|
219 |
+
params={p.name: p for p in params},
|
220 |
+
inputs={},
|
221 |
+
outputs={},
|
222 |
+
type="area",
|
223 |
+
)
|
224 |
+
CATALOGS[env][name] = op
|
server/workspace.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
2 |
from typing import Optional
|
3 |
import dataclasses
|
4 |
import os
|
@@ -6,15 +7,18 @@ import pydantic
|
|
6 |
import tempfile
|
7 |
from . import ops
|
8 |
|
|
|
9 |
class BaseConfig(pydantic.BaseModel):
|
10 |
model_config = pydantic.ConfigDict(
|
11 |
-
extra=
|
12 |
)
|
13 |
|
|
|
14 |
class Position(BaseConfig):
|
15 |
x: float
|
16 |
y: float
|
17 |
|
|
|
18 |
class WorkspaceNodeData(BaseConfig):
|
19 |
title: str
|
20 |
params: dict
|
@@ -23,12 +27,13 @@ class WorkspaceNodeData(BaseConfig):
|
|
23 |
# Also contains a "meta" field when going out.
|
24 |
# This is ignored when coming back from the frontend.
|
25 |
|
|
|
26 |
class WorkspaceNode(BaseConfig):
|
27 |
id: str
|
28 |
type: str
|
29 |
data: WorkspaceNodeData
|
30 |
position: Position
|
31 |
-
|
32 |
|
33 |
class WorkspaceEdge(BaseConfig):
|
34 |
id: str
|
@@ -37,8 +42,9 @@ class WorkspaceEdge(BaseConfig):
|
|
37 |
sourceHandle: str
|
38 |
targetHandle: str
|
39 |
|
|
|
40 |
class Workspace(BaseConfig):
|
41 |
-
env: str =
|
42 |
nodes: list[WorkspaceNode] = dataclasses.field(default_factory=list)
|
43 |
edges: list[WorkspaceEdge] = dataclasses.field(default_factory=list)
|
44 |
|
@@ -52,7 +58,9 @@ def save(ws: Workspace, path: str):
|
|
52 |
j = ws.model_dump_json(indent=2)
|
53 |
dirname, basename = os.path.split(path)
|
54 |
# Create temp file in the same directory to make sure it's on the same filesystem.
|
55 |
-
with tempfile.NamedTemporaryFile(
|
|
|
|
|
56 |
f.write(j)
|
57 |
f.close()
|
58 |
os.replace(f.name, path)
|
@@ -76,22 +84,13 @@ def _update_metadata(ws):
|
|
76 |
if node.id in done:
|
77 |
continue
|
78 |
data = node.data
|
79 |
-
|
80 |
-
op = catalog.get(data.title)
|
81 |
-
elif node.parentId not in nodes:
|
82 |
-
data.error = f'Parent not found: {node.parentId}'
|
83 |
-
done.add(node.id)
|
84 |
-
continue
|
85 |
-
elif node.parentId in done:
|
86 |
-
op = nodes[node.parentId].data.meta.sub_nodes[data.title]
|
87 |
-
else:
|
88 |
-
continue
|
89 |
if op:
|
90 |
data.meta = op
|
91 |
node.type = op.type
|
92 |
-
if data.error ==
|
93 |
data.error = None
|
94 |
else:
|
95 |
-
data.error =
|
96 |
done.add(node.id)
|
97 |
return ws
|
|
|
1 |
+
"""For working with LynxKite workspaces."""
|
2 |
+
|
3 |
from typing import Optional
|
4 |
import dataclasses
|
5 |
import os
|
|
|
7 |
import tempfile
|
8 |
from . import ops
|
9 |
|
10 |
+
|
11 |
class BaseConfig(pydantic.BaseModel):
|
12 |
model_config = pydantic.ConfigDict(
|
13 |
+
extra="allow",
|
14 |
)
|
15 |
|
16 |
+
|
17 |
class Position(BaseConfig):
|
18 |
x: float
|
19 |
y: float
|
20 |
|
21 |
+
|
22 |
class WorkspaceNodeData(BaseConfig):
|
23 |
title: str
|
24 |
params: dict
|
|
|
27 |
# Also contains a "meta" field when going out.
|
28 |
# This is ignored when coming back from the frontend.
|
29 |
|
30 |
+
|
31 |
class WorkspaceNode(BaseConfig):
|
32 |
id: str
|
33 |
type: str
|
34 |
data: WorkspaceNodeData
|
35 |
position: Position
|
36 |
+
|
37 |
|
38 |
class WorkspaceEdge(BaseConfig):
|
39 |
id: str
|
|
|
42 |
sourceHandle: str
|
43 |
targetHandle: str
|
44 |
|
45 |
+
|
46 |
class Workspace(BaseConfig):
|
47 |
+
env: str = ""
|
48 |
nodes: list[WorkspaceNode] = dataclasses.field(default_factory=list)
|
49 |
edges: list[WorkspaceEdge] = dataclasses.field(default_factory=list)
|
50 |
|
|
|
58 |
j = ws.model_dump_json(indent=2)
|
59 |
dirname, basename = os.path.split(path)
|
60 |
# Create temp file in the same directory to make sure it's on the same filesystem.
|
61 |
+
with tempfile.NamedTemporaryFile(
|
62 |
+
"w", prefix=f".{basename}.", dir=dirname, delete_on_close=False
|
63 |
+
) as f:
|
64 |
f.write(j)
|
65 |
f.close()
|
66 |
os.replace(f.name, path)
|
|
|
84 |
if node.id in done:
|
85 |
continue
|
86 |
data = node.data
|
87 |
+
op = catalog.get(data.title)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
if op:
|
89 |
data.meta = op
|
90 |
node.type = op.type
|
91 |
+
if data.error == "Unknown operation.":
|
92 |
data.error = None
|
93 |
else:
|
94 |
+
data.error = "Unknown operation."
