Spaces:
Running
Running
import gradio as gr | |
import requests | |
import numpy as np | |
import io | |
import wave | |
# Function to send audio to Groq API and get transcription | |
def transcribe(audio_data): | |
# Convert the NumPy audio array to bytes | |
audio_bytes = io.BytesIO() | |
# Convert NumPy array to WAV format (use appropriate rate, channels, etc.) | |
with wave.open(audio_bytes, "wb") as wf: | |
wf.setnchannels(1) # Mono channel | |
wf.setsampwidth(2) # 16-bit audio | |
wf.setframerate(16000) # Assuming 16kHz sample rate | |
wf.writeframes(audio_data.tobytes()) | |
audio_bytes.seek(0) # Rewind to the beginning | |
# Groq API endpoint for audio transcription | |
groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" | |
# Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key | |
headers = { | |
"Authorization": "Bearer YOUR_GROQ_API_KEY", | |
} | |
# Prepare the files and data for the request | |
files = { | |
'file': ('audio.wav', audio_bytes, 'audio/wav'), | |
} | |
data = { | |
'model': 'whisper-large-v3-turbo', # Specify the model to use | |
'response_format': 'json', # Desired response format | |
'language': 'en', # Language of the audio | |
} | |
# Send audio to Groq API | |
response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) | |
# Parse response | |
if response.status_code == 200: | |
result = response.json() | |
return result.get("text", "No transcription available.") | |
else: | |
return f"Error: {response.status_code}, {response.text}" | |
# Gradio interface | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=gr.Audio(source="microphone", type="numpy"), # Changed to numpy | |
outputs="text", | |
title="Voice to Text Converter", | |
description="Record your voice, and it will be transcribed into text using Groq API." | |
) | |
iface.launch() | |