Voice-To-Text / app.py
lodhrangpt's picture
Update app.py
fdbd451 verified
raw
history blame
1.9 kB
import gradio as gr
import requests
import numpy as np
import io
import wave
# Function to send audio to Groq API and get transcription
def transcribe(audio_data):
# Convert the NumPy audio array to bytes
audio_bytes = io.BytesIO()
# Convert NumPy array to WAV format (use appropriate rate, channels, etc.)
with wave.open(audio_bytes, "wb") as wf:
wf.setnchannels(1) # Mono channel
wf.setsampwidth(2) # 16-bit audio
wf.setframerate(16000) # Assuming 16kHz sample rate
wf.writeframes(audio_data.tobytes())
audio_bytes.seek(0) # Rewind to the beginning
# Groq API endpoint for audio transcription
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions"
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key
headers = {
"Authorization": "Bearer YOUR_GROQ_API_KEY",
}
# Prepare the files and data for the request
files = {
'file': ('audio.wav', audio_bytes, 'audio/wav'),
}
data = {
'model': 'whisper-large-v3-turbo', # Specify the model to use
'response_format': 'json', # Desired response format
'language': 'en', # Language of the audio
}
# Send audio to Groq API
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data)
# Parse response
if response.status_code == 200:
result = response.json()
return result.get("text", "No transcription available.")
else:
return f"Error: {response.status_code}, {response.text}"
# Gradio interface
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="numpy"), # Changed to numpy
outputs="text",
title="Voice to Text Converter",
description="Record your voice, and it will be transcribed into text using Groq API."
)
iface.launch()