|
95 |
done.add(node.id)
|
96 |
return ws
|
web/src/apiTypes.ts
CHANGED
@@ -24,7 +24,6 @@ export interface WorkspaceNode {
|
|
24 |
type: string;
|
25 |
data: WorkspaceNodeData;
|
26 |
position: Position;
|
27 |
-
parentId?: string | null;
|
28 |
[k: string]: unknown;
|
29 |
}
|
30 |
export interface WorkspaceNodeData {
|
|
|
24 |
type: string;
|
25 |
data: WorkspaceNodeData;
|
26 |
position: Position;
|
|
|
27 |
[k: string]: unknown;
|
28 |
}
|
29 |
export interface WorkspaceNodeData {
|
web/src/index.css
CHANGED
@@ -15,7 +15,8 @@
|
|
15 |
background: #002a4c;
|
16 |
}
|
17 |
|
18 |
-
img,
|
|
|
19 |
display: inline-block;
|
20 |
}
|
21 |
|
@@ -156,6 +157,43 @@ body {
|
|
156 |
line-height: 10px;
|
157 |
}
|
158 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
}
|
160 |
|
161 |
.directory {
|
@@ -265,29 +303,29 @@ path.react-flow__edge-path {
|
|
265 |
stroke-width: 2;
|
266 |
stroke: black;
|
267 |
}
|
|
|
268 |
.react-flow__edge.selected path.react-flow__edge-path {
|
269 |
outline: var(--xy-selection-border, var(--xy-selection-border-default));
|
270 |
outline-offset: 10px;
|
271 |
border-radius: 1px;
|
272 |
}
|
|
|
273 |
.react-flow__handle {
|
274 |
border-color: black;
|
275 |
background: white;
|
276 |
width: 10px;
|
277 |
height: 10px;
|
278 |
}
|
|
|
279 |
.react-flow__arrowhead * {
|
280 |
stroke: none;
|
281 |
fill: black;
|
282 |
}
|
283 |
-
|
284 |
-
// This will need some more thinking for a general solution.
|
285 |
-
.react-flow__node-sub_flow {
|
286 |
-
z-index: -20 !important;
|
287 |
-
}
|
288 |
.react-flow__node-area {
|
289 |
z-index: -10 !important;
|
290 |
}
|
|
|
291 |
.selected .lynxkite-node {
|
292 |
outline: var(--xy-selection-border, var(--xy-selection-border-default));
|
293 |
outline-offset: 7.5px;
|
|
|
15 |
background: #002a4c;
|
16 |
}
|
17 |
|
18 |
+
img,
|
19 |
+
svg {
|
20 |
display: inline-block;
|
21 |
}
|
22 |
|
|
|
157 |
line-height: 10px;
|
158 |
}
|
159 |
}
|
160 |
+
|
161 |
+
.node-search {
|
162 |
+
position: fixed;
|
163 |
+
width: 300px;
|
164 |
+
z-index: 5;
|
165 |
+
padding: 4px;
|
166 |
+
border-radius: 4px;
|
167 |
+
border: 1px solid #888;
|
168 |
+
background-color: white;
|
169 |
+
max-height: -webkit-fill-available;
|
170 |
+
max-height: -moz-available;
|
171 |
+
display: flex;
|
172 |
+
flex-direction: column;
|
173 |
+
|
174 |
+
input {
|
175 |
+
width: calc(100% - 26px);
|
176 |
+
font-size: 20px;
|
177 |
+
padding: 8px;
|
178 |
+
border-radius: 4px;
|
179 |
+
border: 1px solid #eee;
|
180 |
+
margin: 4px;
|
181 |
+
}
|
182 |
+
|
183 |
+
.search-result {
|
184 |
+
padding: 4px;
|
185 |
+
cursor: pointer;
|
186 |
+
}
|
187 |
+
|
188 |
+
.search-result.selected {
|
189 |
+
background-color: oklch(75% 0.2 55);
|
190 |
+
border-radius: 4px;
|
191 |
+
}
|
192 |
+
|
193 |
+
.matches {
|
194 |
+
overflow-y: auto;
|
195 |
+
}
|
196 |
+
}
|
197 |
}
|
198 |
|
199 |
.directory {
|
|
|
303 |
stroke-width: 2;
|
304 |
stroke: black;
|
305 |
}
|
306 |
+
|
307 |
.react-flow__edge.selected path.react-flow__edge-path {
|
308 |
outline: var(--xy-selection-border, var(--xy-selection-border-default));
|
309 |
outline-offset: 10px;
|
310 |
border-radius: 1px;
|
311 |
}
|
312 |
+
|
313 |
.react-flow__handle {
|
314 |
border-color: black;
|
315 |
background: white;
|
316 |
width: 10px;
|
317 |
height: 10px;
|
318 |
}
|
319 |
+
|
320 |
.react-flow__arrowhead * {
|
321 |
stroke: none;
|
322 |
fill: black;
|
323 |
}
|
324 |
+
|
|
|
|
|
|
|
|
|
325 |
.react-flow__node-area {
|
326 |
z-index: -10 !important;
|
327 |
}
|
328 |
+
|
329 |
.selected .lynxkite-node {
|
330 |
outline: var(--xy-selection-border, var(--xy-selection-border-default));
|
331 |
outline-offset: 7.5px;
|